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Objective. A reduced level or tension or the deprivation of oxygen is termed hypoxia. It is common for tumours to outgrow their
natural source of nutrients, which causes hypoxia in some tumour regions. Hypoxia affects ovarian cancer (OC) in several ways.
Methods. In this study, the expression patterns of prognostic hypoxia-related genes were curated, and consensus clustering
analyses were performed to determine hypoxia subtypes in OC included in-eCancer GenomeAtlas cohort. Two hypoxia-related
subtypes were observed and considered for further investigation. -e analyses of differentially expressed genes (DEGs), gene
ontology, mutation, and immune cell infraction were performed to explore the underlying molecular mechanisms. Results. In
total, 377 patients with OC were classified into two subgroups based on the subtype of hypoxia. -e clinical outcome was
considerably poor for patients with hypoxia subtype 2. DEG and protein-protein interaction analyses revealed that the expression
levels of CLIP2 and SH3PXD2Awere low in OC tissues. Immune cell infarction analysis revealed that the subtypes were associated
with the tumour microenvironment (TME). Conclusion. Our findings established the existence of two distinctive, complex, and
varied hypoxia subtypes in OC. Findings from the quantitative analysis of hypoxia subtypes in patients improved our un-
derstanding of the characteristics of the TME and may facilitate the development of more efficient treatment regimens.

1. Introduction

Ovarian cancer (OC) is by far the deadliest type of gynae-
cological cancer and the fifth leading cause of cancer-
associated death among females [1]. Early diagnosis of
OC is challenging owing to the absence of disease-specific
symptoms. Subsequently, a majority of women are di-
agnosed with OC at an advanced stage [2]. Long-term ex-
posure to steroid hormones contributes to several risk
factors. Even though hormone synthesis slows down after
menopause, women who have been exposed to these hor-
mones continuously and chronically throughout their lives

are more likely to develop OC [3, 4]. Currently, the
standard-line therapy for OC comprises cytoreductive
surgery and chemotherapy (usually paclitaxel and carbo-
platin) to remove excess tissue [5]. However, even though
chemotherapy is occasionally effective in treating early-stage
cancer, many patients ultimately develop chemoresistance
and experience recurrence [6]. Chemoresistance is driven by
molecular and genetic changes that are unknown, and this
lack of mechanistic insight hinders its prevention and
prediction. [7, 8] Owing to this, novel therapeutic techniques
are needed to avoid chemoresistance and increase the
success rate of therapy.
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Hypoxia is reportedly associated with chemoresistance
via several pathways. Altering the metabolism of cancer cells
is one of the ways through which hypoxia may cause che-
moresistance in patients with cancer. OC cells, when ex-
posed to hypoxia, are subjected to metabolic
reprogramming, which alters the glycolytic pathway and
enhances resistance to carboplatin [9]. Hypoxia in OC is
associated with altered levels of circulating microRNAs
(miRNAs), and these miRNA expression patterns are linked
to a greater risk of OC development. However, research on
the mechanisms underlying hypoxia in OC is insufficient.

Immunotherapy is considered a potentially viable
treatment option since it has high degrees of specificity,
long-term benefits, and minimal adverse effects. Owing to
extensive variability, including clinical and pathological
parameters, molecular characteristics, and the immune cell
milieu, among other factors, the response rate to immune
checkpoint blockade treatment in patients with OC remains
as low as 15% [10–12]. Given the heterogeneity of OC, the
accurate identification of the specific advantages of im-
munotherapy in patients is essential for its further ad-
vancement [13]. In this study, two distinct hypoxia subtypes
were investigated, each characterised by distinct immune
infiltrates and immune responses. Additionally, an immune
scoring system was developed for patients with OC, which
yielded a thorough understanding of the characteristics of
the tumour microenvironment (TME) and prompted the
development of efficacious treatment modalities.

2. Material and Methods

2.1. Data Resources. -e Cancer Genome Atlas (TCGA,
https://cancergenome.nih.gov/) project was used to collect
and process the molecular data of 377 individuals who had
been diagnosed with OC. -e GDC data portal (https://
portal.gdc.cancer.gov) was used to obtain the transcriptomic
profiles (HTSeq-fragments per kilobase of exon per million
mapped fragments (FPKM)) and clinical data for TCGA-OC
dataset. -e Ensembl IDs were translated to gene symbols,
and the FPKM values were transformed into transcripts per
million [14].

2.2. Identification of Hypoxia Subtypes Using Consensus
Clustering. Using the ConsensusClusterPlus tool, subtypes
of hypoxia were determined. Hypoxia-related genes are
listed in Table 1. To properly classify OC samples, a con-
sensus matrix was developed using consensus clustering.
Consistent with the partitioning around the medoids al-
gorithm and using the Pearson correlation coefficient as the
distance measure, 500 bootstraps were provided, with each
comprising patients with OC included in TCGA cohort. -e
number of clusters was determined to be two–eight. Ad-
ditionally, a consensus clustering approach was adopted to
classify the genes immunologically related to the prognosis.
-e consistency matrix and the consistency cumulative
distribution function were selected as the methods for op-
timal classification [15].

2.3. Identification of Differently Expressed Genes (DEGs).
-e significance analysis built into the empirical Bayes
techniques used as a part of the limma package was used to
detect DEGs. -e cut-off values for selecting the relevant
DEGs were a P-value <0.01 and a |logFC|> 1. Additionally,
using the cBioPortal web platform (https://www.cbioportal.
org), we created a network of DEGs and their coexpression
genes [16,17].

2.4. Gene Ontology (GO) and Pathway Enrichment Analysis.
-e data were evaluated using functional enrichment
analysis to confirm the fundamental function of putative
targets. GO is a technique extensively used to annotate genes
with functions, including cellular components (CC), bi-
ological pathways (BP), and molecular function (MF).
ClusterProfiler version 3.18.0 in R was used to examine the
GO function of putative targets and enrich the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway to gain

Table 1: Hypoxia-related genes.

Gene symbol Gene symbol
PSMB6 PSMA1
PSMB5 PSMA8
HIGD1A PSMC6
EGLN2 PSMD9
PSMD1 RBX1
PSMA7 PSMC5
HIF1AN PSMB1
PSMC2 PSMB8
PSMD3 PSMA4
EP300 VHL
VEGFA HIF3A
ELOC WTIP
PSMC3 EGLN3
PSME4 ARNT
UBE2D2 PSMD12
UBC PSMA6
PSMD11 EGLN1
PSMD10 PSMB3
PSMB10 PSMD8
PSMD5 CUL2
ELOB PSMA3
PSME2 PSMC1
CREBBP SEM1
UBB EPAS1
PSMD6 PSMA5
PSMD13 PSMA2
PSMB11 EPO
CA9 PSME3
PSMF1 PSMD7
AJUBA PSMB9
UBE2D1 PSME1
PSMD14 HIF1A
PSMC4 CITED2
PSMB2 UBA52
PSMB4 UBE2D3
LIMD1 PSMD4
PSMD2 RPS27A
PSMB7
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a deeper understanding of how mRNA contributes to the
onset and advancement of cancer. -e boxplot and heatmap
were drawn using the ggplot2 and pheatmap functions of R
software, respectively [18].

2.5.Mutation Analysis. Using TCGA dataset (https://portal.
gdc.com), we retrieved the RNA-seq expression patterns,
genetic mutation, and relevant clinical data of 376 patients.
-e maftools package of R software was used to retrieve data
on mutations, which were further visualised by the program.
Genes with a higher mutational frequency detected in 376
patients in the histogram are demonstrated.

2.6. Protein-Protein Interaction (PPI) Enrichment Analysis.
An enrichment study of PPI was performed using the
Metascape database for each gene list that was provided.
Only the physical interactions observed in the STRING
(with a score greater than 0.132) and BioGRID were con-
sidered. -e resultant network included the subset of pro-
teins that physically interacted with at least one other
member in the list. -e molecular complex detection
(MCODE) algorithm 10 is used to determine the network
components that are densely connected when the number of
proteins in the network ranges between 3 and 500 [19].

2.7. Gene Expression Validation and Survival Analysis of Hub
Genes. To further confirm the significant role of hub genes
in the pathogenesis and prognosis of OC, we used the Gene
Expression Profiling Interactive Analysis (GEPIA) database
to retrieve information on the expression of these genes and
their prognostic significance. -e GEPIA database, an in-
teractive online platform for analysing gene expression,
contains data on 8,587 normal samples and 9,736 tumour
samples [20].

2.8. Cox Analysis. To define the appropriate terms to gen-
erate the nomogram, both univariate and multivariate Cox
regression analyses were used. Using the “forestplot” R
package, we generated a forest plot to display the P-value,
HR, and 95% confidence interval (CI) for each variable. We
created a nomogram based on the findings of a multivariate
Cox proportional hazard analysis to accurately predict the 1-
year overall recurrence.

2.9. Immune Cell Infarction Analysis. We used immunee-
conv, an R software package that incorporates the two most
recent algorithms, ssGSEA and CIBERSORT, to validate the
outcomes of the immune score assessment.-ese algorithms
are benchmarked and have distinct advantages. SIGLEC15,
TIGIT, PDCD1LG2, HAVCR2, PDCD1, LAG3, CTLA4, and
CD274 were determined to produce transcripts that are
important for immune checkpoints, and the expression
levels of these eight genes were measured. R foundation for
statistical computing (version 4.0.3) was used for imple-
menting the aforementioned analytical techniques. In

addition, we used the ggplot2 and pheatmap functions of the
R package [21].

2.10. Quantitative Reverse-Transcription Polymerase Chain
Reaction (qRT-PCR). Total RNA was extracted from para-
neoplastic and tumour tissues of patients with OC using the
TRIzol reagent (Sigma-Aldrich, St. Louis, MO, USA).
Furthermore, RNA from each sample (2 μg) was subjected to
qRT-PCR using the FastStart Universal SYBR ®GreenMaster (Roche, Germany) on an ABI QuantStudio5 Q5 real-
time PCR system (-ermo Fisher Scientific, USA). After-
ward, we used cDNA as a template in 20 μL reaction volume
(containing 10 μL of a PCR mixture, 0.5 μL of reverse and
forward primers, 2 μL of cDNA template, and an appropriate
volume of water). We conducted PCR as follows: cycling
began with an initial DNA denaturation step at 95°C for 30 s,
followed by 45 cycles at 94°C for 15 s, 56°C for 30 s, and 72°C
for 20 s. Each sample was assessed in triplicates. Using the
2−ΔΔCTmethod, readings from the threshold cycle (CT) were
obtained and further standardised to the levels of glycer-
aldehyde 3-phosphate dehydrogenase in each sample. -e
mRNA expression levels were compared to those in para-
cancerous tissue controls. -e primer pair sequences cor-
responding to the target genes are presented in Table 2.

3. Results

3.1. Characterisation of TwoDistinct Subtypes of OCHypoxia.
-e mRNA expression profiles of hypoxia-associated genes
in OC tissues were obtained from the TCGA cohort and used
in this investigation. Patients with OC were clustered using
consensus clustering methods in line with the expression
profiles of prognostic hypoxia-related genes. -e stability of
clustering was analysed with k-values ranging from 2 to 8. As
a direct consequence of this, selecting k� 2 was the best
alternative. Two distinct immune subtypes, immune subtype
1 (n� 134) and immune subtype 2 (n� 242), were identified
in patients with OC. Survival analysis revealed that patients
with subtype 2 had a poorer outcome (Figure 1(b)).

3.2. Determination ofDEGs in Subtypes. -e limma program
was used to conduct the analysis. -e results demonstrated
that 375 DEGs, including one gene that was considerably
upregulated and 374 genes that were downregulated. -e
volcano plot of gene expression profile data in each dataset is
presented in Figure 1(c). -e heatmap of the top DEGs is
presented in Figure 1(d).

3.3. GO Enrichment Analysis and KEGG Pathways of DEGs.
-e potential mRNA targets were analysed using the GO
database. -e findings obtained from the MF, CC, and BP of
putative targets clustered, based on the clusterProfiler
program in R software, revealed a substantial enrichment of
DEGs in functions such as the modulation of synapse
structure or activities, modulation of synapse organization,
modulation of small GTPase and mediated signal

Journal of Oncology 3

https://portal.gdc.com
https://portal.gdc.com


Table 2: Primers of CLIP2, SH3PXD2A and GAPDH.

Gene Forward primer sequence
(5′-3)

Reverse primer sequence
(5′-3′)

CLIP2 TTAGCGGACAACAGGCTGAC GCTGGAGCTCCTCGATTTCA
SH3PXD2A GACTGTACTGCTTAGGGGTGC CCGCTCTCGTTCTTCTCGAT
GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG

consensus matrix k=2
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Figure 1: (a) A heatmap illustrating the sample clustering when consensus k� 2, based on the expression profile of prognostic immune-
related genes. (b) Analysis of survival using the Kaplan-Meier method for the clusters. (c) -e fold change values and the P-adjust
parameters were used to construct the volcano plot. Upregulated genes are represented by red dots; downregulated genes are represented by
blue dots; non-significant genes are represented by grey dots. (d) -e heatmap of differential gene expression. (e) -e KEGG signalling
pathways with significant enrichment illustrate the main biological activities of significant candidate mRNAs. -e gene ratio is indicated by
the abscissa, and the enriched pathways are indicated by the ordinate. Analysis of putative mRNA targets using the gene ontology (GO)
database.
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transduction modulation of the extracellular matrix orga-
nisation (Figure 1(e)).

3.4. Mutation State in Subtypes. We examined how single-
nucleotide polymorphisms were distributed among the OC
samples. Overall, genetic mutations in immune subtypes 1
and 2 were observed in 102 and 161 OC samples, respectively
(Figures 2(a) and 2(b)). Lollipop charts of the mutated TP53
gene, the figure caption displays the somatic mutation rate,
and the subheadings depict the name of somatic mutation
(Figure 2(c)).

3.5. Establishment of the PPI Network and Module Analysis.
-e Metascape database served as the foundation for the
establishment of a PPI network of DEGs (Figure 3(a)). -e
two most significant modules, one comprising upregulated
genes and the other comprising downregulated genes, were
extracted from this PPI network using MCODE. Hub genes

were selected for further analysis. Many hub genes were
observed to be enriched in certain pathways, including the
PI3K-Akt signalling pathway (Figure 4(a)).

3.6. Analysis and Validation of Hub Genes. -e screening of
the GEPIA database revealed that CLIP2 and SH3PXD2A
displayed substantial differences in expression between tu-
mour and normal specimens in OC (Figures 4(b) and 4(c)).
-e findings of GEPIA for overall survival (OS) revealed that
patients with OC were categorised into high- and low-
expression groups. We confirmed that the overexpression
of CLIP2 and SH3PXD2A was associated with a significantly
poor OS in patients.

3.7. SurvivalAnalysis. -e one-year survival rate for patients
with OC may be predicted using the nomogram. We
established a calibration curve for the OS based on the
nomogram model in the discovery subgroup. -e univariate
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Figure 2: An oncoprint depicting the landscape of somatic mutations observed in ovarian cancer (OC) samples from (a) hypoxia subtype 1
and (b) hypoxia subtype 2. (c) Lollipop charts of the mutated TP53 gene; the figure caption depicts the somatic mutation rate; the
subheadings depict the name of the somatic mutation.
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and multivariate analyses showed that CLIP2 and
SH3PXD2A expressions functioned independently as a risk
factor for OC (Figures 4(d) and 4(e)).

3.8. Two Hypoxia Subtypes with Different Immune Infiltrates
and Immune Responses. Using the CIBERSORT algorithm,
the landscape of tumour-infiltrating lymphocytes was ob-
tained, and 21 types of immune cell profiles of patients with
glioma were determined from TCGA. -e proportion of
cells such as näıve B cells and CD8+ T cells differed sig-
nificantly between the hypoxia subtypes (Figure 5(a)).

Checkpoint analysis revealed that hypoxia subtype 2 has
a higher expression in CD274, HAVCR2, ODCD1LG2, and
SIGLEC15(Figure 5(b)). Finally, ssGSEA revealed thatCLIP2
and SH3PXD2A expression was positively correlated with
immune cells, such as Tem and natural killer (NK) cells
(Figures 5(c) and 5(d)).

3.9. Evaluation of Gene Expression in OC. To validate the
expression of the CLIP2 and SH3PXD2A genes in the tu-
mour and nontumour adjacent tissues, the relative mRNA
expression levels of CLIP2 and SH3PXD2A in both tumour

(a)

SETD1B

FBLN2

ZNF609

F13A1
SNRNP200

ERBB2

CNOT1

EPB41 NID2

EIF4G1

GCN1

KIF1A

HYOU1

ATP1A1

HMG20A

ACACA

CTDSP2

ABL1

SH3PXD2A

BECN1

ULK1

TRRAP

CLIP2

TRIO

TP53BP1

THBS2

SKI

RBL2

PTPRF

PTK7

ATXN1L

MYH10
CCDC85C

MMP14

CRB2

MAT2A

SH3PXD2B

LRP1

AMOTL1

LAMA5

AMOT

ITGB1

RNF123

IRS1

EP400

IGF2

BCOR

HSPG2

GPATCH8

HTT

KIF1B

MTOR

(b)

Figure 3: (a) Protein-protein interaction (PPI) network comprising the differentially expressed genes (DEGs) and their co-expressed genes.
(b) Hub genes among DEGs.
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and nontumour tissues were determined using qPCR. -e
average expression level of CLIP2 and SH3PXD2A in OC
tissue was considerably less than that in normal tissues
(Figure 6).

4. Discussion

OC is a severe epithelial cancer that predominantly con-
tributes to cancer-associated death among females [22–24].
-e treatment options available for OC are clinically

ineffective and have a detrimental effect on patients’ quality
of life. -us, viable and effective therapies are urgently
needed. [25, 26] A growing body of evidence has illustrated
that the hypoxia microenvironment plays a critical role in
immune response and carcinogenesis based on the dys-
regulated expression of genes associated with hypoxia.
[27, 28] Most research conducted in the past on hypoxia in
OV has focused on a single regulator. Hypoxia-
induciblefactor-1α, for instance, has been reported to
play an integral role in various processes, including the

*** *** *** ***

0

CD
27

4

CT
LA

4

H
A

V
CR

2

LA
G

3

PD
CD

1

PD
CD

1L
G

2

TI
G

IT

SI
G

LE
C1

5

2

4

6

Im
m

un
e c

he
ck

po
in

t

Group

G1

G2

(b)

aDC
Th17 cells

NK CD56bright cells
Cytotoxic cells

pDC
Th2 cells

T cells
TReg

B cells
TFH

CD8 T cells
Th1 cells

DC
NK CD56dim cells

T helper cells
Tgd

Neutrophils
Mast cells

Macrophages
Eosinophils

iDC
Tcm

NK cells
Tem

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
Correlation

0.00
0.25
0.50
0.75

P value

Correlation
0.1
0.2
0.3
0.4

(c)

Cytotoxic cells
aDC

T cells
Th1 cells

B cells
pDC
TReg

DC
T helper cells

Th2 cells
NK CD56bright cells

CD8 T cells
NK CD56dim cells

Neutrophils
Tgd

Macrophages
Th17 cells

iDC
Mast cells

TFH
Tcm

Eosinophils
Tem

NK cells

−0.2 0.0 0.2 0.4
Correlation

0.00
0.25
0.50
0.75

P value

Correlation
0.1
0.2
0.3
0.4

(d)

Figure 5: (a) -e boxplot of immune infarction cells in hypoxia types 1 and 2. (b) -e expression and distribution of immune checkpoint
genes in tissues affected by hypoxia types 1 and 2. (c) Barplot of immune cell infarction in high and low CLIP2 expression obtained via
single-sample Gene Set Enrichment Analysis (ssGSEA). (d) Barplot of immune cell infarction of high and low SH3PXD2A expression via
ssGSEA.
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promotion of OC immunosuppression, tumour metastasis,
and chemoresistance.

In this study, two subtypes of hypoxia were identified
using consensus clustering analysis, each of which was based
on the prognostic immune-relevant genes. Particularly,
hypoxia subtype 2 displayed a more unfavourable clinical
outcome than hypoxia subtype 1. Cancer is a malignant
neoplasm that may be caused by genetic mutations and
variations [29]. Hypoxia subtype 1 was characterised by the
presence of more prevalent genetic alterations. Alterations in
the expression of several genes, including TP53, have been
observed to be correlated with the success of immuno-
therapies and exhibit a predictive potential [30]. In the OC
samples, the TP53 gene was the first to undergo mutation. In
hypoxia subtype 1, the TP53 gene was reported to have
a greater incidence of mutations than that in hypoxia
subtype 2. Our results suggest a difference among the
hypoxia subtypes in terms of genetic changes and mutations.

In this study, we identified 374 genes generated from the
hypoxia subtypes, which had the potential to influence
pathways such as the PI3K-Akt signalling pathway. Hub
genes, such as CLIP2 and SH3PXD2A, were selected and
used for further investigation. Recently, the expression of
SH3PXD2A-AS1 was observed to be related to OC; however,
the underlying molecular mechanism remains unknown.
Simultaneously, the absence of SH3PXD2A has been re-
ported in the OV area. Nonetheless, further investigation is
warranted. -e results of ssGSEA demonstrated that the
decrease in CLIP2 and SH3PXD2A expression may influence
the infiltration levels of immune cells, such as NK cells.
Finally, PCR results confirmed these patterns in OC tissues.
While this work is a bioinformatics and pcr analysis, more
investigation should be performed in clinic for future
application.

A well-defined hypoxia score has significant benefits
over standard prognostic markers used for OC. -erefore,
the hypoxia score may be used to compare various hypoxia-
modulating components and aid the exploration of how
tumour cells interact with the immunological milieu. In
addition, it helps stratify patients with OC into various

groups based on their potential response to chemotherapy or
other immune checkpoint blockades. -us, CLIP2 and
SH3PXD2A should be further investigated and could be
novel biomarkers for patients with OC.
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Figure 6: -e expression of CLIP2 and SH3PXD2A determined via polymerase chain reaction (PCR).
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