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The growth hormone/insulin-like growth factor (GH/IGF) system, also called the pituitary-
liver axis, has a somatotrophic role in the body. Although the GH/IGF system has always
been regarded as a vertebrate-specific endocrine system, its actual origin remained
unknown for a long time. The basal chordate, amphioxus, occupies an evolutionary
position between vertebrates and invertebrates. Impressively, most of the members of the
GH/IGF system are present in the amphioxus. The GH-like molecule in the amphioxus is
mainly expressed in Hatschek’s pit. It functions similarly to vertebrate GH and has a GH
receptor-like binding partner. The amphioxus IGF-like peptide shows mitogenic activity
and an expression pattern resembling that of vertebrate IGF-I. The receptor of IGF-like
peptide and IGF binding protein (IGFBP) have also been demonstrated to exist in the
amphioxus. These results reveal the origin of the gene families in the GH/IGF system,
providing strong evidence that this system emerged in the amphioxus.

Keywords: amphioxus, GH/IGF system, growth hormone, growth hormone receptor, insulin-like growth factor-I,
insulin-like growth factor-I receptor, insulin-like growth factor binding protein
INTRODUCTION

Growth hormone (GH) is a pituitary hormone that has positive effects on the postnatal growth and
development of animals. After being secreted into the bloodstream, GH is transported to the target
cell membrane by a type of binding protein with high GH affinity (growth hormone binding-protein,
GHBP); it then interacts with a specific receptor, the growth hormone receptor (GHR). The
interaction between GH and GHR directly triggers the intracellular signal involved in catabolism.
Nevertheless, the somatotrophic and anabolic activity of GH predominantly depends on an
intermediator defined as insulin-like growth factor-I (IGF-I) (1). GH-targeted hepatocytes can
induce the expression of IGF-I in the liver. IGF-I is released into circulation and targets bone and
muscle cells. It binds specifically to IGF-I receptor (IGF-IR) located on the cell surface and activates
the downstream signal to promote cell proliferation and differentiation. The activity and stability of
IGF is regulated by a subgroup of soluble proteins with high IGF- affinity. They are named insulin-
like growth factor binding proteins (IGFBPs). These molecules—GH, GHR, IGF, IGFR, and IGFBP—
constitute a complicated signaling pathway that is referred to as the GH/IGF system. Owing to the
localization of GH and IGF, this system is also denoted as the pituitary-liver axis (2). The GH/IGF
system has been found in all taxonomic groups of vertebrates, including agnathans such as lamprey.
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Since there is limited information on GH/IGF system genes in
invertebrates, this system has been regarded as vertebrate-specific
for a long time. The cephalochordate amphioxus occupies a nodal
position between invertebrates and vertebrates. It appears to be
related anatomically and developmentally to ancient vertebrates
(3). The amphioxus has the so-called Hatschek’s pit and hepatic
caecum, which have been proposed as the homologs of the
vertebrate pituitary gland and liver, respectively. Hatschek’s pit
was initially identified by Hatschek. It is a dorsal evagination of tall
cells from the mouth epithelium and is located to the right of the
notochord (4). Similar to the pituitary, Hatschek’s pit originates
from the ectoblast. Tjoy and Welsch (5) observed that a type of
epithelium cell containing secretory vesicles and secretory grains
are distributed in the base of Hatschek’s pit, indicating that it has
endocrine activity. A series of immunohistochemical studies
further detected positive signals of vertebrate pituitary hormones
including luteinizing hormone (LH), follicle stimulating hormone
(FSH), and luteinizing hormone-releasing hormone (LHRH) from
Hatschek’s pit (6–9). Transcriptions of the pituitary-specific
transcription factor Pit-1 and Pax6 have also been detected in
the primordium of Hatschek’s pit (10, 11). These results suggest
that Hatschek’s pit and the vertebrate pituitary gland are
homologous. The amphioxus hepatic caecum is a pouched
branch derived from the digestive tube. It has been considered a
homolog of the vertebrate liver for a long time (12–14). Studies
have shown that the amphioxus hepatic caecum can synthesize
liver-specific proteins, including vitellogenin, antithrombin,
plasminogen, alanine aminotransferase, glutathione S-
transferase, and some acute-phase factors (15–19). In addition, it
has been identified that the hepatic caecum regulates glucose
metabolism in the amphioxus. Welsh observed that abundant
glycogen particles accumulated in the hepatic caecum (20). It was
further found that hexokinase and glucose-6-phosphatase
(G6Pase), which are essential for glucose metabolism, were
specifically expressed in the hepatic caecum (21, 22). The
enzymatic activity of glucokinase and G6Pase increased
after feeding.

These studies provided sufficient evidence that the amphioxus
has organs homologous to the vertebrate pituitary and liver.
More importantly, the amphioxus is responsive to the
stimulation of vertebrate GH. For instance, the expression of
G6Pase in the hepatic caecum was up-regulated by GH (22). This
suggested that the specific receptor which can interact with GH
and trigger a downstream signal exists in the amphioxus. The
members of the GH/IGF system in amphioxus have been
gradually identified since the 1990s. In this review, the GH/
IGF system and the characterized amphioxus homologues are
systemically described. All the evidence suggests that the GH/
IGF system emerged in this basal chordate.
AMPHIOXUS EXPRESSES A FUNCTIONAL
GH-LIKE MOLECULE

In 1921, Evans and Long first reported that injection of a cow
pituitary extract stimulated the growth of rats (23). Subsequent
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studies showed that hypophysectomy would result in growth
arrest (24, 25). In 1944, Li and Evans successfully isolated a
peptide hormone from the ox pituitary. It increased the body
weight of a hypophysectomised rat (26). Therefore, this hormone
was named GH. GH is a multifunctional hormone which
regulates growth, development, metabolism, immunity, and
internal osmotic pressure (2, 27–29). It is mainly synthesized,
stored, and secreted by the pituitary gland. Although GH was
initially identified as an endocrine factor, it also acts through an
autocrine/paracrine mechanism in some extra-pituitary
locations, such as neuronal cells within the central nervous
system, epithelial cells, fibroblasts, and some immune cells.

The GH genes have been identified in the genomes of all
classes of vertebrates. Before the 2010s, it was uncertain whether
GH existed in invertebrates. The amphioxus not only has a
homolog of the vertebrate pituitary but also responds to
stimulation by exogenous vertebrate GH. This implies that GH
should be present in the amphioxus. In 2014, Li et al. cloned a
GH-like (GHl) gene from the amphioxus cDNA library (30). This
gene contained an ORF encoding a novel type-I helical cytokine
of 208 amino acids. Although this cytokine shares low sequence
identity with GH, as well as other type-I helical cytokines in
vertebrates, phylogenetic analysis showed that GHl has a closer
genetic relationship with GH. In addition, some conserved
amino acid residues essential for binding to GHR are present
in the sequence of amphioxus GHl. 3D modeling showed that
GHl and human GH share a similar structure, implying that GHl
might function like GH. Importantly, amphioxus GHl and GH
have similar expression profiles. GHl mRNA and protein have
been shown to be highly expressed in Hatschek’s pit, which is
homologous to the vertebrate pituitary. Moreover, GHl acted
similar to GH in vivo. Recombinant GHl protein had a
somatotrophic effect in zebrafish and rescued GH-deficient
zebrafish embryos. It also promoted sea water adaptation of
the amphioxus. Mechanistically, recombinant GHl can interact
with GHR and stimulate the expression of IGF-I and
osmoregulatory genes, suggesting that GHl exerts its activity
through mechanisms similar to those of vertebrate GH (30, 31).
These results indicate that a functional GH-like hormone
emerged in the amphioxus.
THE ORIGINAL FORM OF GHR AND GHBP

GHR is a class-I cytokine receptor that specifically binds to type-I
helical cytokines and transduces their signal. It is widely expressed
and is most abundant in the liver (32, 33). GHR is structurally
divided into three parts: the extracellular, transmembrane, and
cytoplasmic domains. One molecule of GHR binds to one
molecule of GH, the heterodimer, then interacts with another
molecule of free GHR (34, 35). The homodimer of GHRs recruits
and phosphorylates Janus kinase 2 (JAK2). JAK2 phosphorylation
activates several signaling pathways, including the STAT5, ERK,
and PI3K/Akt pathways (36). In addition, there is a class of soluble
high-GH-affinity proteins called GHBPs, which share the
sequence of the GHR extracellular domain. They can be
April 2022 | Volume 13 | Article 825722
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generated by either alternative splicing of GHR pre-mRNA or
cleavage of GHR protein (37–40). In addition to GHl, a unique
GHR-like (GHRl) molecule has also been identified (30). GHRl
has a structure similar to that of GHBP, which contains only an
extracellular part. It shares approximately 30% sequence identity
with the binding domain of vertebrate GHR. In addition, the locus
of the GHRL gene (GenBank accession ID: LOC118431284) is
closely linked to the OXCT1 gene (LOC118431327) in the genome
of the Florida amphioxus. This is similar to the vertebrate GHR
gene. GHRl is mainly expressed in the hepatic caecum and gill, and
has an expression pattern similar to that of vertebrate GHR. It can
bind to both amphioxus GHl and zebrafish GH in vitro. Moreover,
injection of GHRl affects the expression of IGF-I mRNA, which is
stimulated by GH or amphioxus GHl in the zebrafish liver (30),
indicating that GHRl interacts with GH and regulates its activity in
vivo. These results suggest that GHRl is the binding partner
of GHl.

It is worth mentioning that the amphioxus GHRl sequence
cloned by Li et al. only encodes the extracellular domain. The
corresponding predicted GHRl gene in the Florida amphioxus
(LOC118431284) and Branchiostoma belcheri (LOC109467053)
genomes also lacks the sequences encoding the transmembrane
and cytoplasmic domains. It is noteworthy that a predicted gene
encoding the transmembrane and cytoplasmic domains of type-I
cytokine receptor (LOC118431288) is just adjacent to the GHRl
gene in the Florida amphioxus. Perhaps a full-length GHRl gene
was incorrectly noted as two separate genes owing to inaccurate
genome assembly. The cloned truncated GHRl transcript might
have resulted from alternative splicing resembling that of
vertebrate GHBP. It is also possible that the GH signal is
transduced via the receptor complex in the amphioxus. Some
class-I helical cytokines (e.g., interleukin-6, ciliary neurotrophic
factor and leukemia inhibitory factor) have multimeric receptors
for signal transduction. Firstly, the ligand binds to a specific
soluble receptor chain which might only contain the extracellular
part. Then, the ligand-receptor heterodimer is transported to the
target cell membrane, where it interacts with other transmembrane
receptors. These receptors form a complex and trigger the signaling
pathway (41). In ancient chordates such as the amphioxus, the
original GHR might have just diverged from an ancestral form of
type-I cytokine receptor which only contained an extracellular
domain and needed to form multimeric receptors. The genes
which encode the ligand-binding and signal transduction
domains might further merge into a full-length GHR gene during
evolution. The existence of full-length GHRl or other receptor
partners of GHRl needs to be verified. The mechanism of GHl
signal transduction also remains to be investigated.
AMPHIOXUS GHL AND GHRL
ILLUMINATE THE ORIGIN OF
VERTEBRATE GH AND GHR

GH belongs to the type-I helical cytokine superfamily (or four-
helical cytokine superfamily). This superfamily includes GH,
erythropoietin, interleukin, and ciliary neurotrophic factor. All
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the members comprise about 200 amino acids and have a
characteristic four-helix bundle fold structure with an unusual
topology (up-up-down-down). It is thought that all the type-I
class cytokines evolved from a common ancestor through
duplication and subsequent divergence (42–44). Among these
members, prolactin (PRL) is evolutionarily and functionally
related to GH (45–50). GH and PRL together constitute the
GH family. The identification of the single GH gene in the
agnathan, sea lamprey, indicated that PRL diverged from GH
(51). It is thought that GH was generated by genome duplication
and gene innovation during the evolution from invertebrates to
vertebrates. However, it cannot be easily judged whether GH
initially emerged in vertebrates. The study of Li et al. revealed the
existence of a GH-like gene in basal chordates. The identification
of a GHR-like molecule in the amphioxus further strengthens the
hypothesis that GH may have originated from cephalochordates.
It should be mentioned that invertebrate evolution into vertebrates
occurred over a long period of time. Therefore, both GHl and GHRl
in the amphioxus show primitive characteristics. For example, GHl
shares low sequence identity with vertebrate GH, as well as other
types of class-I helical cytokines. GHRl has an extended
immunoglobulin-like domain in the N-terminal, which is
characteristic of other types of class-I cytokine receptors such as
some interleukin receptors. In conclusion, amphioxus GHl
indicates that an ancestral form of a GH-like hormone emerged
in cephalochordates. It might have transformed into GH during
lengthy evolution through gene mutation and innovation rather
than duplication of other genes.

GHR and PRL receptor (PRLR) are grouped into the GHR
family and are thought to have a common ancestor. The single
GHRL gene in the amphioxus strongly supports this hypothesis. It
shares sequence identity with both GHRs and PRLRs. In addition,
amphioxus GHl/GHRl makes the evolutionary order between GHl/
GHR and PRL/PRLR clear. According to studies on vertebrates, it is
difficult to identify which among GHl/GHR and PRL/PRLR arose
in vertebrates first. Furthermore, both GHR and PRLR have been
found in agnathan such as sea lamprey (52, 53). However, there is
only oneGH locus in the sea lamprey genome. Gong et al. suggested
that sea lamprey GHmight have a bidirectional effect and is capable
of binding GHR or PRLR to activate different intracellular signals
(53). Although GHRl shares slightly higher sequence identity with
vertebrate PRLRs than GHRs, GHRl does not seem to be capable of
transducing PRL signaling. Neither exogenous zebrafish PRL nor
amphioxus GHl can increase the survival of the amphioxus in low
salinity conditions (31). It can hence be inferred that PRL/PRLR
and their downstream signal might not have diverged in
cephalochordates. Therefore, GH/GHR emerged earlier in the
evolution process.
ILP AND ILP RECEPTOR IN AMPHIOXUS

IGF-I is the messenger that mediates the somatotrophic activity
of GH. It is mainly expressed in the liver and induced by GH via
activation of the JAK2-STAT5 signaling pathway (54–56). IGF-I
synthesized by the liver plays mitogenic and metabolic roles in an
endocrine manner. Circulating IGF-I interacts with IGF-IR
April 2022 | Volume 13 | Article 825722
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located on the membranes of muscle and bone cells to activate
the MAPK and PIK3/Akt pathways (57). IGF-I also acts via an
autocrine/paracrine mechanism in some tissues (58–62). IGF-I
belongs to the insulin superfamily, which includes insulin (INS)
and IGF-II (63). They trigger overlapping signaling pathways
and bind to receptors with a similar structure.

In the amphioxus genome, there is a single gene encoding an
insulin-like peptide (ILP) which shows characteristics of both INS
and IGFs. This ILP consists of 305 amino acids. The first 101
residues exhibit the features of pro-INS. The last 204 residues can be
divided into D and E domains of IGF (64). The identification of ILP
in basal chordates soundly demonstrated the existence of an
ancestor of INS and IGF. Moreover, the single insulin-like
peptide receptor (ILPR) gene was identified in the European
amphioxus (Branchiostoma lanceolatum) by Pashmforoush et al.
(65). The encoded receptor protein shares 48.6% sequence identity
with the human INS receptor and 47.3% sequence identity with
human IGF-IR. Autophosphorylation of this receptor could be
stimulated with an amphioxus ILP analogue concentration of 10-7

M, indicating its high affinity for amphioxus ILP. Therefore,
amphioxus ILP and ILPR reveal the origin of the INS/INSR
system. Patton et al. proposed a model representing the evolution
of the INS/IGF genes: an ancestral INS/IGF-like gene generated two
genes by tandem duplication. They respectively evolved into INS
and IGF by gene innovation. IGF-I and IGF-II diverged in the
second round of genome duplication, whereas one of the duplicated
INS genes was lost in the early Gnathostomata evolution (66).

Functionally, amphioxus ILP shows IGF-I-like mitogenic
activity in vitro. Guo et al. cloned the orthologue of the ILP
gene from Becher’s lancelet (B. belcheri). In situ hybridization
and immunohistochemical staining showed that ILP is mostly
enriched in the hepatic caecum and hind gut. The recombinant
full-length ILP excluding the signal peptide showed mitogenic
activity, which stimulated the proliferation of flounder gill cells
(67). Liu and Zhang further proved that the recombinant
artificially mature peptide of amphioxus ILP (IGF-MP,
containing the B, C, A, and D domains of ILP) could bind to
mouse IGFR and promote proliferation of mouse muscle cells in
a dose-dependent manner. Western blotting showed that IGF-
MP could activate the MAPK and PIK3/Akt signaling pathways,
similar to human IGF-I (68). Moreover, the expression of ILP
Frontiers in Endocrinology | www.frontiersin.org 4
mRNA in the hepatic caecum could be induced by exogenous
recombinant rat GH and amphioxus GHl (31, 67). These results
indicate that amphioxus ILP and vertebrate IGF-I share features.

It is uncertain whether ILP regulates metabolism. Although Guo
et al. reported that injection of recombinant ILP could not reduce the
blood glucose levels of diabetic mice induced by alloxan, the
metabolic potency of ILP cannot be ruled out. Firstly, the B and A
domains of IGF share about 47-57% and 44-51% sequence identity,
respectively, with their homologous counterparts among the INS/
IGF family members of the vertebrates (67), suggesting exogenous
recombinant ILP might confer sensitivity onto mice. Secondly, the
protokaryotic recombinant ILP was probably not forded or cleaved
into the correct form to trigger metabolic signaling.Moreover, some
characteristics of ILP and ILPR show underlyingmetabolic potency.
For instance, amphioxus ILP is enriched in both the hepatic caecum
and gut (67). In the amphioxus, the gut is not only the site of nutrient
absorption, similar to the vertebrate intestine, but it is also partially
homologous to the vertebrate pancreas. It had been observed that
pancreatic hormone-producing cells are distributed in the
amphioxus gut (69, 70). Elastase was also found to be specifically
expressed in the amphioxus gut (71). The expression of ILP in the
gut was similar to the expression of vertebrate INS in pancreatic islet
b-cells. Moreover, the conserved glucose-response cis-element was
located in the 5’ untranslated region (UTR) of amphioxus ILP
(Figure 1), which is essential for responding to glucose stimulation
(72). In addition, both human INS and IGF-I can induce
autophosphorylation of amphioxus ILPR at a concentration of 10-5

M. The expression level of ILPR mRNA was approximately equal
in the longitudinally divided four segments of a whole amphioxus
(65). These are essential conditions of cell metabolism mediation by
ILP. It is better to test themetabolic effect of ILP using the amphioxus
as the experimental animal. It should especially be verified whether
ILP can promote the accumulation of glycogen in the hepatic
caecum (20).
THE ORIGINAL IGFBP: IGF-DEPENDENT
OR INDEPENDENT?

IGFBP was initially identified as the carrier of IGFs in serum. It
binds to and transports IGFs to the membranes of target cells.
FIGURE 1 | The glucose-responding cis-element in 5’ UTR of human ins mRNA (NM_000207.2), rat ins mRNA (NM_019130.2), hagfish ins mRNA (V00649.1) and
amphioxus ilp mRNA (M55302.1). * indicates complete conservation.
April 2022 | Volume 13 | Article 825722
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The half-life of IGFs significantly increases when they bind to
IGFBPs (73–76). In addition to regulating the activity of IGF
(77–81), IGFBP also exerts some IGF-independent functions
such as transcription activation (82–88).

Six homologous IGFBPs encoded by different genes exist in
mammals (89). These structurally related and multifunctional
IGFBPs are thought to have duplicated and diverged from a
common ancestor (90). This has been demonstrated by cloning the
single IGFBP gene in B.belcheri (91). However, This IGFBP does not
exhibit IGF affinity. In the IGF-binding domain of the vertebrate
IGFBPsequence, there is ahighly conservedR/KPLXXLLmotif,which
is critical for binding to IGF. In amphioxus IGFBP, the corresponding
sequence of this motif is SPFRELL. After a single amino acid was
mutated, this IGFBPwas able to bind to IGF. Functionally, amphioxus
IGFBP exerts transcription regulating activity. There are two nuclear
localization motifs and an N-terminal in the transcription activation
domain of amphioxus IGFBP sequence. This makes it localize in the
nucleus and activate transcription.

To exclude the particularity of amphioxus IGFBP, the IGFBPs
in urochordates and agnathans were considered. Urochordates
and cephalochordates are the invertebrates which have the closest
evolutionary relationship with vertebrates. Genomic scans
showed that urochordates and cephalochordates are the only
classes of invertebrates which have IGFBP genes in the genome.
Ciona intestinalis is representative of urochordates. There are
three putative genes (LOC100186815, LOC100182142, and
Frontiers in Endocrinology | www.frontiersin.org 5
LOC101242706) potentially encoding IGFBPs. One of these
hypothetical IGFBPs does not have an IGF-binding domain due
to incomplete genome assembly. Although the other two IGFBPs
have IGF-binding domains, the critical motifs are ‘SNLIAIL’ and
‘YDAYGYL’, respectively, which are different from those of
vertebrates. This implies that they might not bind to IGF either.
In agnathans, IGFBP could interact with IGF. Sea lamprey
IGFBP3 has a conserved ‘RPLQALL’ motif. It has been
demonstrated to have IGF affinity and play an IGF-dependent
role (92). It is probable that IGFBP was initially independent of the
GH/IGF system in invertebrates. It gained IGF affinity during
evolution. It is also possible that the original IGFBP could bind to
ILP, unlike vertebrate IGF. The interaction between amphioxus
IGFBP and ILP needs to be further examined.

CONCLUSION AND PERSPECTIVE

The GH/IGF system is the endocrine axis that connects the pituitary
and liver. It regulates the postnatal growth of vertebrates. The origin
of the GH/IGF system has remained unknown for a long time. The
basal chordate, amphioxus, has structures homologous to the
vertebrate pituitary and liver. The identification of GH/IGF-like
genes in the amphioxus has not only revealed the origin of the GH/
IGF system gene families but also indicated that the vertebrate-like
endocrine axis emerged in invertebrates (Figure 2). This largely
strengthens the evolutionary position of the amphioxus and
A B

FIGURE 2 | The GH/IGF systems of vertebrates [e.g., human; (A)] and amphioxus (B) involve in growth and metabolism. Green arrow indicates the GH/IGF
pathway; red arrow indicates the insulin pathway. The solid line indicates confirmed parts; the dotted line indicates putative parts.
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deepens the understanding of the animal evolution process. In
particular, the discovery of amphioxus GHl and ILP, as well as their
receptors, reinforces the homologies between the amphioxus
Hatschek’s pit and vertebrate pituitary as well as the hepatic
caecum and liver (Table 1).

Owing to the lack of an amphioxus cell line, the downstream
signaling pathways of the amphioxus GH/IGF system are
unclear. The rapid development of single-cell sequencing and
proteomics techniques would be beneficial to the separation of
target cells and identification of the intracellular messengers.

GH belongs to the type-I helical cytokine superfamily. In
addition to that of the GH-like hormone, there are several genes
related to type-I helical cytokines in the amphioxus genome. The
putative proteins encoded by these genes are quite divergent from
the known vertebrate type-I helical cytokines, implying that they
might be ancestors, which would be further divided into other
classes of type-I helical cytokines. Moreover, no type-I helical
cytokine gene has been detected in the genomes of urochordates,
including acorn worms and sea squirts. In this regard, although
some analysis had suggested that urochordates and vertebrates
were more likely sister clades, cephalochordates are the only class
of invertebrates that have been demonstrated to have a vertebrate-
Frontiers in Endocrinology | www.frontiersin.org 6
like endocrine system. It seems that the evolutionary relationship
between cephalochordates, urochordates, and vertebrates is more
complex than once thought. On the other hand, the functions of
other ancient type-I helical cytokines and the origin of this
superfamily remain undetermined.

In addition, some questions remain unsolved. For example,
what is the complete signaling pathway of GHl in the amphioxus?
Is there a full-length GHRl in the amphioxus? Does ILP have a
metabolic effect? Clarifying these points will help establish a more
integrated GH/IGF system of the amphioxus.
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