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Abstract: Anemia of chronic diseases is a condition that accompanies a specific underlying disease,
in which there is a decrease in hemoglobin, hematocrit and erythrocyte counts due to a complex
process, usually initiated by cellular immunity mechanisms and pro-inflammatory cytokines and
hepcidin. This is the second most common type of anemia after iron deficiency anemia in the world.
Its severity generally correlates with the severity of the underlying disease. This disease most often
coexists with chronic inflammation, autoimmune diseases, cancer, and kidney failure. Before starting
treatment, one should undertake in-depth diagnostics, which includes not only assessment of complete
blood count and biochemical parameters, but also severity of the underlying disease. The differential
diagnosis of anemia of chronic diseases is primarily based on the exclusion of other types of anemia,
in particular iron deficiency. The main features of anemia of chronic diseases include mild to moderate
lowering of hemoglobin level, decreased percentage of reticulocyte count, low iron and transferrin
concentration, but increased ferritin. Due to the increasingly better knowledge of the pathomechanism
of chronic diseases and cancer biology, the diagnosis of this anemia is constantly expanding with new
biochemical indicators. These include: the concentration of other hematopoietic factors (folic acid,
vitamin B12), hepcidin, creatinine and erythropoietin. The basic form of treatment of anemia of
chronic diseases remains supplementation with iron, folic acid and vitamin B12 as well as a diet rich
in the above-mentioned hematopoietic factors. The route of administration (oral, intramuscular or
intravenous) requires careful consideration of the benefits and possible side effects, and assessment of
the patient’s clinical status. New methods of treating both the underlying disease and anemia are
raising hopes. The novel methods are associated not only with supplementing deficiencies, but also
with the administration of drugs molecularly targeted to specific proteins or receptors involved in the
development of anemia of chronic diseases.

Keywords: iron homeostasis; anemia; iron supplementation; oxidative stress; nutrition; hematological
parameters; biochemical parameters; erythropoiesis

1. Introduction

Erythropoiesis is a multi-stage process of multiplication and erythrocyte differentiation from
hematopoietic stem cells, which normally takes place in the bone marrow of flat bones and the epiphyses
of human long bones. A unique feature of stem cells is their ability to self-renewal and differentiation.
From the hematopoietic stem cell, a myelopoietic stem cell is formed, which subsequently undergoes a
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transformation to the erythropoietic progenitor cell. It matures through successive divisions and becomes
a precursor cell, demonstrating at this stage some characteristics of the final cell. Further maturation
occurs through changing the nature of the cell nucleus from basophilic to acidophilic, up to its loss in
order to minimize metabolism and inhibit the possibility of division. Mature, enucleated erythrocytes
are released into the blood through the selective bone marrow barrier, formed by endothelial cells of
the marrow vessels. Under pathological conditions, erythropoiesis can occur in the liver and spleen.
Consequently, immature forms of erythrocytes appear in the peripheral blood, including reticulocytes
and erythroblasts containing the cell nucleus. Erythropoiesis is subject to both local and systemic
regulation. Although erythrocyte maturation is tightly programmed in the genome of hematopoietic
stem cells, there are a number of factors that modify the process. These include adhesion molecules,
cytokines, ligands and receptors binding them, tyrosine kinases activating transcription factors in the
cell nucleus. Adhesive molecules are responsible for the adhesion of blood cells to the medium, while
hematopoietic cytokines determine their survival and multiplication. Normal cells require constant
cytokine stimulation, since the lack of such signal causes direction of the cell to the apoptosis pathway.
Proper cytokine supply is the basic mechanism that regulates cell homeostasis and ensures stability in
the structure and number of specific blood cells at a given site. The factor that regulates erythropoiesis
at the systemic level is glycoprotein peptide hormone secreted by the liver (20%) and, to a greater extent,
by type I peritubular cells of the interstitial tissue of the kidney cortex (80%), called erythropoietin [1].

It stimulates various stages of erythropoiesis due to binding to transmembrane EPO-R receptors,
present mainly on precursor cells of the erythropoietic lineal, i.e., proerythroblasts. After ligand
attachment, it creates a homodimer receptor and then activates tyrosine kinases JAK (Janus-activated
kinase) and other transcription factors. It is noted that the amount of erythropoietin receptors is inversely
proportional to the degree of erythrocyte maturity. They are no longer found in the cell membrane of
reticulocytes and erythrocytes [1,2]. Conversely, the expression of this receptor in neoplastic cells appears
to be a disturbing phenomenon. This hampers the administration of recombinant erythropoietin in patients
with malignant neoplasm, which in this situation can promote tumor cell growth [3]. The situation
triggering the release of erythropoietin is hypoxia of tissues of various origins (heart and lung diseases,
smoking or being at high altitudes).

Therefore, EPO-R receptors occurs in tissues with high metabolism and high sensitivity to hypoxia,
i.e., brain, heart muscle, skeletal muscle and kidneys [2]. In turn, the secretion of erythropoietin is
disturbed in chronic kidney disease, where the production of this hormone is gradually reduced.
Deficiency of erythropoietin or a lack of sensitivity to its target tissue is one of the development
mechanisms of chronic diseases anemia. In addition to erythropoietin, other hematopoietic factors
are necessary for the proper conduct of the erythropoiesis process. These include iron, vitamin B12,
folic acid, vitamin C, vitamin B6, proteins and hormones. The absence of any hematopoietic factor or
the appearance of factors directly damaging the bone marrow or mature erythrocytes will also result in
the occurrence of anemia.

2. Iron Metabolism—General Remarks

Iron is one of the most important microelements of the body necessary for the synthesis of
hemoglobin. In addition to its main building function, it also has a regulatory role. As a component
of heme and cytochrome enzymes, it enables cellular respiration through electrons transfer in the
electron transport chain, supports antioxidative processes and DNA synthesis (RNA reductase is an
iron-dependent enzyme needed for DNA replication). The iron content in the human body oscillates
around 3–4 g, of which approx. 2.5 g (65%) is in hemoglobin, approx. 400 mg (10%) in myoglobin,
catalase and cytochrome, from 3 to 7 mg (0.1%) is bound by transferrin, while the rest is backup (25%).
The stored iron can be divided into active (ferritin) and inactive (hemosiderin) pools [4].

The daily diet provides an average of 10–15 mg of iron, of which only 5–10% (i.e., 1 mg) is absorbed
into the body. The human body uses 20–25 mg of iron daily for hemoglobin synthesis. Most of this
element comes from the natural degradation of erythrocytes due to their damage or aging. However,
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there are situations in which its excessive accumulation in the body occurs. It may result from the
excessive absorption of this element from the gastrointestinal tract (hemochromatosis), its excessive
supply with food or from improper iron metabolism (shortage for erythropoiesis or excessive release
from the liver or red blood cells). Currently, the ability of free iron to initiate oxidative stress is widely
discussed, consisting mainly of the production of free radicals, including reactive oxygen species,
which damage nucleic acids, lipids and proteins contributing to carcinogenesis [5,6].

3. Iron Absorption and Characterization of Proteins Involved in the Metabolism

Absorption of iron in the gastrointestinal tract is a complicated process involving many proteins
(DMT1 protein, ferroportin, ferritin, hepcidin, hephaestin, transferrin, lactoferrin). At the cellular level,
deficiency of this element increases the synthesis of the transferrin receptor and increases the absorption
of iron in the gastrointestinal tract. While at the systemic level, its deficiency significantly reduces the
synthesis of ferritin (unless the deficiency is accompanied by inflammation that is present at the same
time, because ferritin is an acute phase protein). The so-called active iron, i.e., rapidly exchanging,
is associated with ferritin and is found primarily in hepatocytes and liver macrophages, spleen,
bone marrow and muscles. The role of ferritin is primarily intracellular iron storage, which prevents
the formation of reactive oxygen species (ROS) generated by the Fenton reaction. The ferritin molecule
consists of soluble protein—apoferritin and the internal part containing iron ions. The protein part of
ferritin is constructed from 24 chains consisting of light L and heavy H subunits forming a quadruple
helix. The H subunit has oxidoreductive properties, which are attributed to ferroxidase center. Fe2+ ions
after penetrating through the apoferritin coating into ferroxidase centers are oxidized to Fe3+ trivalent
form. Inflammation increases the expression of the H subunit of ferritin, which, thanks to ferroxidase
centers, has the ability to sequestrate iron and protect against oxidative stress. The consequence of
this phenomenon is a deficit of available iron and anemia observed in chronic inflammation. Under
physiological conditions, only the glycosylated form of the L ferritin subunit is present. The quantitative
proportions of light and heavy chains forming ferritin differ depending on the state of iron homeostasis
and the type of tissue. The H subunit predominates in cells requiring high iron availability, such as
erythrocytes and myocardial cells. In iron storage organs (liver, spleen), ferritin is mainly built of
the L subunit, which does not contain ferroxidase centers, and its main role is to store bioavailable
iron atoms [7,8]. The role of ferritin as a carrier protein has recently been confirmed. It is assumed
that ferritin can transport 100 to 1000 times more iron than transferrin. To serve as an iron-providing
protein, ferritin must be released from the cells in which it is produced. Some studies suggest that
intracellular ferritin may be transported to the lysosome for its degradation and release of iron, which
is then recycled. This process is called ferritinophagy. The iron exported to the cytosol is then used
in several physiological processes that include the synthesis of mitochondrial heme and erythrocyte
differentiation. In the transport of cytosolic ferritin to the lysosome, a nuclear receptor co-activator 4
(NCOA4) is required, which binds to ferritin through the C-terminal domain and delivers it to the
forming autophagosome. NCOA4 activity and severity of ferritinophagy are regulated by intracellular
iron levels. Under the conditions of full availability of this element, ubiquitin E3 ligase (HERC2)
binds NCOA4 and leads to its proteasomal degradation. The reduced level of NCOA4 promotes
stabilization of ferritin by reducing the level of intracellular iron and inhibiting ferritinophagy, which,
by producing reactive oxygen species (ROS), causes ferroptosis. NCOA4 deficiency in animal models
is manifested in the inability to degrade ferritin and leads to a decrease in the intracellular iron
bioavailability. Ferritinophagy is involved in NCOA4-mediated erythropoiesis, which enables the
release of iron from ferritin, which is necessary for the synthesis of mitochondrial heme. Therefore,
NCOA4 deficiency may be one of the mechanisms responsible for the development of anemia of
chronic diseases [9,10]. The iron in foods is present in the form of the Fe3+ ion, which under the
influence of gastric juice and Fe reductase (DCYTB) is reduced to the Fe2+ ion [11]. Its absorption
depends on the body’s demand for this element and takes place mostly in the proximal part of the
small intestine, where optimal conditions prevail. Bile secreted by the liver enters the duodenum,
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where high-affinity bonds form between iron and bile salts. As a result, well-soluble iron compounds
(cation-bile salt complexes) are formed, which reach the intestinal mucosa more easily. Bile, by binding
iron ions, thus prevents the precipitation of sparingly soluble iron oxides (Fe2O3). Bile salts are
therefore important buffers of iron ions, increasing their absorption in the digestive tract [12,13]. At the
time of iron deficiency, the expression of DMT1 (divalent metal transporter 1) increases, which is
responsible for its increased absorption. At the same time, the ferroportin-controlled release of iron
into the blood increases. Hepcidin—a 25-amino acid peptide predominantly synthesized by liver
cells that antagonizes ferroportin, plays a key role in regulating iron metabolism [14–16]. It binds to
ferroportin, which limits the release of iron from enterocytes, monocytes, macrophages and hepatocytes
into the blood. The amount of secreted hepcidin correlates with the intensity of erythropoiesis and
iron reserves in the human body, and most importantly, its synthesis and release are stimulated by
inflammatory cytokines, which are produced in excess in the course of chronic diseases [17]. The iron
already released into the circulation is oxidized with the participation of hephaestin (HEPH) to the Fe3+

ion and combined with transport proteins, i.e., transferrin and lactoferrin. Transferrin is a glycoprotein
synthesized in the liver by hepatocytes, glial cells, lymphocytes, Sertoli cells and mammary gland
cells. The rate of synthesis of this protein, like hepcidin, is strictly conditioned by the body’s demand
for iron and the concentration of this element in the blood serum. Under normal conditions, 30 to
40% of transferrin is saturated with iron, the remaining 60% is in the form of apotransferrin [18].
The mechanism that secures the loss of these proteins in the urine during glomerular filtration is their
high molecular weight of about 80 kDa. The mature transferrin molecule is formed by a long 679 amino
acid polypeptide chain, which is made up of two similar N- and C-terminal domains connected by
a short peptide. Each of these domains, by adopting an alternating β and α structure stabilized by
19 disulfide bridges, has one hydrophilic iron ion binding site, which ultimately allows the transport
of two iron atoms by one transferrin molecule [19]. The iron carriers reach the precursor cells of the
erythropoietic line (proerytroblasts), which express on their surface transferrin receptors, thanks to
which fusion with iron transporting proteins is possible. The iron released by endocytosis is used for
hemoglobin production and partly stored by ferritin. The iron-depleted transferrin (apotransferin)
leaves the precursor cell and goes back to the bloodstream, where it functions as described above [20,21].
The presence of transferrin receptors is mainly represented by tissues with high metabolism and cells
that are actively dividing. This partly may explain the increase in iron demand in people suffering from
certain types of neoplasm which results not only from the constant use of this element in the production
of hemoglobin, but also DNA synthesis by malignant cells [18]. Despite the fact that in the case of
malignant neoplasms this is not one of the main causes determining the occurrence of anemia of chronic
diseases (more often caused by chemotherapy-induced myelosuppression, blood loss, compromised
iron distribution, etc.), attempts are being made to use drugs targeting the transferrin receptor, which
blockade would interfere with the metabolism of actively dividing cells [22]. Nevertheless, transferrin
itself as a transporter protein can be used to bind oxidative stress-generating free iron or to transfer a
molecularly targeted drug to malignant cells [23].

4. Regulation of Iron Metabolism at the Cellular and Systemic Level

The expression of key proteins involved in iron absorption is controlled at many levels:
transcriptional, post-transcriptional and post-translational. It turns out that the individual stages of the
iron absorption process are subject to separate regulations. In the last decade, particular attention has
been paid to the effects of hypoxia and molecular mechanisms of iron homeostasis. The transcriptional
regulation of genes involved in the absorption and transport of iron across the intestinal mucosa was
largely unknown until the HIF-2 transcription factor was discovered. HIF transcription factors are
central mediators of cellular adaptation to hypoxia. They form heterodimers containing a regulatory α

subunit, responsive to iron deficiency and hypoxia, and a β subunit with constitutive expression known
as the aryl hydrocarbon receptor nuclear translocator (ARNT). There are three α subunit isoforms
(HIF-1α, HIF-2α and HIF-3α) that are regulated at post-translational level [24]. HIF-1 has been the
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most widely studied subunit to date. HIF-1 has been shown to be involved in angiogenesis, glycolytic
metabolism, apoptosis and cellular stress [25]. HIF-1 has also been shown to regulate expression of
transferrin 1 receptor (TfR1) and expression of heme oxygenase 1 (HO-1) [26,27]. HIF-2 plays a key role
in adult erythropoiesis by increasing the hepatic production of erythropoietin and the absorption of
iron from the gastrointestinal tract. In enterocyte, HIF-2 regulates iron absorption by directly activating
transcription of the divalent metal transporter 1 (DMT1), iron reductase (DCTYB) and ferroportin (FPN).
In addition, HIF-2 inhibits hepcidin production in the liver, which molecularly binds to the iron exporter,
i.e., ferroportin [28]. In patients with chronic kidney disease (CKD), the lack of EPO production by
the interstitial tissue of the kidneys results in defective erythropoiesis, which consequently leads to
anemia. Under physiological conditions, exposure to hypoxia stabilizes HIF-2 in EPO-producing
kidney cells, leading to increased production of this hormone. At normal oxygen partial pressure
(21%), the α subunits are hydroxylated and quickly degraded by iron and oxygen dependent enzymes
(prolyl 4-hydroxylase, PHD). When the iron level is low, the prolyl hydroxylase activity decreases, thus
the α subunits are destroyed much more slowly. During hypoxia, the hydroxylation (stabilization) of
the α subunit is inhibited, which enables its translocation to the nucleus and interaction (dimerization)
with the β subunit. The functional heterodimer moves to the nucleus to regulate the transcription
of target genes (DCYTB, DMT1, FPN) by binding to specific sequences called hypoxia-responsive
elements (HRE). Direct binding of the HIF heterodimer to HRE elements in the promoter regulatory
regions has been demonstrated for DCYTB and DMT1. Their induction probably mediates the increase
in iron absorption observed in conditions with low iron and oxygen content [29]. The increase in the
number of CKD cases underlines the need for novel therapeutic approaches for treating anemia. Since
the discovery of HIF, a concept of HIF stabilization has been suggested to support EPO production in
CKD anemia. This is now possible thanks to a new class of drugs—PHD inhibitors or HIF stabilizers
that prevent degradation of the HIF α subunit via the proteasome. This can improve the quality of life
of patients with CKD by avoiding multiple transfusions, iron supplementation, or reducing doses of
erythropoiesis stimulating agents [30].

The absorption and metabolism of iron have been presented in Figure 1.
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by the liver stabilizes iron by inhibiting its precipitation in the form of oxides. Thanks to DMT1 protein
(divalent metal transporter 1), iron passes into the enterocyte and then it is released into the blood by
ferroportin. Hepcidin produced by the liver limits the release of iron from enterocytes into the blood by
binding to ferroportin. The divalent iron released into the blood is reoxidized with the contribution of
hephaestin and ceruloplasmin to a trivalent ion, which, when combined with apotransferrin, forms
transferrin and reaches the erythroblasts in the bone marrow.

5. Pathogenesis of Anemia of Chronic Disease

Anemia of chronic disease, also known as secondary anemia is the most common hematological
disorder of the erythropoietic line after iron deficiency anemia in the world [31]. There is a permanent
increase in the incidence of this type of anemia which is associated with the aging of the population
and the tendency to develop chronic diseases, mainly malignant tumors and chronic kidney disease.
Its incidence varies from 40% in patients with solid tumors and reaches almost 100% among patients
with leukemia or lymphoma [32]. It was proven that anemia significantly worsens the quality of
life of patients with chronic diseases, and in some types of cancer (lung cancer, locally advanced
head and neck squamous cell carcinomas, cervical cancer) is an independent adverse prognostic
factor [33–35]. It is currently assumed that there are several mechanisms leading to overt anemia of
chronic diseases. They are interrelated. The first refers to the reduced iron reservoir needed for heme
synthesis. This deficiency results from excessive production of hepcidina regulatory protein produced
by the liver under the influence of cytokine stimulation, which inhibits the absorption of iron from
the gastrointestinal tract and at the same time reduces its release into the blood [36]. Inflammatory
cytokines, i.e., IL-1, IL-6, IL-10 and IFN-γ or TNF-α are the main factors contributing to the increase in
hepcidin gene expression [37]. The second mechanism involved in the pathogenesis of anemia of chronic
diseases is impaired production of erythropoietin. It results either from the advancement of chronic
kidney disease being a consequence of the coexistence of other diseases (e.g., diabetes), whose natural
course is associated with progressive nephropathy, or the direct action of the above-mentioned
proinflammatory cytokines, which inhibit the expression of erythropoietin and, consequently, impede
erythropoiesisin response to hypoxia [38,39]. In addition, the presence of proinflammatory cytokines
reduces the sensitivity of proerythroblasts to erythropoietin and significantly reduces the survival of
mature erythrocytes in peripheral blood [31]. The relationship between the stage of cancer and the
concentration of endogenous erythropoietin and the degree of anemia associated with it is currently
being intensively studied. Receptors for erythropoietin are located not only on the surface of erythrocyte
precursors, but also on cells of certain types of tumors (breast cancer, prostate cancer, squamous cell
carcinomas of the head and neck, multiple myeloma) and capillary wall cells of selected tumors [40–42].
Thus, recombinant analogues and derivatives of human erythropoietin used in the treatment of anemia
of chronic diseases can promote tumor growth and immortality (including through pro-angiogenic
and anti-apoptotic effects). Therefore, effective EPO-R blockade remains to be considered, which may
in the future become one of the methods of cancer treatment.

6. Diagnosis of Anemia of Chronic Disease

The diagnosis of anemia of chronic diseases is associated with the exclusion of other types of
anemia, including iron deficiency anemia. Although both types of these disorders share a deficiency of
this element, there are several important features that allow them to differentiate. When examining the
causes of anemia of chronic diseases, one should remember about disturbed hemoglobin production,
the hemolytic and deficient component of this disease as well as the complicated humoral and cellular
regulation of the hematopoietic process. The emergence of novel biochemical and molecular markers
of secondary anemia is associated with a better understanding of the biology of cancer and the diseases
it accompanies. Anemia of chronic diseases is described among people with infectious diseases
of viral (e.g., HIV), fungal, parasitic and bacterial (e.g., tuberculosis) etiology [43,44]. People who
undergo immunosuppressive therapy after organ transplantation or for the treatment of autoimmune
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diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) are also often affected by secondary
anemia [45–47].

The Table 1 below presents the parameters differentiating iron deficiency anemia from anemia of
chronic diseases, including the assessment of blood counts, concentration of selected hematopoietic
factors and biochemical parameters as well as the presence of other chronic diseases.

Table 1. Comparison of iron deficiency anemia with anemia of chronic disease. (modified based on 14, 31).

Feature Iron Deficiency Anemia Anemia of Chronic Disease

the presence of other chronic diseases rarely often

average baseline hemoglobinconcentration ≥9 g/dL ≤9 g/dL

serum iron concentration decreased significantly decreased

MCV/MCH decreased normal

serum ferritin concentration low increased

serum hepcidin concentration low high

percentage of reticulocytes in the blood serum high low

serum folic acid concentration normal decreased

serum vitamin B12 concentration normal decreased

serum creatinine concentration normal increased

serum erythropoietin concentration increased decreased

7. Treatment of Anemia of Chronic Diseases

Along with the diagnosis of secondary anemia, it is necessary to specify the stage and previous
way of treatment of the underlying disease, which is associated with it, and the extent of deficiencies of
basic hematopoietic factors. Although the exact management of this disease has not yet been defined,
two directions of action to treat this type of anemia are still being adopted: silencing the underlying
disease and supplementing deficiencies [48,49]. These actions can be taken in parallel or individually,
depending on the severity of the anemia and the patient’s condition. Sometimes it is necessary to
transfuse blood products to the patient, which is most often the case in advanced malignant disease.
However, this gives a short-term effect and requires hospitalization [50]. The neoplastic process is
associated with a high demand of rapidly dividing cells for hematopoietic factors, which become
necessary not only for the synthesis of nucleic acids or proteins, but also the supply of the tumor
with blood itself. The vicious circle mechanism occurs when the neoplastic cells begin to produce
proinflammatory cytokines and other bone marrow-damaging substances or mature erythrocytes.
With the growth of the tumor and the occurrence of distant metastases, the appearance of anemia
becomes likely. Therefore, focus on causal treatment is the primary treatment for the anemia of chronic
disease. Nevertheless, extensive iron (oral or intravenous), vitamin C, folic acid and vitamin B12

supplementation should be considered, and in advanced chronic kidney disease and in malignancy
during chemotherapy, additionally administration of erythropoietin preparations [50–52]. In clinical
observation, the implementation of such treatment significantly delays or prevents the occurrence of
anemia of chronic diseases. Administration of ferrous chloride instead of ferrous sulfate or gluconate
allows to bypass gastrointestinal side effects resulting from oral supplementation of this element [53].
Vitamin C has been shown to facilitate its absorption in the gastrointestinal tract, thanks to which it is
often found as an additional component of iron preparations. In addition, vitamin C has an antioxidant
effect. If oral iron therapy is insufficient, intravenous administration in the form of an iron hydroxide
complex with sucrose or polyisomaltose should be considered [20]. Supplementation with vitamin B12

and folic acid is particularly justified during immunosuppressive therapy, including methotrexate in
patients with rheumatoid arthritis. Perhaps the intensive development of immunotherapy in neoplastic
and autoimmune diseases will allow treatment more specifically focused on the pathomechanism of
anemia of chronic diseases. The use of an anti-IL-6 receptor (tocilizumab) antibody in anemia associated
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with rheumatoid arthritis, confirming its positive effect on hemoglobin increase [54,55]. There are also
reports of the possibility of blocking the action and production of hepcidin, whose presence in the
anemia of chronic diseases impairs the absorption and release of iron into the blood. Such management
has been used successfully in mice given anti-hepcidin antibody [56]. At present, hemodialysis is the
only possible way to eliminate hepcidin from blood serum in humans, which in this situation brings
more complications than benefits for the patient [57]. The most elucidated method of treating anemia
associated with neoplasm, in addition to the hematopoietic factors supplementation and transfusion
of blood-derived preparations described above, is the use of recombinant erythropoietin analogues
and derivatives. Currently, three preparations of human recombinant erythropoietin are available
on the market: rhEPOα and rhEPOβ, which is a product of genetic engineering, and a modified
derivative of human erythropoietin—darbepoetin, which has a much longer half-life and therefore
requires less frequent administration than the other two forms [58,59]. Numerous clinical studies have
proved the positive effect of these drugs on the increase of hemoglobin and improvement of well-being
among patients receiving chemo- and radiation therapy. An indication for their use cannot, however,
be prophylaxis of anemia or improvement of the quality of life [50]. Due to the presence of erythropoietin
receptors on cells of certain types of malignant tumors (lung cancer, breast cancer, squamous cell
carcinomas of the head and neck area), EPO preparations in these patients may, despite a temporary
improvement in well-being, cause disease progression or premature death [40,41]. The latest guidelines
limit the use of rhEPO preparations for the treatment of anemia associated with chronic kidney disease
in persons without a history of neoplastic disease, and for the treatment of anemia associated with
chemotherapy of solid tumors, but only among patients with hemoglobin in the range of 9–11 g/dL and
only until reaching the concentration of 12 g/dL. Administration of erythropoietin derivatives requires
the constant monitoring of blood counts, including the red cell system, and observation for possible
long-term adverse effects of these drugs (deep vein thrombosis, stroke, myocardial infarction) [58].
The Figure 2 below shows methods of treating anemia of chronic disease.

1 
 

 

Figure 2. Treatment of anemia of chronic diseases.

8. The Role of Nutrition and Supplementation of Hematopoietic Factors in the Treatment of
Anemia of Chronic Diseases

The correct diet pattern of an adult should take into account the real demand of the system
for individual micronutrients, bioelements or vitamins. Thanks to a well-balanced and varied diet,
maintaining stability of red blood cell parameters becomes much easier, even if there is periodic blood
loss, impaired production or excessive destruction, which occurs in the anemia of chronic diseases.
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Although isolated deficiencies of hematopoietic factors in most situations determine the nature of
anemia, in the case of anemia of chronic diseases are only part of the complex pathomechanism of this
disorder. Among the causes of anemia of chronic diseases, a deficit of several hematopoietic factors is
sooner perceived than isolated deficiency of each individual. This justifies extensive iron, folate and
vitamin B12 supplementation during the treatment of this type of anemia [60,61].

9. Oral Iron

Iron offers the widest selection of administration routes. It is available in oral, intramuscular
and intravenous forms. Each of these possible routes of administration of this element requires
consideration of the potential benefits that the patient may receive, but also of the risks associated with
side effects. Iron is usually supplemented by the oral route in the form of tablets, dragees or capsules,
although its supplementation is associated with a relatively high risk of side effects (according to
some reports, even in about 30% of patients) [62]. These mainly include gastrointestinal disorders
(nausea, vomiting, constipation or diarrhea), the severity of which generally depends on the type of
preparation used. Less common complaints are skin allergic reactions in the form of itching, rash or
erythema. When iron is administered orally, black stools appear, which is associated with the presence
of iron sulphides. The absence of such a color indicates then irregular use of the drug. The absorption
of iron from the gastrointestinal tract in most people with anemia of chronic diseases is impaired,
which is associated, among others with hepcidin production. Considering the other factors affecting its
absorption (plant or animal origin of iron, taking drugs interacting with iron preparations), one can
expect difficulties in obtaining effective supplementation, which, as expected, would not require
another way to supplement the deficiency of this element. Although oral iron administration can be
troublesome for the patient, the side effects are certainly not life threatening. This feature gives this
form of supplementation an advantage over others, unless there are indications for intramuscular or
intravenous supplementation of this element. Oral preparations are also safer because they decrease
the presence of a free fraction of iron in the blood known as non-transferrin bound iron (NTBI).
Free iron predisposes to the occurrence of infections, exacerbates the symptoms of sepsis and intensifies
inflammatory reactions and oxidative stress, thus damaging the endothelium, which accelerates the
process of atherogenesis. Macio and Madeddu evaluated dietary supplements taken by older people
that would stimulate erythropoiesis and antioxidant activity, so that they could potentially be used
to treat anemia of chronic diseases. Salidroside obtained from the extract of Rhodiolarosea, which
stimulates the synthesis of erythrocytes, belongs to such substances. Cyanobacteria spirulin also
raises high hopes. Its administration to humans increases the mean hemoglobin content of red blood
cells [20].

10. The Impact of Diet and Drugs for the Treatment of Iron Deficiency

Iron consumed by humans occurs naturally in two forms (heme and non-heme). Heme iron is
very well absorbed by the human body and is found in the largest amounts in red meat and offal
such as the liver, kidneys, heart. Non-heme iron is, however, poorly absorbed and is found mainly
in products of plant origin. Its bioavailability increases significantly when the plant also contains
vitamin C. It has been shown that the administration of ascorbic acid at a dose of 250 mg significantly
improves gastrointestinal absorption of iron administered orally. In addition, vitamin C facilitates
its uptake in the bone marrow, thus accelerating erythropoiesis [63]. Plant-derived products with a
high iron content include dry pulses, parsley, cocoa, nuts and spinach. Iron absorption is inhibited
by drugs such as calcium and magnesium carbonate, pancreatic extracts, cholestyramine, neomycin,
tetracyclines and proton pump inhibitors. The abovementioned drugs form hard-absorbed compounds
or complexes with iron. Therefore, it is important to keep at least 2 h between taking these drugs
and taking iron preparations. The same principle should also be adopted when consuming milk
and its products, certain vegetables and drinking coffee or tea, which contain substances perfectly
complexing iron, i.e., phytates, phosphates and oxalates. Taking oral iron preparations in the form
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of an iron hydroxide III complex with polymaltose together with food or medicines (tetracyclines,
antacids) is acceptable and does not expose the patient to the risk of interaction. Iron alone, in turn,
can reduce the absorption of simultaneously administered zinc salts, tetracyclines, bisphosphonates,
entacapone, methyldopa, carbidopa, levodopa, fluoroquinolones, penicillins, penicillamines and
thyroxine, which also requires a 2-h interval between their administration and iron intake. Adverse
interaction is taking iron together with nonsteroidal anti-inflammatory drugs. The risk of irritation
of the gastrointestinal mucosa increases then, which may promote the development of peptic ulcer
disease and secondary anemia. The presence of peptic ulcer disease or other gastrointestinal diseases
accompanied by inflammation (Crohn’s disease, ulcerative colitis) disqualify the patient from oral iron
supplementation, as this increases the risk of bleeding. High bioavailability of iron adversely affect the
course of diseases associated with chronic inflammation. Iron sequestration taken by host cells is a
strategy that prevents the proliferation of pathogens. It has long been known that the development of
bacteria depends on the presence of iron, and its elimination effectively limits the growth of pathogens.
It appears that iron chelating compounds play a key role in this process. Well-known polyphenols
have long been recognized as antimicrobials. The iron-polyphenol complex cannot be absorbed by
epithelial cells and is excreted in faeces, suggesting that intestinal bacteria are also unable to absorb iron
chelated by polyphenols [64]. During studies using mouse models of colitis, it was found that increased
oxidative stress caused by oral iron administration is a major cause of exacerbation of the disease.
Changes in the intestinal microflora, consisting in the uncontrolled growth of pathogenic strains, largely
contributed to the exacerbation of inflammation in the large intestine in mice. The intestinal microflora
absorbs the iron needed for growth thanks to low molecular weight chelators, called siderophores.
The most common siderophore is enterobactin, which is found mainly in gram-negative bacteria such
as Salomenlla typhimurium. In inflammatory bowel disease, lipocalin-2 is secreted by epithelial cells.
It binds enterobactin and reduces the availability of iron for the intestinal microflora. The production
of lipocalin-2 is an innate defense system used to limit the growth of microorganisms. However, there
are pathogens that have developed modified siderophores which are insensitive to lipocalin-2. These
include Salmonella enterica, which produces salmochelin instead of enterobactin. Pathogens that are
not dependent on enterobactin then gain an advantage due to commensal growth [65]. Heme is an
important source of iron for both the host and intestinal microorganisms. It has been proven that
pathogenic strains grow particularly well in places rich in heme. Constante et al. showed that a diet
rich in heme in mice with sodium sulfate-induced colitis (DSS) changes the composition of the colonic
microflora by increasing the number of Proteobacteria, eliminating most of the positive G bacteria
from the Firmicutes group, and increasing the protective effect of probiotics [66]. In inflammatory
bowel disease, the role of the intestinal microflora should be appreciated and the possibility of using
natural iron chelating agents to suppress the inflammatory response of immune cells while inhibiting
the growth of pathogenic pathogens should be considered [67].

11. Parenteral Iron

If anemia is significant enough that it requires rapid correction of iron deficiency, its supplementation
becomes necessary by the intramuscular or intravenous route. According to recommendations parenteral
iron administration is only permissible in certain situations (in the case of intolerance to oral preparations,
their impaired absorption from the gastrointestinal tract or the current high demand for this element,
especially in patients with blood loss or treated with preparations stimulating erythropoiesis) [68].
The undisputed advantage of parenteral iron deficiency supplementation is the administration and
dosage regimen. While oral treatment must be regular and long-term, intramuscular or intravenous
therapy is generally interventional in nature, consisting of higher doses of iron being administered once
or several times. In a randomized clinical trial, Quinibi et al. demonstrated the superiority of the iron III
hydroxide and carboxymaltose complex applied intravenously over oral preparations, thus obtaining
higher hemoglobin and ferritin levels while reducing adverse effects on the patient [69]. Similar
conclusions were drawn from the Macdougall review, where better tolerance of new intravenous
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iron preparations such as carboxymaltose or ferumoxytol was demonstrated. This is probably due
to the fact that the above preparations do not cause anaphylactic reactions and do not require the
administration of a test dose [70]. In fact, however, parenteral iron administration has more serious side
effects that are not seen in case of oral administration. Therefore, intravenous administration of iron
preparations requires the greatest caution, as apart from the occurrence of hypersensitivity reactions,
a sharp increase or decrease in blood pressure may occur. Moreover, the parenteral administration of
iron reduces its absorption from the gastrointestinal tract, therefore oral supplementation should be
considered no earlier than 5 days after the last injection. In conclusion, intramuscular or intravenous
iron supplementation is carried out only in the hospital, where it is possible to observe the patient and
react quickly when intolerance to the given preparation occurs. Iron administered intramuscularly
often exposes the patient to taste disturbances (metallic taste in the mouth), which are usually of a
transient nature. Less common are general symptoms such as headache, dizziness, shortness of breath,
palpitations or gastrointestinal symptoms (abdominal pain, nausea, vomiting, diarrhea). At the injection
site, pain, bleeding, abscess, necrosis or local tissue atrophy may occur. Although intravenous iron
administration gives satisfactory effects mainly expressed in the increase of hematological parameters
and good tolerance, there is still a lack of research and thus no evidence of their safe use in the long
term [71].Therefore, oral supplementation in iron deficiency remains the method of choice in the
treatment of anemia of chronic diseases, regardless of its severity. The presence of free iron in the blood
is dangerous, it can promote the development of infections or exacerbate an ongoing inflammatory
process. It can also lead to overloading of this element in the body (secondary hemochromatosis), which
may later be manifested by diabetes, liver, heart or kidney failure. However, iron supplementation is
contraindicated in patients with active inflammatory process and sepsis [71].

12. Folic Acid

The high demand for iron needed for hemoglobin synthesis also requires an adequate supply
of folic acid and vitamin B12. Folic acid participates in the synthesis of purine and pyrimidine bases
forming deoxyribonucleic acid and in the transformation of amino acids and formates. It is necessary
for proper cell division, and therefore it plays an important role in tissues characterized by high
proliferative intensity, including the hematopoietic system. It is also absolutely essential in the process
of producing a myelin sheath of nerve fibers. The daily requirement of folic acid in an adult humans is
about 400 µg. Folic acid deficiency is most often manifested by megaloblastic anemia accompanied by
leukopenia and thrombocytopenia. Supplemented by women during the preconception period and
during pregnancy, it reduces the risk of birth defects associated with abnormal neural tube closure.
That is why the demand for folic acid increases significantly during pregnancy and breastfeeding.
Its sources are liver, kidneys, yeast, green vegetables and nuts. Treatment of folic acid deficiency
consists mainly of its oral supplementation and consumption of the above-mentioned products. Orally
administered, it is well absorbed from the small intestine, binds to plasma proteins and goes to the
liver, where it is stored and metabolized [60]. It should be remembered that a high supply of folic acid
often masks B12 deficiency, which can contribute to cognitive decline, especially in the elderly [72].

13. Vitamin B12

Vitamin B12 (cyanocobalamin) is a water-soluble vitamin that regulates hematopoietic processes
and the functioning of the nervous system (including myelin synthesis). Like folic acid, it participates in
the synthesis of nucleic acids. The average daily requirement for cyanocobalamin is 1–2 µg. Deficiency
of this vitamin leads to megaloblastic anemia, changes in peripheral nerves, followed by degenerative
changes of the spinal cord in the range of posterior cords and cortical spinal ducts. A deficiency that
persists for more than 3 months may result in consolidation of changes in the nervous system. The source
of vitamin B12 is mainly animal-derived food. Therefore, its supplementation is recommended for
people on a vegetarian diet. Released from food under the influence of gastric juice, vitamin B12 is
combined by an intrinsic factor (IF), which is a glycoprotein produced by the stomach’s parietal cells.
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The complex formed reaches the small intestine, where cyanocobalamin is disconnected and absorbed
in the presence of calcium ions into the portal circulation. The transport of vitamin B12 in plasma
occurs with the support of binding proteins (transcobalamin I and II) and, as in the case of folic acid,
ends in the liver—the organ responsible for the storage of vitamin B12.Cyanocobalamin is very poorly
absorbed from the gastrointestinal tract after oral administration (about 1%), so at the time of its deep
deficiency other forms of supplementation (usually intramuscular) are recommended. Deficiencies
in iron or folic acid may reduce or completely inhibit the response to cyanocobalamin treatment.
Therefore, the concentration of all three hematopoietic factors should be monitored simultaneously
and, if necessary, their supplementation should be implemented [61]. Advantages and disadvantages
of various hematopoietic factors supplementation taking account the routes of administration are
presented in the Table 2 below.

Table 2. Summary of the advantages and disadvantages of hematopoietic factors supplementation
depending on the route of administration.

Type of Hematopoietic Factor Route of Administration Advantages Disadvantages

iron

oral
high safety of use, absence of

non-transferrin bound iron (NTBI)
in the blood.

limited effectiveness, poor
absorption, interaction with

other drugs, nausea, vomiting,
constipation, diarrhea, itching,

rash, erythema

intramuscular

quick correction of deficiency, less
frequent dosing, longer effect, less
frequent gastrointestinal ailments,

an alternative for
swallowing disorders

the need for hospital
administration, dysgeusia,

headache and dizziness,
palpitations, shortness of

breath, bleeding, abscess, skin
necrosis at the injection site

intravenous

quick correction of deficiency, less
frequent dosing, longer effect, less
frequent gastrointestinal ailments,

an alternative for
swallowing disorders

the need for hospital
administration, possible

anaphylactic reaction, possible
development of infection or

exacerbation of sepsis, risk of
iron overload, a sharp increase
or decrease in blood pressure

vitamin B12

oral
good tolerability, low risk of

overdose, rather as
maintenance treatment

poorly absorbed from the
gastrointestinal tract (1% of

the dose), difficulties in
compensating for deficiency

intramuscular

the method of choice in
supplementing the large

deficiency, longer effect, less
frequent dosing

pain at the injection site, rarely
anaphylactic shock and death,
and hypersensitivity reactions,

pruritus, rash,
transient diarrhea

folic acid oral

the method of choice, good
tolerance, well absorbed from the

gastrointestinal tract, low risk
of overdose

allergic skin reactions,
gastrointestinal disorders,

nausea, vomiting,
sleep disturbance,

depression or agitation

14. Treatment Considerations

The unsatisfactory effect of the above methods in combating anemia of chronic diseases prompts
us to continue looking for other possible forms of treatment for this condition. The greatest hopes
are currently associated with blocking the action of hepcidin or limiting its hepatic production. It has
been observed that heparin administered prophylactically to cancer patients significantly reduces the
concentration of this protein in the blood serum. A similar phenomenon was observed among mice [73].
This is due to the binding of bone morphogenetic protein6 (BMP6) to heparin. Bone morphogenetic
protein6 is a cytokine from the transforming growth factor (TGF-β) family which, through auto-
and paracrine effects, stimulates hepcidin gene transcription in the liver [74]. Reduced hepcidin
production has also been observed in patients with rheumatoid arthritis receiving anti-TNF-α antibody
(golimumab) [75]. An even more promising result is the improvement of hematological parameters in
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patients with non-small-cell lung carcinoma who received anti-IL-6 antibody [76]. Also noteworthy is
the thiamine derivative fursultiamine, which in vitro function antagonistically to the hepcidin receptor,
i.e., ferroportin [77]. The only indication for its use is vitamin B1 deficiency. A form of causal treatment
of anemia associated with malignant diseases is the use of transferrin conjugates to carry drugs,
e.g., cytostatics. Complex of transferrin with doxorubicin—an anthracycline antibiotic commonly used
in the treatment of leukemia, lymphoma or sarcoma, allows better penetration of this drug into cancer
cells that show much higher expression of transferrin receptors than healthy cells. Such directed action
on neoplastic cells allows, among others avoid cardiotoxicity of doxorubicin, which was proved for
instance in the studies of Kratz et al. where mice were given doxorubicin conjugate with transferrin at
a dose three times higher than the concentration of free drug, while showing a significant reduction of
side effects [78,79]. Recently, HIF-2α stabilizers and PHD inhibitors have attracted a lot of interest.
Hypoxia induces hypoxia-induced factor (HIF), which stimulates the synthesis of erythropoietin (EPO)
and reduces hepcidin production in the liver. Inhibition of the prolyl hydroxylase enzyme (PHD)
stabilizes hypoxia-induced factor (HIF), maintaining its positive effect on erythropoiesis and iron
metabolism. PHD inhibitors are now a new form of pharmacological treatment of anemia associated
with chronic diseases. Many active PHD inhibitors such as roxadustat, molidustat, vadadustat and
desidustat are already in a late phase of clinical trials [80].

15. Conclusions

1. Anemia of chronic diseases is still a type of anemia that is difficult to treat. This is the result of
the complex pathomechanism of this disease and the ability of the underlying disease to make a
multifactorial, pathological modulation of the erythropoiesis process.

2. Improper therapeutic management may result from diagnostic errors, inappropriate
treatment of the underlying disease and underestimation of the benefits of hematopoietic
factors supplementation.

3. Administration of recombinant erythropoietin analogues in patients during chemotherapy allows
us to reduce the necessity of transfusion of blood products, although the indications for their use
are very limited.

4. The supplementation of hematopoietic factors should be implemented simultaneously with
the diagnosis of the underlying disease and last until its cure or longer, with the exception of
recombinant erythropoietin analogues and derivatives.

5. Proper nutrition and prevention of food deficiencies remains the primary form of preventing any
type of anemia, including anemia of chronic diseases.

6. Better knowledge of proteins and mechanisms involved in the formation of anemia of chronic
diseases associated with, among others, malignant neoplasms gives a great chance of creating
molecularly targeted drugs for the treatment of these diseases. Potentially the most effective
is the inhibition of hepcidin production and activity, therapy with transferrin conjugates with
anti-cancer drugs, and increasing iron absorption from the gastrointestinal tract and synthesis of
erythropoietin using PHD inhibitors and HIF-2 α stabilizers.
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