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Abstract
Metalloproteinases—such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)—are 
involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity 
and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix 
components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, 
MMPs and ADAMs regulate blood–brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. 
Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflam-
mation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal 
meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears 
to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting 
the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms 
and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. 
Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which—when correctly applied 
and dosed—harbor the potential to improve the outcome of different neuroinflammatory diseases.
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TBM	� Tuberculous meningitis
TIMP	� Tissue inhibitor of metalloproteinase
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MMPs and ADAMs and their function 
in the CNS

Matrix metalloproteinases (MMPs) and A disintegrin 
and metalloproteinases (ADAMs) belong to the class of 
metzincin metalloproteinases containing a conserved Met 
residue at their active site and using a zinc ion during the 
enzymatic reaction. These metalloproteinases are involved 
in many neurological conditions but also contribute cru-
cially to neurophysiological functions, such as synaptic 
plasticity and neuroregeneration via regulating stem cell 
biology and remyelination [1]. Until now, 24 different 
mammalian MMPs are described, while each type has a 
defined substrate specificity [2]. Collectively, MMPs can 
degrade all components of the extracellular matrix (ECM) 
[1, 3]. Apart from degrading ECM, MMPs are also able to 
cleave adhesion molecules, receptors and growth factors 
[4], indicating an involvement of MMPs in cell migra-
tion, signaling, differentiation, cell survival or apoptosis, 
angiogenesis and inflammation [1, 2, 5]. ADAMs also 
have the capacity to degrade and remodel components of 
the ECM, but their best characterized function is protein 
ectodomain shedding, thereby processing and releasing 
mature proteins (e.g., TNF-α) from membrane-anchored 
precursors [1, 6]. During pathological conditions of the 
central nervous system (CNS), metalloproteinases derive 
from infiltrating leukocytes (neutrophils, macrophages and 
lymphocytes) or brain-resident cells (microglia, astrocytes 
and neurons) [7].

Regulation of metalloproteinase activity

As metalloproteinases have the capacity for extensive tissue 
destruction, their activity is tightly regulated and controlled 
[1, 8]. The catalytic activity of MMPs is regulated on four 
different levels; namely gene expression, compartmentali-
zation, pro-enzyme activation and enzyme inhibition [5]. 
Pro-MMPs are kept in a catalytically inactive state and can 
be activated by proteolytic cleavage of the pro-domain or 
by modification of the pro-domain’s cysteine thiol group 
[5, 9]. Of importance for inflammatory and infectious pro-
cesses, reactive oxygen species (ROS) have the potential to 
activate MMPs via oxidation of the pro-domain’s thiol group 
[10–12]. MMP inactivation might be achieved be natural 
inhibitors, of which the tissue inhibitors of metalloprotein-
ases (TIMPs) are the most prominent ones. By binding to the 
catalytic site of MMPs, the four TIMPs (TIMP-1, -2, -3 and 
-4) are able to terminate MMP activity [5, 13]. Many TIMPs 
target multiple metalloproteinases, but there are also some 
strict specificities such as TIMP-3, which is the only TIMP 
to inhibit ADAM17 [14, 15].

Effect of metalloproteinases on BBB 
integrity

The contribution of MMPs on blood–brain barrier (BBB) 
integrity was demonstrated for the first time in the early 
1990s by inducing BBB breakdown after intracerebroven-
tricular administration of MMP-2 and MMP-9, an effect that 
was prevented by simultaneous administration of TIMP-2 
[16–18]. Subsequent findings of elevated MMP-9 levels after 
cerebral insults for the first time established a link between 
MMPs and inflammation in the CNS [18, 19]. Intracerebral 
injection of lipopolysaccharide (LPS)—mimicking bacte-
rial brain infections—increased MMP-2, MMP-3 and TNF-α 
mRNA levels [20] and induced BBB disruption through the 
action of MMP-9 [21].

Blood–brain barrier opening is associated with a mor-
phological redistribution of tight junction (TJ) and adher-
ens junction (AJ) proteins from the membrane to the cyto-
plasm [22]. In different neurological pathologies, MMPs are 
reported to degrade TJ and basal lamina proteins, thereby 
inducing BBB leakage with subsequent neutrophil infiltra-
tion, brain edema and hemorrhage [22, 23].

The role of MMP-2 in BBB opening was intensively stud-
ied in cerebral ischemia models, where MMP-2 was found to 
play an important role in the initial BBB opening [24] with 
increased activation of MMP-2 being associated with the 
degradation of the TJ proteins claudin-5 and occludin [17, 
25]. Both MMP-2 and MMP-9 (gelatinase A and B) are able 
to degrade the major components of the basal lamina (type 
IV collagen, laminin and fibronectin) surrounding the cer-
ebral blood vessels, thus increasing BBB permeability [22]. 
In vitro and in vivo, MMP-9 is capable of degrade claudin-5, 
occludin and ZO-1, thereby participating in TJ degradation 
[25–27]. Experimental data propose that MMP-9—which 
plays a profound role in delayed BBB breakdown [28]—
derives mostly from brain microvascular endothelial cells 
and infiltrating neutrophils [27, 29–32]. Infiltrating neu-
trophils contain stores of MMP-9—so-called tertiary gran-
ules (or gelatinase granules)—which are rapidly released 
upon entering the site of injury [1, 33, 34]. MMP-9 levels 
critically increase during bacterial meningitis and elevated 
MMP-9 levels are associated with BBB damage and neuro-
logical sequelae [32, 35]. In experimental ischemic stroke, 
increased neutrophil-derived MMP-9 is critically involved 
in a state of systemic inflammation with sustained degrada-
tion of TJ and basal lamina proteins leading to exacerbated 
brain injury [22, 27]. Apart from these two gelatinases, other 
MMPs influence BBB integrity. MMP-3 is able to degrade 
laminin, gelatin, E-cadherin, proteoglycans and fibronectin 
[36] and has been demonstrated to mediate BBB opening 
after LPS-induced neuroinflammation, thereby facilitating 
neutrophil infiltration [37]. Collagenases (MMP-1, -8 and 
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-13) preferentially cleave helical collagens in the ECM [22] 
and are reported to be activated and/or upregulated in ves-
sels with BBB impairment [38–40]. In bacterial meningitis, 
cerebrospinal fluid (CSF) levels of MMP-13 and MMP-8 
are upregulated [41] and associated with BBB damage [35]. 
Repeated lumbar punctures in bacterial meningitis patients 
revealed that MMP-8 levels were regulated independently 
and did not correlate with CSF granulocyte cell counts, indi-
cating that these MMPs might not only be secreted by infil-
trating neutrophils but also from brain-resident cells [35].

Neural vascular barrier function is also regulated by 
ADAMs. ADAM12 and ADAM17 were shown to control 
neural vascular barrier function upon hypoxic stimuli by 
diminishing claudin-5 in brain microvascular endothelial 
cells, an effect that was prevented by specific inhibition of 
ADAM12 or ADAM17 [42]. Activated ADAM10 cleaves 
VE-cadherin and promotes leukocyte migration to inter-
endothelial junctions [43, 44].

MMPs and ADAMs in progression 
of neuroinflammation

As the first described MMP was found to degrade colla-
gen [45], the following contributions on MMPs mostly 
focused on their ability to degrade ECM components [5]. 
More recent data suggest, however, that MMPs have a much 
wider range of activity, including non-matrix substrates [4]. 
Instead of clustering MMPs together for their function in 
ECM degradation, Parks et al. suggest to categorize them 
rather according to their role in inflammation [5]. Table 1 
and Fig. 1 summarize functions of selected metalloprotein-
ases in pro- and anti-inflammatory processes.

MMPs in neutrophil migration and cytokine 
signaling

MMPs in chemokine signaling

To establish an effective immune reaction against invad-
ing pathogens, neutrophils must migrate efficiently along 
chemotactic gradients and extravasate from the blood ves-
sels towards the site of infection. Metalloproteinases have 
been demonstrated to be involved in these processes not only 
by degrading ECM and promoting effector cell extravasa-
tion but also by regulation of chemotactic gradients [15]. 
This was first demonstrated with MMP-9 shown to process 
an amino-terminal fragment of IL-8, thereby increasing its 
chemoattractant properties to more efficiently recruit neu-
trophils [46]. On the other hand, MMP-2 was shown to inac-
tivate monocyte chemotactic protein 3 (MCP3, also known 
as chemokine (C–C motif) ligand 7, CCL7) by removing an 
amino-terminal tetrapeptide, converting it to an antagonist 

of its chemokine receptors [47]. Conceptually, these findings 
showed that MMPs can not only act as effectors but also reg-
ulators of inflammatory responses [47]. Subsequently, CCL7 
has been also shown to be a specific substrate of MMP-1, 
-3, -13 and -14 but not MMP-8 and -9 [48]. The closely 
related chemokines CCL2, CCL8 and CCL13 (MCP-1, -2 
and -4) are proteolytically cleaved by MMP-1 and -3 (but 
not MMP-2 and -14) with the truncated products of CCL8 
and CCL13 being potent antagonists of the their respec-
tive chemokine receptors [48]. Apart from influencing the 
activity of C–C motif chemokines, MMPs also contribute 
to CXC-chemokine function. Stromal cell-derived factor 1 
alpha (SDF-1α, also known as CXCL12) is processed and 
inactivated by MMP-1, -2, -3, -9, -13 and -14 but not by 
MMP-7 and -8 [49]. The truncated form of CXCL12 after 
MMP-2 processing demonstrates highly neurotoxic proper-
ties [50]. An elegant study with single and double knockout 
mice for MMP-2 and MMP-9 revealed that these MMPs 
work synergistically in the initial step of neutrophil recruit-
ment to injury sites by increasing the potency of CXC-
chemokine ligand 5 (CXCL5) [51]. Activation of murine 
LPS-induced CXC chemokine (LIX, similar to the human 
neutrophil-recruiting chemokine CXCL5 and CXCL8/
IL-8) is dependent on MMP-8, with cleaved LIX promoting 
enhanced chemotaxis [52]. Neutrophil infiltration at LPS-
stimulated sites is clearly diminished in mmp8−/− mice [52]. 
The same study showed that MMP-8 itself is not required 
for the extravasation and migration of neutrophils, but plays 
a very crucial role in orchestrating the initial inflammatory 
response upon LPS stimulation, thereby indicating that 
chemoattractants rather than collagen are MMP-8’s pri-
mary substrates [52]. Nevertheless, collagens processed by 
MMP-8 can also act as chemotactic peptides during neu-
trophil chemotaxis [53]. Both MMP-8 and -9 are reported 
to cleave CXCL5 and CXCL6, but no change in biologi-
cal activity of CXCL6 was demonstrated [54]. MMP-9, in 
contrast, potently inactivates CXCL5 by multiple cleavages, 
suggesting a regulatory role of MMP-9 in early activation 
with subsequent inactivation of CXCL5 [54]. In addition to 
direct effects of MMPs on chemokines, MMPs might also 
regulate the expression of chemokine receptors, thereby pro-
viding an additional level by which these proteinases control 
leukocyte migration [5, 55].

Besides directly processing chemokines and altering their 
biological function, MMPs can also indirectly influence the 
availability and activity of chemokines by cleaving acces-
sory macromolecules that bind them [56]. Thereby, MMPs 
exhibit an additional way of regulating leukocyte migration 
[5]. MMP-7 is involved in syndecan-1 cleavage, which in 
turn releases CXCL1 (also known as KC). Thereby, MMP-7 
indirectly generates a chemotactic gradient that directs neu-
trophil migration to sites of injury [56]. Consequently, neu-
trophil infiltration is massively reduced in mmp7−/− mice at 
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sites of injury because of impaired transepithelial migration 
[56]. Other MMPs also regulate chemotactic gradients, but 
their role is less well understood. MMP-2 seems to be criti-
cal for establishing a CCL11 (eotaxin) chemotactic gradi-
ent during leukocyte recruitment, as allergen-induced asth-
matic mmp2−/− mice show leukocyte accumulation in lung 
parenchyma and decreased CCL11 levels [57]. Notably, this 

indirect pro-inflammatory effect of MMP-2 is very distinct 
from the above discussed direct anti-inflammatory function 
via chemokine cleavage and inactivation [47, 49]. In addi-
tion to MMP-2, MMP-9 contributes to the generation of the 
chemotactic gradient in allergen-induced asthmatic mice, 
where mmp9−/− mice showed diminished CCL11, CCL7 
and CCL17 chemoattractant levels [58]. In summary, these 

Table 1   Metalloproteinase and their regulatory function in neuro-
inflammation.  MMPs are important regulators of inflammation by 
controlling cytokine activity and chemotactic gradients, thereby 
manipulating leukocyte migration. This table contains selected and 
intensively studied metalloproteinases with their substrate specificity 
(excluding their classical substrates in ECM degradation) and their 

involvement in BBB breakdown and inflammation. Special atten-
tion should be paid to the concept of metalloproteinase involvement 
in inflammation termination (e.g., CCL7 cleavage of MMP-2 or 
CXCL5, 6, 12 inactivation by MMP-9) and induction of repair pro-
cesses (TGF-β activation by MMP-3 and -14 or EGFR signaling by 
ADAM10 and 17)

Metallo-proteinase Common name Substrate Biological function during inflammation References

MMP-1 Collagenase-1 CCL7, MCP-1,-2,-4 Regulation of chemokine signaling [48]
CXCL12 (SDF-1α) [49]

MMP-2 Gelatinase A CCL7 (MCP3) Regulation of chemokine signaling [47]
CXCL12 (SDF-1α) Chemotactic gradient [49]
(CCL11 gradient) [57]
pIL-1β IL-1β activation [62]
Claudin-5, occludin Junction protein degradation [17, 25]

MMP-3 Stromelysin-1 CCL7, MCP-1,-2,-4 Regulation of chemokine signaling [48]
CXCL12 (SDF-1α) [49]
pIL-1β IL-1β activation [62]
Latent TGF-β1 Pot. anti-inflammatory response [68]
E-cadherin Junction protein degradation [36]

MMP-7 Matrilysin Syndecan-1 (CXCL1 release) Chemotactic gradient [56]
proTNFα TNF-α activation [65]

MMP-8 Collagenase-2 LIX Chemotactic gradient [52]
CXCL6, CXCL5, LIX Regulation of chemokine signaling [54]
Occludin Junction protein degradation [131]

MMP-9 Gelatinase B CXCL8 (IL-8) Chemotactic gradient [46]
CXCL12 (SDF-1α) Regulation of chemokine signaling [49]
CXCL6, CXCL5, LIX [54]
(CCL11, CCL7, CCL17 gradient) [58]
pIL-1β IL-1β activation [62]
Latent TGF-β1 Pot. anti-inflammatory response [66]
Claudin-5, occludin, ZO-1 Junction protein degradation [25–27]

MMP-13 Collagenase-3 CCL7 Regulation of chemokine signaling [48]
CXCL12 (SDF-1α) [49]

MMP-14 MT1-MMP CCL7 Regulation of chemokine signaling [48]
CXCL12 (SDF-1α) [49]
Latent TGF-β1 Pot. anti-inflammatory response [67]

ADAM-10 CD156c IL-6R IL-6 trans-signaling [77, 78]
EGF, betacellulin EGFR signaling [82]
VE-cadherin Junction protein degradation [43, 44]

ADAM-17 TACE proTNF-α TNF-α activation [63, 64]
TNFR1, TNFR2 TNFR shedding, TNF-α antagonization [73, 74]
IL-6R IL-6 trans-signaling [77, 78]
EPR, TGF-α, AREG, HB-EGF EGFR signaling [82]
L-selectin Leukocyte migration [80]
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studies demonstrate that MMPs are important regulators of 
inflammation by controlling chemokine activity and chemo-
tactic gradients, thereby manipulating leukocyte migration.

MMPs in cytokine signaling

Apart from generating chemotactic gradients and recruit-
ing leukocytes to sites of infection, MMPs also have 
the capacity to directly activate and regulate cytokine 
signaling. The pro-inflammatory cytokine IL-1β needs 
proteolytic activation by the IL-1β-converting enzyme 
(ICE, more recently re-named to caspase-1) [59, 60]. 
After discovery of caspase-1-independent activation of 
IL-1β [61], MMP-2, -3 and -9 were described to process 
human IL-1β precursor into biologically active forms 
[62]. In addition, MMP-3—to a lesser extent MMP-9, 
but not collagenases—was found to degrade active IL-1β 

after longer incubation periods, indicating regulatory 
roles of MMPs in both IL-1β activation and inactivation 
[62]. Under physiological conditions, conversion of the 
membrane-bound pro-TNF-α to its active and soluble 
form is attributed to TNF-α-converting enzyme (TACE, 
now known as ADAM17, also see next section) [63, 64]. 
Even if ADAM17 is the most specific and best convertor 
of pro-TNF-α, MMP-7—and to lesser but not physiologi-
cally relevant extent MMP-1 and -9—harbors the capac-
ity to cleave and activate pro-TNF-α and seems to act as 
another physiological TNF-α convertor [65]. In contrast to 
the activation of these pro-inflammatory cytokines, MMPs 
(MMP-3, -9 and -14) are also able to activate transform-
ing growth factor-β1 (TGF-β1) in vitro [66–68], which 
restrains mononuclear inflammation [5, 69, 70], thereby 
again indicating an overall regulatory effect of MMPs in 
inflammation.

Fig. 1   Pro-inflammatory roles of metalloproteinases during neuroin-
flammation. MMPs directly and indirectly contribute to chemotactic 
gradients in the bloodstream and neutrophil (orange cells) recruit-
ment at site of infection. ADAMs and MMPs contribute to adherens 
junction protein (AJP) and tight junction protein (TJP) degradation. 
MMPs further show specific cleavage of basal lamina components. 
Upon destruction of the BBB, neutrophils enter the central nerv-
ous system and further generate chemotactic gradients with secreted 
MMP-9 being able to cleave and activate IL-8. Collagenases further 

contribute to BBB leakage by degradation of the extracellular matrix 
(ECM). ADAMs and MMPs directly contribute to neuroinflammation 
by activating pro-inflammatory cytokines like IL-1β and TNF-α from 
microglia/macrophage (green cell). This illustration only summarizes 
the most important roles of ADAMs and MMPs in induction of neu-
roinflammation, a more thorough picture is found in Table 1. For sim-
plicity, the BBB is depicted without pericytes and astrocytes. Illustra-
tion design inspired by Khokha et al. [15]
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ADAMs in infection and inflammatory responses

TNF-α-converting enzyme (TACE; ADAM17) was origi-
nally thought to be a MMP, as it was effectively inhib-
ited by synthetic metalloproteinase inhibitors [71], but 
later found to belong the ADAM family and identified 
as ADAM17 [63, 64]. ADAM17 shows very distinct 
specificity for shedding membrane-bound pro-TNF-α, 
thereby releasing biologically active TNF-α [65], with 
both pro-inflammatory and pro-apoptotic functions [15]. 
In ADAM17-deficient cells, TNF-α release is reduced by 
90%, indicating that ADAM17 is the principal TNF-α con-
verting enzyme [5, 64]. Soluble TNF-α signals via binding 
of TNF receptor 1 (TNFR1), whereas membrane-bound 
TNF-α acts preferentially through binding of TNFR2 [72]. 
The regulation of TNF signaling by ADAM17 is even more 
complex, since ADAM17 also sheds TNFR1 and TNFR2 
[73, 74]. These act as decoy receptors by sequestering 
soluble TNF-α away from their receptors [15]. ADAM17 
deficiency in myeloid cells protected mice from endotoxin-
induced septic shock by preventing increased serum levels 
of TNF-α [75]. As ADAM17-dependent TNF-α conver-
sion is selectively inhibited by TIMP3 [14], Timp3−/− mice 
show enhanced TNF-α signaling with elevated IL-6 serum 
levels and increased mortality after LPS-induced sepsis 
[76]. ADAM17—but also ADAM10—have been described 
to be involved in IL-6 trans-signaling by shedding IL-6 
receptor (IL-6R), which in turn complexes with IL-6 and 
interacts with gp130-containing membrane receptors that 
are ubiquitously expressed on many cell types [77, 78].

Most leukocytes express L-selectin on their surface, 
which is involved in their rolling on inflamed vascular 
endothelium, followed by firm adhesion and transmigra-
tion [79]. L-selectin is rapidly cleaved near the leukocyte 
cell surface by ADAM17 [79], during their transmigration 
[15]. ADAM17-null neutrophils show slower rolling, bet-
ter adhesion and faster recruitment to site of inflammation 
[80] with impaired L-selectin shedding being responsible 
for early neutrophil recruitment [80, 81].

In mucosal barriers, ADAM17 has been shown to be 
important for EGFR activation, with ADAM17 or EGFR-
deficient mice showing similar features [74]. Subsequently, 
ADAM17 was shown to be the major convertase of the 
EGFR ligands epiregulin, TGF-α, amphiregulin and hep-
arin-binding EGF-like growth factors, whereas ADAM10 
emerged as the major sheddase of EGF and betacellulin 
[82]. In intestinal inflammation, ADAM17-dependent 
EGFR ligand shedding is necessary for the production of 
antimicrobial peptides by epithelial cells and later regener-
ation [15, 83]. ADAM17 has additionally been associated 
with shedding of L-selectin from activated T cells, thereby 
regulating the recruitment of adaptive immune cells [74].

ADAMs are also able to manipulate immune signaling via 
ectodomain shedding of the Notch receptor, which is required 
for its activation [84, 85]. Notch activation by ADAM17 was 
found to regulate atopic barrier function and suppress epi-
thelial cytokine synthesis [86]. In addition, ADAM17 and 
ADAMTS12 were shown to be involved in neutrophil apop-
tosis during resolution of acute inflammation [87, 88].

MMPs and microglia

Microglia are brain-resident immune cells that are involved 
in important roles of the healthy, infected and injured brain, 
including post-natal neurodevelopment, neural plasticity and 
phagocytosis [89, 90]. Upon stimulation, microglia can be 
polarized into different microglial subsets [91]. The polariza-
tion states can be roughly divided into classically activated 
(M1) microglia that adapt a pro-inflammatory phenotype by 
secreting TNF-α, IL-1β, IL-6 and IFNγ [92], and alterna-
tively activated (M2) cells, which produce cytokines involved 
in inflammation termination, restoring homeostasis and pro-
moting tissue repair [91]. MMPs are expressed and produced 
by microglia at site of infection and inflammation [93, 94]. In 
macrophages, the two different subsets—M1 and M2—express 
different MMPs [95]. MMP-9—which depicts pro-inflam-
matory roles in BBB opening and cytokine activation—is 
secreted by M2 microglia and involved as a remodeling fac-
tor during repair [96, 97]. Kohkha et al. further suggest that 
MMPs—apart from being differentially expressed in M1 and 
M2 subsets—might also contribute to phenotype polarization 
by regulating cytokine and growth factor availability [15]. As 
microglia polarization towards the M2 phenotype gains inter-
est as therapeutic strategy for different neurological disorders, 
understanding the critical role of metalloproteinases during 
this process needs further investigations.

Collectively, these findings demonstrate the crucial role 
of metalloproteinases in initiation of neuroinflammation—
including BBB breakdown, chemokine activation with 
neutrophil recruitment, and pro-inflammatory cytokine 
production—but also in inflammation termination and sub-
sequent repair via chemokine and cytokine inactivation and 
involvement in angiogenesis, neurogenesis and gliosis after 
damage [98–101]. Therefore, inhibition of metalloproteinase 
during acute inflammatory processes can lead to beneficial 
outcomes, whereas inhibition during repair processes might 
be detrimental [102, 103].

MMPs and ADAMs in infectious disease 
of the CNS

The brain is protected from infectious agents by specialized 
barriers including the skull, the meninges and the restric-
tive BBB, making the brain a microbiologically sterile site 



3103MMPs and ADAMs in neurological infectious diseases and multiple sclerosis﻿	

1 3

under physiologic conditions [104]. Subsequently, infectious 
disease of the CNS—such as bacterial meningitis—occur at 
comparatively low levels but might have detrimental con-
sequences [105]. As described above, metalloproteinases 
regulate barrier functions of the BBB but also of mucosal 
epithelium and play multiple roles in the initiation and regu-
lation of inflammation, thereby being essentially involved in 
CNS infections.

Metalloproteinases in bacterial meningitis

Pathophysiology of brain injury during bacterial meningitis

To establish a CNS infection, the bacterial pathogens have to 
successfully colonize the host before they gain access to the 
subarachnoid space or the brain parenchyma. The most com-
mon causative agents of bacterial meningitis—Streptococcus 
pneumoniae, Neisseria meningitidis and Haemophilus influ-
enzae type b [106]—colonize the human nasopharynx and 
are transmitted via the respiratory route [105]. Most cases 
of bacterial meningitis originate from bacteremia, where the 
nasopharyngal pathogen gains access to the blood stream 
and subsequently crosses the BBB or blood–CSF barrier 
(BCSFB). Other causative pathogens of bacterial menin-
gitis—which cause meningitis mostly in neonates, elderly 
and immunocompromized patients (group B Streptococcus 
(GBS), Escherichia coli, Listeria monocytogenes)—colonize 
the intestinal mucosa from where they access the circulation 
and invade the brain [105]. Bacterial meningitis might also 
arise from focal infection in the vicinity of the brain (i.e., 
otitis media, sinusitis, dental abscess), where local spread 
rather than bacteremia underlies bacterial brain invasion 
[105]. Finally, breaches of the anatomical brain barriers 
(trauma or surgery) may also lead to bacterial meningitis.

Among bacterial meningitis, pneumococcal meningitis 
(PM) is especially detrimental as it causes high mortality 
and leads to long-lasting neurofunctional deficits [107, 108]. 
Neurofunctional sequelae after PM include hearing loss, 
epilepsy, cerebral palsy, as well as behavioral and cogni-
tive deficits [107–109]. Brain damage during PM is charac-
terized by cortical necrosis and apoptosis of dentate gyrus 
granular cell progenitors in the hippocampus, being in part 
responsible for behavioral and cognitive deficits [110–114]. 
In experimental models, cortical necrosis is found as early as 
18 h after infection and might arise as a consequence of focal 
and global ischemia [107, 115]. Neural cell death is caused 
by multiple factors including bacterial toxins and an exces-
sive inflammatory reaction from the host [105, 116–118]. 
Inflammatory mediators (cytokines, chemokines, reactive 
oxygen and nitrogen species, MMPs) released from recruited 
neutrophils, endothelial cells, leptomeningeal macrophages 
and brain-resident microglia and astrocytes contribute to 
pathogen eradication but also act as neurotoxins and induce 

neuronal damage [107, 116, 119, 120]. Moreover, PM 
induces damage to hair cells and spiral ganglion neurons 
in the inner ear [121–123] provoking sensorineural hearing 
impairments in up to 30% of survivors [108, 124, 125]. In 
an infant rat PM model, increased CSF levels of TNF-α dur-
ing acute infection were positively correlated with increased 
hearing loss in surviving animals [122].

The pathogenesis and involvement of inflammatory pro-
cesses in inducing brain damage during meningitis have 
been intensively studied in different animal models. Upon 
bacterial invasion into the CNS, a wide range of cytokine is 
produced and secreted into the CSF [126]. In experimental 
pneumococcal meningitis, increased CSF levels of TNF-α 
and MMP-9 are already detected at 4 h after infection and 
peaked at 12 h after infection [127]. Since levels of TNF-α, 
IL-1β, IL-6 and IL-8 in the CSF increase before evidence of 
neutrophil recruitment, brain-resident cells are considered 
to contribute significantly to cytokine production [126]. As 
a result of bacterial proliferation, an excessive inflamma-
tory reaction takes place in the CSF with BBB breakdown 
causing brain edema via leakage of plasma into the CNS, 
increased intracranial pressure, hydrocephalus and cerebral 
ischemia [116]. In patients with bacterial meningitis, cer-
ebrovascular complications are frequently observed [124] 
with vasculitis being the cause for cerebral infarction, hem-
orrhages and subsequent cortical damage during meningitis 
[18, 116, 124].

Metalloproteinases in the pathogenesis of bacterial 
meningitis

Data from clinical and experimental studies have shed light 
onto the crucial role of metalloproteinases during patho-
genesis of bacterial meningitis and other neuro-infectious 
diseases. Metalloproteinases—expressed or activated in 
response to the invading pathogen—contribute to acute 
neuroinflammatory reaction and damage upon bacterial 
invasion but might also be involved later during the disease 
in the resolution of inflammation and repair mechanisms 
[41, 127–129]. During bacterial meningitis, the expression 
and activation of metalloproteinases and their inhibitors are 
altered compared to physiologic conditions. During experi-
mental PM in infant rats, MMP-8 and MMP-9 are transcrip-
tionally upregulated in CSF cells, whereas the expression 
of MMP-2 and MMP-7 remains unaffected. In brain tissue, 
expression of MMP-3, -8, -9, -12, -13 and -14 was signifi-
cantly upregulated (100- to 1000-fold), while expression 
levels of MMP-2 and MMP-7 remained unchanged [127]. 
The upregulation of MMP-8 (mostly released from infiltrat-
ing neutrophils) is a specific hallmark of bacterial meningi-
tis, which is not found in other neuroinflammatory disease 
[130]. MMP-8 induces increased barrier permeability via 
proteolytic cleavage of the tight junction protein occludin 
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in meningococcal neuroinfection [131]. Other experimen-
tal data of meningitis caused by heat-inactivated N. menin-
gitidis showed a significant upregulation of MMP-9 mRNA 
expression with stable MMP-2 and MMP-7 expression [41]. 
On the protein level, MMP-9 in the CSF correlated with 
TNF-α levels, with a concentration peak for both at 12 h 
after intracisternal infection with S. pneumoniae [127]. 
MMP-9 in the CSF was detected as early as 15 min after 
intracisternal infection, indicating its early release from 
brain-resident cells in this experimental model. Further 
recruitment and infiltration of neutrophils contribute to the 
peak MMP-9 levels at 12 h after infection [127]. Gelatinase 
activity (MMP-2 and/or MMP-9) has been associated with 
the occurrence of cortical necrotic lesions in experimental 
PM [23, 132]. During the initiation of neuroinflammation, 
ADAM17 plays a crucial role in releasing TNF-α, which in 
turn acts as a stimulus to induce MMP upregulation via a 
positive feedback loop [127, 133]. The fact that MMP-7—
being the second most potent TNF-α activator apart from 
ADAM17 [65]—remains unchanged in bacterial meningitis 
[127] emphasizes the importance of ADAM17 during this 
early neuroinflammatory process. In addition to increased 
TNF-α and MMP-9 levels, TIMP-1 expression is also 
increased in the CSF of infant rats with PM, however, with 
a short delay [23]. TIMPs are suggested to regulate pro-
tein degradation and cytokine shedding during PM, thereby 
controlling metalloproteinase-induced neuroinflammation. 
In experimental PM, the upregulation of MMP-9, however, 
exceeds the compensatory effect of TIMP-1 during the acute 
phase. This imbalance between MMPs and TIMPs during 
bacterial meningitis has, therefore, been implicated as a 
key event during pathophysiology of the disease [23]. In an 
experimental model of cerebral ischemia, MMP-9-deficient 
mice showed BBB preservation and reduced levels of tight 
junction protein degradation with subsequent better outcome 
[134]. MMP-9 deficiency during experimental PM, however, 
was shown to be associated with impaired bacterial clear-
ance from blood and spleen, without showing an impact on 
clinical course of the disease, leukocyte infiltration of the 
subarachnoid space or bacterial titers in the brain [135]. 
Non-infectious experimental models of brain damage have 
shown a direct effect of MMP-9 on laminin degradation and 
associated hippocampal apoptosis [136, 137].

Matrix metalloproteinase expression profiles in patients 
with bacterial meningitis are consistent with the data gen-
erated in experimental settings. In patients with bacterial 
meningitis, CSF levels of MMP-1, -3, -7, -8, -9 and -10 have 
been found to be elevated, whereas CSF levels of MMP-2 
remain unaffected [35, 138–143]. Similar to animal mod-
els, TIMP-1 levels have also been found to be upregulated, 
whereas TIMP-4 was significantly downregulated com-
pared to control patients [142]. One week after infection, 
TIMP-1 continues to be highly expressed, whereas MMP-9 

is reduced compared to the acute phase of infection [144]. 
In pediatric PM, MMP-9 levels were found to correlate with 
CSF cell counts, with high CSF MMP-9 levels being a risk 
factor for fatal outcome or development of neurologic seque-
lae [35, 141, 144]. The causative pathogen determines the 
inflammatory response in patients with bacterial meningi-
tis. Pneumococcal meningitis is associated with significantly 
increased mortality and elevated levels of IFN-γ, MCP-1 and 
MMP-9 compared to meningitis caused by N. meningitidis 
or H. influenzae [145].

Tuberculous meningitis (TBM), which arises rarely as 
an extrapulmonary form of tuberculosis, is associated with 
neurofunctional complications [146]. In patients with TBM, 
levels of MMP-2 and MMP-9 were found to be elevated, 
and high levels of MMP-9 were associated with late neu-
rofunctional deficits [147, 148]. Adjuvant dexamethasone 
during TBM was shown to reduce MMP-9 levels early in 
treatment and might represent one way by which dexametha-
sone reduces mortality in TBM [149, 150]. Despite the ben-
eficial effect of dexamethasone in terms of mortality, it could 
not successfully prevent severe disabilities [150].

MMPs and ADAMs in viral neuro‑infectious diseases

The involvement of metalloproteinase in BBB integrity 
during viral neuroinfections has been intensively reviewed 
elsewhere [151]. Clinical data from patients with viral men-
ingitis report elevated CSF levels of MMP-9 and TIMP-1 
compared to control patients, with MMP-9 levels correlat-
ing to neutrophil cell number in CSF [152]. Involvement of 
metalloproteinases during viral neuroinfection has mostly 
been analyzed in experimental studies, though.

Japanese encephalitis virus (JEV) is an arthropod-borne 
virus and a major cause of acute encephalopathy in chil-
dren [153]. In vitro, MMP-9 expression after JEV infec-
tion is mediated via NF-κB activation and the generation 
of ROS [153]. The expression of MMP-2, -7 and -9, as well 
as TIMP-1 and -3 is upregulated in mice infected with JEV 
and their overexpression is associated with disease severity 
[154].

In experimental herpes-simplex virus encephalitis (HSE), 
MMP-9 is upregulated and insufficiently counterbalanced by 
TIMP-1 resulting in a loss of collagen type IV, indicating 
MMP-9’s role during the pathogenesis of HSE [155].

In vitro, West Nile virus (WNV)-infected human endothe-
lial cells show significant upregulation of multiple MMPs 
with subsequent loss of tight junction proteins, an effect suc-
cessfully prevented by the MMP inhibitor GM6001 [156]. 
MMP-9 levels are also found to be elevated in WNV-infected 
mice as well as in patients, suggesting that MMP-9 plays a 
role in mediating WNV entry into the CNS [157].

During HIV infection, a CCL2-dependent mechanism 
was postulated to be involved in infiltration of HIV-infected 
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leukocytes into the CNS causing neuropathology. In vitro, 
this mechanism seems to rely on MMP-2 and -9 upregula-
tion with an associated reduction of tight junction proteins 
[158]. In experimental HIV infection, the envelope protein 
gp120 increased MMP-2 and -9 expression with subsequent 
laminin and claudin-5 reduction and causing increased BBB 
permeability [159]. In patients with HIV-associated demen-
tia, CSF levels of MMP-2, -7 and 9 are increased and might 
reflect a link to symptomatic neurological disease [160, 
161]. Increased MMP activity with its detrimental effects 
on BBB integrity might contribute to transendothelial migra-
tion of HIV-infected cells into the CNS and development of 
HIV-associated neurologic damage [161].

Mouse adenovirus type-1 (MAV-1) infection increases 
levels of MMP-2 and -9 in brains [162]. Additional ex vivo 
data revealed that MMP-2 and -9 are produced by astro-
cytes and microglia in response to mouse encephalitic ade-
novirus-1, which might contribute to BBB disruption and 
encephalitis [163]. MAV-1 may also induce BBB breakdown 
by reducing surface expression of TJ proteins occludin and 
claudin-5 [164]. Murine coronavirus-induced viral encepha-
litis induces expression of MMP-3 and -12 plus TIMP-1, 
with MMP-3 expression exclusively localized in astrocytes, 
whereas TIMP-1 originates from infiltrating cells [165]. 
Increased MMP and TIMP levels are also associated with 
increased viral replication during neurotropic mouse hepa-
titis infection [166].

MMP and ADAM inhibitors as potential treatment 
options in bacterial meningitis

Since MMPs and ADAMs are central regulators and media-
tors during neuroinflammation and development of neuronal 
damage in bacterial meningitis, inhibition of theses enzymes 
during acute infection has been postulated as a promising 
therapeutic intervention to improve disease outcome. Over 
the last three decades, many different inhibitors were tested 
in rodent models of bacterial meningitis (Table 2).

Neuroinflammation and BBB breakdown

Matrix metalloproteinases and ADAMs function as ECM 
degrading enzymes and sheddases, thereby controlling BBB 
breakdown and production of inflammatory cytokines [15]. 
In experimental bacterial meningitis, MMP and ADAM 
inhibitors significantly reduce CSF levels of MMPs and 
pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-10) 
[128, 132, 167–169]. Notably, CSF levels of TNF-α are also 
significantly reduced by MMP inhibitors (MMPIs) without 
specificity for ADAM17 (i.e., Trocade) [167], indicating 
that MMPIs are able to indirectly reduce pro-inflammatory 
cytokine production apart from direct ADAM17 inhibition. 
MMPIs partially preserved BBB integrity by preventing 

ECM protein degradation [132, 167]. In a PM mouse model, 
TNF484 reduced neuroinflammation, thereby improving sur-
vival in animals without antibiotic therapy [170]. Notably, 
there are remarkable differences in different mouse and rat 
strains in terms of BBB breakdown prevention by metallo-
proteinase inhibitors after LPS-induced neuroinflammation 
[171].

Cortical necrosis

As a consequence of bacterial meningitis and its associated 
inflammatory reaction, cerebrovascular complications are 
frequently observed in patients [124]. Focal ischemia caused 
by vasculitis results in cortical necrosis during meningitis 
[116, 124]. Breakdown of the BBB during the excessive 
neuroinflammatory reaction is a crucial step in the develop-
ment of cerebral ischemia [116]. Since metalloproteinases 
are central regulators of BBB breakdown during bacterial 
meningitis (discussed above), their inhibition during the 
acute disease is a valuable therapeutic strategy to reduce 
cortical necrosis. Pre-treatment or treatment early in the 
course of disease with MMPIs is associated with reduced 
cortical necrosis in pneumococcal meningitis [128, 132, 167, 
168, 172, 173] and with lower rates of intracerebral hemor-
rhage in meningococcal meningitis [169]. This neuroprotec-
tive effect is, however, reduced when the application of the 
inhibitors is delayed until the time of antibiotic therapy at 
the first appearance of disease symptoms [127, 174]. The 
early inhibition of MMPs during bacterial meningitis might 
be responsible for an overall reduction of the neuroinflam-
matory reaction with reduced BBB breakdown and cytokine 
production, thereby limiting the pathophysiological conse-
quences of the disease [116].

Hippocampal apoptosis

Apoptosis of immature neurons in the dentate gyrus of the 
hippocampus during bacterial meningitis is caused by bacte-
rial toxins, but also by an excessive inflammatory reaction 
from the host [105, 116–118]. Several metalloproteinase 
inhibitors that inhibit ADAM17 (i.e., BB1001, Ro 32-7315) 
were found to prevent hippocampal apoptosis [127, 167]. 
However, other ADAM17 inhibitors were unable to prevent 
neural cell death in the hippocampus [132]. On the other 
hand, Trocade—without having a specific ADAM17-inhib-
itory profile—successfully prevented hippocampal apoptosis 
[167, 174]. As MMP-9 is directly involved in hippocampal 
cell death via the degradation of laminin [136, 137], inhibi-
tion of MMP-9—rather than ADAM17—might explain this 
neuroprotective effect of Trocade during bacterial meningi-
tis. The protective effect on hippocampal neurons is lower—
but still present—when BB1001 or Trocade therapy is 
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initiated together with antibiotics at time of symptom onset 
[127, 167, 174].

Neurofunctional outcome

Apoptosis of dentate gyrus granular cell progenitors found in 
the hippocampus of humans [114] and animal models with 
bacterial meningitis [175, 176] correlates with behavioural 

and learning deficits [110–113], with increased hippocam-
pal apoptosis being associated with impaired learning and 
memory performance in rat PM [111, 113]. Protection from 
hippocampal apoptosis by BB1001 improved learning per-
formance in rats with PM [127]. Similarly, in PM-infected 
rats treated with Trocade plus daptomycin, the observed 
reduction in hippocampal apoptosis was associated with a 
significant improvement of learning and memory function 

Table 2   MMP and ADAM inhibitors improve acute and neurofun-
citonal outcome in rodent bacterial meningitis.  Many data derive 
from proof-of-principle studies with early- or pretreatment and only 

few assessed adjuvant metalloproteinase inhibition with concomitant 
application of the inhibitors together with the antibiotic therapy

MM meningococcal meningitis, PM pneumococcal meningitis, TBM tuberculous meningitis, BBB blood–brain barrier, ICP intra-cranial pres-
sure, CSF cerebrospinal fluid, WBCs white blood cells, SGN spiral ganglion neurons

Inhibitor (time of initia-
tion)

Inhibitory profile Causative pathogen Beneficial effects Neg. effects Clinic. tested References

BM-94 (pretreatment) Broad spectrum Rat-MM
Mouse-MM

BBB breakdown ↓, ICP ↓
BBB breakdown ↓, 

MMP-9 ↓, intracerebral 
bleeding ↓

[172]
[169]

GM6001
(0 hpi)
(24 hpi)

Broad spectrum Rat-PM
Rat-PM

Cortical necrosis ↓, 
MMP-9 ↓, TNF-α ↓,

Cell death in cortex and 
hippocampus ↓, Clini-
cal status ↑, MMP-9 ↓, 
brain water content ↓, 
learning/memory ↑

[128]
[177]

BB1001 (3 hpi; symptom 
onset)

Broad spectrum plus 
ADAM17

Rat-PM Cortical necrosis ↓, 
hippo. apoptosis ↓, 
learning/memory ↑

[127]

TNF484 (pretreatment) Broad spectrum plus 
ADAM17

Rat-PM Cortical necrosis ↓, 
seizures ↓, TNF-α ↓, 
collagen deg. ↓

Mortality ↑ 
for high 
dose

[132]

Ro 32-7315 (3 hpi) ADAM17 > broad spec-
trum

Rat-PM Cortical necrosis ↓, 
hippo. apoptosis ↓, 
weight loss ↓, TNF-α 
↓, IL-6 ↓

Mortality ↑ Yes [167]

Trocade™ (Ro 32-3555)
(3 hpi)

Collagenase, part. gelati-
nase

Rat-PM Cortical necrosis ↓, 
hippo. apoptosis ↓, 
mortality ↓, TNF-α 
↓, IL-1β ↓, collagen 
deg. ↓

Yes [167]

RS-130830 (3 hpi) MMP-2, -3, -8, -9, -12, 
-13 and -14

Rat-PM Cortical necrosis ↓, IL-1β 
↓, IL-10 ↓, weight loss 
↓, CSF WBCs ↓

Yes [168]

Doxycycline (symptom 
onset)

Broad spectrum plus 
ADAM17

Rat-PM Cortical necrosis ↓, mor-
tality ↓, TNF-α ↓, BBB 
breakdown ↓, SGN loss 
↓, hearing loss ↓

Yes [173]

Trocade™ + Daptomycin 
(symptom onset)

Colagenase, part. 
gelatinase, bacteriolysis 
inhibition

Rat-PM Cortical necrosis ↓, 
hippo. apoptosis ↓, 
clinical status ↑, TNF-α 
↓, IL-6 ↓, IL-1β ↓, 
IL-10 ↓, learning and 
memory ↑, hearing loss 
↓, bacillary clearance ↑

Yes [174]

SB-3CT Gelatinases Mouse-TBM MMP-9 ↓, bacillary 
clearance ↑

[146]



3107MMPs and ADAMs in neurological infectious diseases and multiple sclerosis﻿	

1 3

[174]. GM6001 therapy significantly protected hippocampal 
neurons and prevented PM-induced learning and memory 
impairments in neonatal rats [177]. Notably, all three thera-
pies also significantly protected from cortical necrosis [127, 
174, 177], which might also positively influence learning 
and memory performance after PM. Correspondingly, in 
adult rats, MMP-2 and -9 inhibition further prevented cog-
nitive impairment after PM possibly due to the observed 
successful preservation of BBB integrity during acute infec-
tion [178].

Bacterial meningitis‑induced hearing loss

Bacterial meningitis induces sensorineural hearing loss by 
damaging hair cells and spiral ganglion neurons in the inner 
ear [122, 123]. In PM, CSF levels of TNF-α during acute 
infection are positively correlated with increased hearing 
threshold after infection [122]. Treatment with doxycycline 
or Trocade plus daptomycin significantly reduces CSF levels 
of TNF-α and other pro-inflammatory cytokines and sig-
nificantly improves hearing thresholds after PM [173, 174]. 
Doxycycline—with its broad spectrum MMP inhibition pro-
file—preserves spiral ganglion neurons from PM-induced 
cell death [173]. The overall reduction of neuroinflammation 
in both therapies might be attributable to a reduced concen-
tration of ototoxic compounds in the cochlear duct, thereby 
preventing ototoxic damage in spiral ganglion neurons and 
hair cells of the cochlea [174].

Detrimental effects after metalloproteinase inhibition

Two metalloproteinase inhibitors—Ro 32-7315 and high-
dose TNF484, both with high specificity for ADAM17—
were reported to increase mortality during acute bacterial 
meningitis when administrated early after infection [132, 
167]. In an experimental model of PM with TNF-α-deficient 
mice, mortality was significantly increased despite treatment 
with antibiotics, indicating that TNF-α may play an essential 
role during infection and inflammation, being necessary for 
host defense in the early stages of infection [179]. In PM, 
TNF-α inhibition by very potent ADAM17 inhibitors might, 
therefore, be rather detrimental than beneficial despite being 
neuroprotective in survivors, especially when applied at a 
time when TNF-α is a major contributor of the initial host 
response.

Matrix metalloproteinases in multiple 
sclerosis

Multiple sclerosis (MS) is a chronic autoimmune disease 
of the CNS, leading to progressive deterioration of motor, 
sensory, vegetative and cognitive functions [180, 181]. The 

pathogenesis of MS encompasses both features of acute and 
subacute inflammation, and of chronic neurodegeneration, 
mainly as a result of the former. Because of these similarities 
with neuroinfectious disease with subsequent neuroinflam-
mation and brain damage, MS is also covered in the present 
review.

There are more than 2.3 million patients worldwide, mak-
ing MS the most important neurological diseases of young 
adulthood [180]. The disease affects predominantly Cau-
casians with highest prevalence in populations of Northern 
European origin. The cause of MS remains unknown, while 
there is strong evidence for an interplay of genetic and envi-
ronmental factors (smoking, lack of sun exposure/vitamin D 
deficiency, Epstein–Barr virus (EBV) infection) responsible 
for susceptibility and course of disease [180, 181]. The clas-
sical understanding of MS pathogenesis is based on three 
essential paradigms. (1) Focal demyelination in the white 
matter is the predominant pathogenetic feature. (2) MS 
occurs in subtypes that are pathogenetically distinct from 
each other: primary progressive MS (PPMS) with develop-
ment of disability from onset of disease; relapsing–remitting 
MS (RRMS) with alternation between acute deterioration 
and clinical stable phases; and secondary progressive MS 
(SPMS) with continuous disability worsening between or 
without intermittent relapse in patients earlier diagnosed 
with RRMS. (3) MS is a T cell dependent disease.

However, in recent years an increasing body of evidence 
has led to a modification and extension of these paradigms. 
Demyelination is not restricted to white matter, but extends 
steadily into the grey matter in the course of disease [182]. 
Neuronal loss as the cellular substrate of disability worsen-
ing occurs in the course of demyelination, but to an even 
larger extent outside and independent of focal demyelina-
tion. Additionally, it seems that a relevant fraction of patients 
have a form of MS where no white matter demyelination 
occurs [183]. Further, the phenotypic characterization of MS 
subtypes is not based on distinct molecular mechanisms. 
According to the current understanding, there is a continuum 
of several pathogenetic pathways, which may predominate at 
certain stages and disease duration [180]. Lastly, the success 
of B-cell targeting therapies has revolutionized our under-
standing on the autoimmune response in MS: B cells seem to 
orchestrate and drive the disease directly and indirectly via T 
cells and other cells in acute and progressive phases [184].

The important role of MMPs as effector molecules of 
inflammatory tissue damage has been recognized in the 
1990s of the last century. The progress of our understand-
ing of MS pathogenesis has rather increased their impor-
tance and added to the complexity of their regulation in the 
pathogenesis of disease.

Focal opening of the BBB is one of the initial events in 
the course of acute exacerbation of MS, followed by inva-
sion of blood-derived leucocytes into the perivascular brain 
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parenchyma, eventually leading to the formation of focal 
lesions that manifest clinically as attacks. Leukocytes, as 
well as cells that form the BBB (endothelial cells, astro-
cytes), produce MMPs and TIMPs, and BBB leakage is a 
result of MMP upregulation that is not any more compen-
sated by TIMP activity [185]. Basal membrane type IV col-
lagen as the primary barrier structure at the BBB is a main 
substrate for gelatinases (MMP-2 and -9), which makes them 
specific effector molecules of leukocyte extravasation into 
the brain parenchyma. In MS lesions, upregulation of MMP-
1, -2, -3, -7 and -9 was demonstrated by immunohistochem-
istry [186–188] and on the transcriptional level [189], and 
correlated with inflammatory activity in lesions.

In the experimental autoimmune encephalitis (EAE) 
model of MS, the upregulation of MMP-7 and -9 correlated 
with the course of disease severity [190]. In contrast, knock-
out mice deficient for MMP-9 were less susceptible to EAE 
induction [191]. In the delayed-type hypersensitivity (DTH) 
rat model, protein and transcriptional expression of several 
MMPs was increased. Moreover, microinjection of MMP-7, 
-8 and -9 into brain parenchyma led to demyelination and 
axonal damage, the latter in part independent of the former. 
Axonal damage continued even when the integrity of the 
BBB was re-established [192, 193]. The fact that MMPs may 
cause direct neuronal damage is very important for the con-
cept of clinical progression of MS. Their increased expres-
sion also in chronic phases of lesions development [189] 
may contribute to chronic smouldering neuronal loss, and 
eventually lead to progressive deterioration of neurological 
functions. On the other hand, CSF analysis in patients with 
‘active progressive MS’ (having either a relapse the previous 
year or presence of lesions with gadolinium enhancement 
at baseline MRI) has higher levels of MMP-9 and CXCL13 
(a B-cell activation marker) than inactive progressive MS 
patients. This coincides with higher levels of neurofilament 
light chain as a measure of ongoing axonal damage, and of 
MBP as indicator of demyelination [194].

Several groups have demonstrated an increase of MMP-9 
in CSF [195, 196] and in blood of MS patients [185, 197]. 
The levels correlated with disease activity (higher in RRMS/
SPMS vs PPMS [195], or MRI activity [185, 197]. In a lon-
gitudinal study of SPMS patients, the increase of MMP-9/
TIMP-1 ratio preceded the occurrence of new gadolinium-
enhancing lesions [198]. This study showed also higher 
median levels of TIMP-1. MMP-9 trended lower in patients 
receiving IFNβ compared to placebo recipients. Similarly, 
steroids treatment used as interventional therapy during 
acute exacerbation of MS led to a decrease of MMP-9 in 
CSF with the most prominent effect in patients with gado-
linium-enhancing lesions, further supporting its functional 
role in BBB breakdown [199]. Moreover, quantitative PCR 
analysis revealed that IFNβ therapy downregulated the 
expression of MMP-2 and -9 in blood leukocytes. Patients 

that developed neutralizing antibodies against IFNβ showed 
an increase of these MMPs in circulation, supporting the 
concept that these antibodies reduce the therapeutic efficacy 
IFNβ therapy [200].

Most work on MMPs in MS is restricted to MMP-9 and 
-2. This is mainly due to the fact that these members of the 
MMP family could be quantified easily and with highest 
sensitivity by zymography, while for all other MMPs ELI-
SAs were needed and became only available over the years. 
Bar-Or et al. performed a comprehensive analysis of tran-
scriptional expression of 23 MMPs by quantitative PCR in 
monocytes as well as in B and T cells from healthy controls 
and MS patients [201]. Each of these cell types had their 
specific pattern of enzymes across the involved members of 
the MMP family. A specific increase of MMP-2 and -14, and 
of TIMP-2 in monocytes of MS patients was observed. Kou-
wenhoven et al. found that mRNA levels of MMP-1, -3, -7, 
-9 and of TIMP-1 in monocytes were elevated in MS, while 
those of MMP-14 did not differ, as compared to controls 
[202]. These studies underline that molecular mechanisms 
of tissue degradation are not restricted to only MMP-9, but 
result from an interplay of many MMPs from many cellular 
sources. Nevertheless, while results from different investiga-
tors show a high degree of congruency, there are discrepan-
cies that may reflect the heterogeneity of characteristics of 
MS patients investigated.

Initially, MMPs were considered ‘good for physiologic 
growth, but bad in MS’. As shown in Table 1, this overly 
simplistic concept has been revised in recent years, as 
the effects of MMPs on ECM metabolism are not only of 
destructive character, but includes as well reparative func-
tions, depending on the phase of MS. MMP-9 is involved 
in oligodendrocyte regrowth [203], while MMP-7 cleaves 
remyelination-impairing fibronectin to allow remyelina-
tion, and the authors speculate that a too low MMP-7 level 
contributes to the persistence of demyelination in chronic 
MS lesions and prevents oligodendrocyte maturation [204]. 
A further function of MMPs for synaptogenesis has been 
recognized [205, 206]. These findings are relevant for the 
concept how MMP inhibition could be used as therapeutic 
approach in MS. When leucocyte extravasation into lesions 
has ceased after re-establishment of the BBB, microglia 
are major sources of MMPs in the CNS. However, it is not 
known whether or when microglial activation is contribut-
ing to active progression in MS, or is actually a beneficial 
reaction to preserve tissue integrity. Hence, it is not clear at 
which time point and for how long therapeutic MMP inhibi-
tion could be beneficial in MS.

MMP inhibitors as treatment options for MS

Based on the evidence concerning the role of MMPs in BBB 
opening and lesion formation, MMP inhibitors (MMPIs) 
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were thought to be an ideal class of compounds for MS 
therapy in the late 1990s. The development of specific 
MMPIs for oncology was followed with great interest by 
the neurology field. In vitro models of metastasis showed 
dramatic reduction of dissemination and growth of tumor 
cells, which were thought to be transferable to suppression 
of BBB transmigration of blood-derived leukocytes in MS. 
This was bolstered by the observation that current thera-
pies such as IFNβ, or later natalizumab [207] downregulate 
MMPs as part of their mode of action. The hypothesis that 
the therapeutic effect of IFNβ may be mediated via its sup-
pressive effect on MMP-9 expression in T cells was further 
corroborated by a reduction of their migration across an arti-
ficial BBB [208, 209].

A number of hydroxamic acid inhibitor type compounds, 
which inactivate the enzymatic activity of MMPs by binding 
to the catalytic zinc of MMPs, have led to disease severity 
attenuation in EAE [210–212]. Similarly, such compounds 
reduced the capacity of T cells to migrate across an in vitro 
BBB model [213]. However, for several reasons clinical 
studies have never started. In oncology, the initially promis-
ing preclinical results with MMPIs were not confirmed in 
clinical trials. The same was the case in rheumatoid arthritis. 
Additionally, depending on their enzymatic target profile, 
adverse events and specific signs of toxicity were recog-
nized during chronic dosing, which precluded the intended 
long-term use as maintenance therapy in MS (for review 
see [214]). Evidence for the role of MMPs in tissue repair 
in subacute and stable phases of the disease suggests that 
long-term MMP inhibition could have detrimental effects. 
The intent to overcome this by targeting only ‘bad’ MMPs 
via hyper-selective substrate profiles fell short on the basis 
that tissue destruction and repair can be mediated by the 
very same MMPs (e.g., MMP-7 and -9) [204], depending 
on the acuity of disease at a given time point.

There is, however, one example of translation of the 
knowledge on the role of MMPs in MS. Minocycline, a tet-
racycline antibiotic that exerts broad-spectrum inhibition of 
MMPs, demonstrated in two phase 2 studies in MS efficacy 
in reducing gadolinium-enhancing lesions [215, 216], which 
encouraged the study group to execute a phase 3 clinical trial 
[217] with 142 patients with a first MS attack. Clinical and 
MRI findings suggested that minocycline in comparison to 
placebo reduced the risk for patients after a first attack to 
reach the criteria for formal MS diagnosis within 6 months 
by 28% (p = 0.006). The site of primary action of minocy-
cline is likely in the ‘periphery’, i.e., the immune system out-
side the CNS, while it is not known which MMP’s inhibition 
is responsible for the clinical effect. Another potential mode 
of action apart from direct inhibition of enzymatic activ-
ity of several MMPs is interference with their activation. 
EMMPRIN (extracellular matrix metalloproteinase inducer, 
CD147) is a membrane glycoprotein of the immunoglobulin 

superfamily whose levels are reduced in T cells by mino-
cycline [218]. Thus, minocycline treatment likely reduces 
the activity and secondarily the release and production of 
MMPs resulting in diminished leukocyte extravasation of 
leukocytes into the CNS. The Canadian study group that has 
run all minocycline trials in MS so far is preparing currently 
for another trial (Yong VW, personal communication).

Severity and frequency of relapses are important deter-
minants for the long-term outcome of MS. Steroids are the 
current standard for intervention therapy to attenuate acute 
exacerbations in MS; however, their effect on the disability 
development is very limited. More powerful compounds 
for this situation represent a high unmet medical need. The 
effect of hydroxamic acid type MMPIs in EAE is strong pre-
clinical evidence for their use in acute exacerbations in MS. 
Broad-spectrum MMPIs are the obvious drug candidates 
here, given the array of MMPs upregulated in this condi-
tion, as they have been shown to be free of side effects for a 
dosing period of several days [219]. Despite Health Authori-
ties have defined the development path for the development 
of compounds for relapse therapy [220], the pharmaceutical 
industry has so far not engaged in such development activi-
ties. However, this may be an opportunity for a ‘second life’ 
for this class of candidate drugs.

Conclusion

Metalloproteinases are mediators of neuroinflammatory 
processes upon neuroinfections and in MS. During these 
neuroinflammatory diseases, metalloproteinases regulate 
BBB breakdown, neutrophil infiltration and cytokine sign-
aling. Metalloproteinase inhibitors have experimentally been 
shown to decrease neuroinflammation and brain damage in 
diseases with excessive neuroinflammation as a common 
denominator, thereby improving the outcome of such dis-
eases. Nevertheless, timing of metalloproteinase inhibition 
appears to be critical to effectively downmodulate the cas-
cade of pathophysiological processes leading to brain dam-
age during PM. On the other hand, metalloproteinases are 
also mediators of neuroregeneration and synaptogenesis, 
processes that are therapeutically not intended to be inhib-
ited. As this critical role of metalloproteinases in neuronal 
repair mechanisms and regeneration was only lately recog-
nized, the original idea of chronic MMP inhibition needs 
to be conceptually revised. Recently accumulated research 
urges for a second chance of MMPIs, which—when cor-
rectly applied and dosed—harbor the potential to improve 
many different neuroinflammatory diseases.
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