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Abstract

Roots enable the plant to survive in the natural environment by providing anchorage and

acquisition of water and nutrients. In this study, root architectural traits of 153 mungbean

genotypes were compared under optimum and low phosphorus (P) conditions. Significant

variations and medium to high heritability were observed for the root traits. Total root length

was positively and significantly correlated with total root surface area, total root volume, total

root tips and root forks under both optimum P (r = 0.95, r = 0.85, r = 0.68 and r = 0.82 respec-

tively) and low P (r = 0.95, r = 0.82, r = 0.71 and r = 0.81 respectively). The magnitudes of

the coefficient of variations were relatively higher for root forks, total root tips and total root

volume. Total root length, total root surface area and total root volume were major contribu-

tors of variation and can be utilized for screening of P efficiency at the seedling stage.

Released Indian mungbean varieties were found to be superior for root traits than other

genotypic groups. Based on comprehensive P efficiency measurement, IPM-288, TM 96–

25, TM 96–2, M 1477, PUSA 1342 were found to be the best highly efficient genotypes,

whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient. Highly effi-

cient genotypes identified would be valuable genetic resources for P efficiency for utilizing in

the mungbean breeding programme.

Introduction

Mungbean is an important warm season grain legume grown in more than 6 million hectares

area [1] for its protein rich seeds. Mungbean seeds are rich source of iron [2], vitamin C and

folates [3]. Cultivation of mungbean improves soil fertility through biological nitrogen fixation

[4]. Mungbean is cultivated on marginal lands resulting in poor growth, development and

yield. Therefore, fertilizer management is important for realizing the potential yield of the
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crop [5]. Nitrogen (N) and phosphorus (P) are the important macronutrients required for the

crop. In mungbean, 80–90% N requirement is met through biological N2 fixation [6] however,

it requires 48.1 kg P2O5 for producing one ton of grains [7]. Under tropical and subtropical

conditions, P is the main yield limiting factor [8].

Globally, by the year 2020, P fertilizer requirement is expected to reach 64.68 million

tonnes, whereas, the estimated supply is 53.08 million tonnes and the demand for P fertilizer

requirement is increasing annually by 2.2% on an average from 2015–2020 [9]. Countries like

US, China and Morocco are the leading producers of phosphatic fertilizer [10]. In anticipation

of future domestic demands, the US and China have stopped the export of rock phosphate to

other countries [11]. The deficiency of P leads to a higher root/shoot ratio as shoot growth is

relatively more affected in comparison to root growth [12]. It also causes stunted growth and

foliage turns dark green color with reddish-purple tips and leaf margins due to the accumula-

tion of starch and anthocyanin in the leaves [13]. Deficiency in leaves disturbs the photosyn-

thetic machinery and electron transport chain through repression of orthophosphate

concentration in chloroplast stroma inhibiting ATP synthase activity [14]. P is a key compo-

nent of nucleic acids, membrane lipids and participates in energy transfer reactions, and thus

determines the yield and quality of a crop [15, 16]. Its deficiency in soil can be overcome by P

fertilizer application, but excess application leads to the delayed formation of reproductive

organs [17]. Acquisition of P from the soil is a complex process as it is bound to calcium in

alkaline soils and iron and aluminium in acid soils [18].

Change in root architecture explores the soil space and thus enhanced root-soil contact

increases P efficiency [19–21]. The rate of nutrient acquisition by plant roots depends upon

the particular nutrient concentration at the root surface, root properties and plant require-

ments [22]. The root is an indispensable organ of the plant for the absorption of nutrients and

water by expanding its surface area and enhancement of explored soil volume [23]. Under low

P conditions, plants modify their root architectural traits [23, 24] which include reduced pri-

mary root growth, increase in number and length of lateral roots and root hairs [25–27],

increase in root surface area and volume [28], shallower root growth angle [29] and enhance-

ment of root biomass [30] for enhancement of phosphorus uptake.

Genetic variation in plant root architecture can be exploited to improve the nutrient and

water use efficiency under difficult growing conditions [31]. Root surface area, volume, bio-

mass and root carboxylate exudation capacity were reported to be significantly higher in P effi-

cient mungbean genotype compared to inefficient genotype [32]. The significant contribution

of root length, root volume, surface area and the number of lateral roots towards P uptake at

45 days after sowing was observed in blackgram [28]. P deficiency causes a significant increase

in primary root length, total root length and number of lateral roots after eight days of treat-

ment in lentil [33]. High adventitious and lateral root densities were associated with high P

uptake per unit length in soybean and common bean [34, 35]. Genotypes with a large root sys-

tem with deep lateral roots exhibited high shoot and root P use efficiency compared to geno-

types with medium and small root system in lupin [36]. In rice, root hair length and density

significantly increased in all tested genotypes under low P conditions [37]. Shen et al. [38]

stressed on maintaining root biomass and root length to cope with the deficiency of P in

wheat. Under low P condition, decrease in root length was more in fibrous root species

(wheat, rapeseed than in legumes (broad bean, soybean, chickpea and lupin). Maize and wheat

had a higher root to shoot ratio and rapeseed had higher specific root length than legumes

[39].

Although P deficiency can affect crop growth throughout the season, phenotypic evaluation

at the seedling stage is an attractive approach, as it is high throughput and low-cost, which

saves time and space [40]. Stress gradient hypothesis [41, 42] proposes that the fate of seedlings
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determines the structure and dynamics of the plant population. Current digital image analysis

enables accurate analysis of plant root system and is time and labour-saving technology [43,

44]. Considering the role of root architecture in P efficiency, the present study was designed to

(i) characterize the phenotypic variation for morphological root traits in 153 mungbean geno-

types, (ii) identify the root related traits accounting for most of the variation among the tested

mungbean genotypes, and (iii) evaluate the efficiency of mungbean genotypes under optimum

and low P conditions.

Materials and methods

Plant materials and plant growth conditions

One hundred and fifty-three mungbean genotypes including 41 Indian released varieties

(IRV), 44 Advanced Breeding lines (ABL)and 68 Germplasm lines (GL) were studied for root

architecture characteristics under optimum P (OP) and low P(LP) conditions (S1 Table). The

experiment was conducted in a National Initiative on Climate Resilient Agriculture (NICRA)-

controlled environment facility of the Indian Agricultural Research Institute, New Delhi, India

from December 2017 to September 2018. The growth conditions in the greenhouse were main-

tained as 30/18˚C day/night temperature, photoperiod of 12 h and relative humidity at 90%.

For screening under hydroponics, mungbean seeds were surface sterilized with 0.1% (w/v)

HgCl2 for 3 minutes followed by rinsing with double distilled water and wrapped in germina-

tion paper. Upon the emergence of cotyledonary leaves, seedlings of uniform size and without

visible root injuries were transferred to the modified Hoagland solution. Composition of basal

nutrient solution used was MgSO4 (1mM), K2SO4(0.92 mM), CaCl2.2H2O (0.75 mM), Fe-

EDTA (0.04mM), Urea (5 mM), and micronutrients [H3BO3(2.4μM), MnSO4 (0.9μM), ZnSO4

(0.6μM), CuSO4 (0.62μM), and Na2MoO4 (0.6μM)] [45]. Two levels of P were maintained

using KH2PO4 as optimum P (250 μM) and low P (3μM). A preliminary experiment was con-

ducted with a series of P concentrations to select the optimum and low P levels. Analysis of

observations on biomass, chlorophyll content and visual symptoms led to the selection of opti-

mum (250μM) and low (3 μM) P concentration (data not presented) (S1 Fig). The chlorophyll

concentration was measured by using MC-100 chlorophyll concentration meter (Apogee

Instrumnets, Inc., USA). The biomass was calculated by drying the plants at 60˚C until obtain-

ing the constant mass of dry weight. The pH of the nutrient solution was maintained at 6.0

using 1 M KOH or 1 M HCL. Seedlings were supported on a 2” thick thermocol sheet with

holes made at 5 × 5 cm plant-to-plant and row-to-row distance. This sheet was fitted into plas-

tic containers (30 × 45 × 15 cm) with 10 L of basal nutrient solution. Forty-five seedlings were

raised in one such container and fifteen genotypes were screened at a time with three replicates

for each genotype. The solution was aerated regularly by aquarium air pump and replaced on

alternate days.

Root measurements

The data on root traits were recorded on twenty-one days old seedlings raised under low and

optimum P conditions. The complete root system was isolated from each plant and spread out

in a tray with no overlapping of roots. Roots were scanned using root scanner (Epson profes-

sional scanner) and greyscale images obtained in TIFF format were analyzed using WinRhizo

(Pro version 2016a; Regent Instrument Inc., Quebec, Canada). The settings were used as fol-

lows: image resolution, 400 dpi; calibration, intrinsic for the scanner; manual—dark root on

white background; bit depth (8 –bit); focal length (0 mm); image dimensions (4395 × 6125 pix-

els). Roots were placed in a 30 × 40 × 2 cm size acrylic tray with 700 ml water. During root scan-

ning, the debris consisting of occasional broken root segments were manually separated from
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the root sample by floating them in trays containing water. The recovered clean roots were used

for scanning. The following root parameters were obtained: primary root length (PRL), total

root length (TRL), total root surface area (TSA), total root volume (TRV), root average diameter

(RAD), total root tips (TRT), and root forks (RF). PRL was measured manually using the scale.

TRL represents the sum of primary, seminal, crown, basal and lateral roots.

WinRhizo also generated additional output that allowed us to categorize root traits root

length (RL), root surface area (RSA), root volume (RV) and number of root tips (RT) into five

classes based on root diameter intervals of 0–0.5 mm, 0.5–1.0 mm, 1.0–1.5 mm, 1.5–2.0 mm

and>2.0 mm [46–48].

Statistical analysis

The P efficiency coefficient (PEC) was calculated as the ratio of the data derived from the low

P (LP) and optimum P (OP) treatment of the same genotype for each trait using the following

equation.

PECij ¼ XijLP=XijOP

Where PECij is the P efficiency coefficient of the trait (j) for the cultivar (i); XijLP and XijOP

are the value of the root trait (j) for the cultivar (i) evaluated under low P (LP) and optimum

P (OP) treatments, respectively.

The data were subjected to descriptive statistics including mean, standard deviation, coeffi-

cient of variation, analysis of variation, heritability and Pearson’s correlation were calculated

for tested traits under OP and LP conditions using STAR (Statistical Tool for Agricultural

Research) 2.1.0 software [49]. For performing analysis of variance of root traits, the model

used was a fixed factor model with both genotype and P as fixed factors. The additive linear

model used was:

Yijk ¼ mþ Giþ Piþ ðGPÞijþ Eijk

where Yijk is the observation from kth replicate of ijth experimental unit, μ is the overall mean,

Gi is the main effect of ith genotype, Pj is the main effect of jth P level, GPij is the interaction

effect between genotype and P, Eijk is the random effect error confounded in the experiment.

The proportion of root traits in each diameter class was calculated as the percentage of the

total trait under OP and LP conditions in different groups [48]. Mungbean genotypes (153)

were classified into three different categories based on their performance: (i) low performing

genotypes (� �x � SD), (ii) medium performing genotypes (� �x � SD) to� �x þ SD), and (iii)

high performing genotypes (� �x þ SD), where �x and SD are mean and standard deviation of

respected root trait [50, 51]. A polymorphic diversity index, Shannon-Weaver diversity index

(H’), was calculated for each trait [52–54] using the formula:

H ¼ �
Xs

i¼1
piðlnpiÞ

Where pi is the proportion of individuals belonging to the ith class and s is the total number of

genotypes.

The principal component analysis was performed to identify traits contributing most of the

variation in tested mungbean genotypes using STAR 2.1.0 software. A comprehensive P effi-

ciency measurement value (CPEM value) was used to estimate the efficiency capability of all

tested mungbean genotypes. The CPEM value was calculated across traits to evaluate mung-

bean P efficiency by using the formulas described below [46, 55].

Fuzzy subordination method could be used to analyze the P efficiency completely and

avoid the shortage of single index. The membership function of a fuzzy set is a generalization
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of the indicator function in classical sets; it represents the degree of truth as an extension of

valuation [46, 56 and 57]. Uij stands for the membership function value of P efficiency

(MFVP) that indicates a positive correlation between the trait and P efficiency.

Uij ¼
PECij � PECjmin

PECjmax � PECjmin
ðj ¼ 1; 2; 3 . . . nÞ

Where Uij is the membership function value of the trait (j) for the cultivar (i) for P efficiency;

PECjmax is the maximum value of the P efficiency coefficient for the trait (j); PECjmin is the

minimum value of PECj.

Comprehensive P efficiency measurement was made using the formula:

P ¼
Xn

j¼1
½Uij� jPECijj=

Xn

j¼1
jPECijj� ðj ¼ 1; 2; 3 . . . nÞ

Where CPEM is the comprehensive P efficiency measurement of each mungbean genotype

under LP condition. Based CPEM value all mungbean genotypes were classified into five

groups, highly efficient, efficient, moderately efficient, inefficient and highly inefficient.

Results

Response of root traits to phosphorus stress

The study of 153 mungbean genotypes for root traits under optimum and low P conditions

revealed a high variation in the mean values for the studied traits (Table 1). Independent t-test

at the level of significance 0.05 indicated that the mean values of PRL (p-value 0.04) and RAD

(p-value <0.01) were significantly high in LP as compared to OP condition. For P efficiency

coefficient (PEC), RAD showed high mean value followed by TRV and PRL. The mean values

of RL, RSA, RV and RT in five root diameter classes: 0–0.5 mm, 0.5–1.0 mm, 1.0–1.5 mm, 1.5–

2.0 mm and>2.0 mm exhibited variation under OP and LP conditions. RL and RSA revealed

PEC value above 1 for all root diameters except 0–0.5 mm. The PEC was above 1.0 for RV at

all root diameters indicating an increase in root volume in LP condition. The RT was higher

under LP in the root diameter class of 0.5–1.0 mm.

Genetic variation and broad sense heritability studies

ANOVA analysis revealed highly significant variation among the genotypes for seven traits

(PRL, TRL, TSA, TRV, RAD, TRT and RF) evaluated under two P regimes (Table 2). The

study revealed highly significant variation among the evaluated traits at two P conditions. The

highly significant interaction between genotype and P treatment indicates that genotypes were

significantly affected for studied root traits at different P regimes. The level of variation for

studied seven P efficiency traits is presented as Fig 1. Histogram of frequency distribution

revealed near normal distribution of root traits evaluated in the study. The coefficient of varia-

tion for seven investigated traits ranged from 4.64% (RAD) to 16.01% (RF). The broad sense

heritability for the studied traits ranged from 0.59 to 0.79. The highest broad sense heritability

was observed in RAD (0.79) followed by TRV (0.78) and lowest was observed in PRL (0.59).

Genetic correlations among tested traits

Pearson correlations coefficients among all the traits under two P regimes were analyzed and

significant correlations (p<0.01 and p<0.001) were observed between pairs of traits (Table 3).

Under OP condition, highly significant and positive correlation were obtained between TRL

and TSA (r = 0.953), TSA and TRV (r = 0.953) followed by TRL and TRV (r = 0.855). The RF

exhibited a highly significant correlation with TRL, TSA and TRV whereas under LP
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condition, a highly significant and positive correlation was observed for TRL and TSA

(r = 0.951) followed by TSA and TRV (r = 0.929). Under both OP and LP conditions, TRV

showed a highly significant and positive correlation with all other tested traits. The PRL and

TRL showed significant and positive correlations with all other tested traits except RAD under

both P regimes. RAD showed a significant negative correlation with TRT and RF under low P

condition. The results showed that the relationship between PRL and TRL, PRL and TSA and

TRV and TRT were the same under both P conditions, but RAD and TRT and RAD and RF

were much smaller in OP than LP condition. The relationship between PRL and RAD, and

RAD and TSA were also very different between OP and LP conditions.

Comparison of root traits in different diameter classes under two

phosphorus regimes

Root traits TRL, TSA, TRV and TRT were classified into different classes based on root diame-

ter intervals i.e. 0–0.5 mm, 0.5–1.0 mm, 1.0–1.5 mm, 1.5–2.0 mm and>2.0 mm and named

Table 1. Mean value, Standard Deviation (SD) of traits investigated under two phosphorus regimes and the Phosphorus Efficiency-Coefficient (PEC) of each trait.

Trait Mean ± SD (LP) Mean ± SD (OP) Mean ± SD (PEC)

PRL 36.04 ± 6.38 34.78 ± 6.40 1.06 ± 0.22

TRL 809.34 ± 180.07 897.67 ± 209.74 0.92 ± 0.17

TSA 85.58 ± 19.32 89.48 ± 22.54 0.98 ± 0.19

TRV 0.74 ± 0.19 0.71 ± 0.21 1.07 ± 0.24

RAD 0.34 ± 0.02 0.31 ± 0.02 1.08 ± 0.06

TRT 788.62 ± 248.04 964.77 ± 291.77 0.85 ± 0.26

RF 1817.32 ± 583.50 2495.68 ± 735.22 0.74 ± 0.20

RL1 719.50 ± 158.99 815.93 ± 175.23 0.89 ± 0.17

RL2 64.31 ± 23.85 59.96 ± 24.05 1.12 ± 0.29

RL3 6.31 ± 1.74 6.23 ± 1.96 1.06 ± 0.29

RL4 2.51 ± 0.78 2.42 ± 0.87 1.14 ± 0.48

RL5 0.35 ± 0.18 0.41 ± 0.21 1.08 ± 1.48

RSA1 57.46 ± 12.14 59.90 ± 13.63 0.98 ± 0.19

RSA2 12.68 ± 4.58 11.86 ± 4.63 1.11 ± 0.29

RSA3 2.37 ± 0.65 2.34 ± 0.73 1.06 ± 0.29

RSA4 1.35 ± 0.42 1.30 ± 0.47 1.14 ± 0.48

RSA5 0.29 ± 0.17 0.36 ± 0.19 1.11 ± 1.77

RV1 0.41 ± 0.09 0.40 ± 0.10 1.05 ± 0.22

RV2 0.21 ± 0.07 0.19 ± 0.07 1.11 ± 0.29

RV3 0.07 ± 0.02 0.07 ± 0.02 1.07 ± 0.29

RV4 0.06 ± 0.02 0.06 ± 0.02 1.14 ± 0.48

RV5 0.02 ± 0.01 0.03 ± 0.02 1.20 ± 2.26

RT1 772.15 ± 232.56 951.37 ± 277.88 0.84 ± 0.25

RT2 6.64 ± 2.70 5.28 ± 2.20 1.48 ± 0.98

RT3 0.49 ± 0.49 0.46 ± 0.50 0.89 ± 1.17

RT4 0.27 ± 0.35 0.18 ± 0.30 0.39 ± 0.52

RT5 0.05 ± 0.05 0.06 ± 0.06 0.37 ± 0.49

Independent t-test indicated that the mean values of PRL and RAD were significantly high in LP condition compared to OP condition. LP, low phosphorus; OP,

optimum phosphorus; PRL, primary root length; TRL, total root length; TSA, total root surface area; TRV, total root volume; TRT, total root tips; RAD, root average

diameter; RF, root forks; RL1-5, RSA1-5, RV1-5, RT1-5 indicate average root length, root surface area, root volume and root tips in diameter between 0.0 and 0.5 mm, 0.5

and 1.0 mm, 1.0 and 1.5 mm, 1.5 and 2 mm and greater than 2.0 mm respectively.

https://doi.org/10.1371/journal.pone.0221008.t001
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them as RL1-5, RSA1-5, RV1-5 and RT1-5. This was done to compare the fine root distribution

across different diameter intervals under both P conditions. The proportion of roots in each

diameter class was calculated as a percentage of the total for each across different genotype

groups under two P regimes (Table 4). The higher percentage distribution for studied root

traits (RL, RSA, RV and RT) was recorded in 0–0.5 mm diameter class as compared to other

diameter classes across different genotype groups under two P regimes. For root diameter clas-

ses 0.5–1.0 mm, 1.0–1.5 mm and 1.5–2.0 mm RL, RSA and RT percentage were higher in LP

in comparison to OP condition (Fig 2). For diameter class in 0–0.5 mm and>2.0 mm, RL,

RSA and RV recorded a higher percentage in OP condition as compared to LP condition.

Diversity pattern with respect to different groups

A comparison of the root morphology of the different groups showed clear variation for all

studied root traits. The mungbean genotypes in the IRV, ABL and GL groups were classified

Table 2. Analysis of variance for the tested traits under two phosphorus regimes.

Variables Mean squares CV (%) Heritability

Replication (R) Genotype (G) Phosphorus (P) G × P

df 2 152 1 152

PRL 39.48 (0.032) 174.33 (<0.001) 376.63 (<0.001) 70.89 (<0.001) 9.55 0.59

TRL 83366.00 (<0.001) 183719.63 (<0.001) 1789765.97 (<0.001) 45566.49 (<0.001) 11.96 0.75

TSA 874.45 (<0.001) 2151.76 (<0.001) 3503.19 (<0.001) 491.44 (<0.001) 12.40 0.77

TRV 0.08 (0.001) 0.20 (<0.001) 0.18 (0.001) 0.04 (<0.001) 15.26 0.78

RAD 0 (0.93) 0.00 (<0.001) 0.14 (<0.001) 0.00 (<0.001) 4.64 0.79

TRT 21779.66 (0.311) 321101.87 (<0.001) 7121141.19 (<0.001) 118860.09 (<0.001) 15.58 0.63

RF 364416.28 (0.047) 2094494.45 (<0.001) 105608699.30 (<0.001) 548698.57 (<0.001) 16.01 0.74

RL1 65020.02 (0.017) 138491.6 (<0.001) 1796062.03 (<0.001) 43826.93 (<0.001) 16.11 0.68

RL2 628.35 (0.021) 3405.73 (<0.001) 4450.00 (<0.001) 634.44 (<0.001) 20.32 0.81

RL3 0.98 (0.577) 15.63 (<0.001) 0.55 (0.58) 5.87 (<0.001) 21.35 0.62

RL4 0.93 (0.236) 2.80 (<0.001) 2.97 (0.031) 1.17 (<0.001) 33.03 0.58

RL5 0.01 (0.697) 0.17 (<0.001) 1.20 (<0.001) 0.09 (<0.001) 38.06 0.47

RSA1 264.11 (0.076) 813.99 (<0.001) 2472.15 (<0.001) 274.26 (<0.001) 17.08 0.66

RSA2 20.82 (0.034) 133.11 (<0.001) 148.84 (<0.001) 22.01 (<0.001) 19.90 0.83

RSA3 0.23 (0.546) 2.15 (<0.001) 0.56 (0.223) 0.78 (<0.001) 25.95 0.64

RSA4 0.31 (0.227) 0.82 (<0.001) 0.12 (0.441) 0.35 (<0.001) 33.76 0.57

RSA5 0.00 (0.994) 0.15 (<0.001) 1.47 (<0.001) 0.08 (<0.001) 50.23 0.47

RV1 0.02 (0.038) 0.05 (<0.001) 0.03 (0.035) 0.01 (<0.001) 20.03 0.80

RV2 0.01 (0.043) 0.03 (<0.001) 0.03 (0.001) 0.01 (<0.001) 27.59 0.67

RV3 0.000 (0.628) 0.002 (<0.001) 0.000 (0.598) 0.001 (<0.001) 22.77 0.50

RV4 0.000 (0.286) 0.002 (<0.001) 0.000 (0.244) 0.001 (<0.001) 30.92 0.50

RV5 0 (0.945) 0.001 (<0.001) 0.009 (<0.001) 0.001 (<0.001) 55.85 0.00

RT1 4075.20 (0.871) 328543.55 (<0.001) 8363414.91 (<0.001) 127486.04 (<0.001) 19.43 0.61

RT2 1.24 (0.761) 23.51 (<0.001) 453.89 (<0.001) 17.45 (<0.001) 35.10 0.26

RT3 0.26 (0.395) 1.18 (<0.001) 0.06 (0.648) 0.92(<0.001) 78.67 0.22

RT4 0.11 (0.2) 0.56 (<0.001) 7.86 (<0.001) 0.71 (<0.001) 69.10 0.00

RT5 0.03 (0.001) 0.01 (<0.001) 0.02 (0.014) 0.01 (<0.001) 76.48 0.08

df, degree of freedom; PRL, primary root length; TRL, total root length; TSA, total root surface area; TRV, total root volume; RAD, root average diameter; TRT, total

root tips; RF, root forks; RL1-5, RSA1-5, RV1-5, RT1-5 indicate average root length, root surface area, root volume and root tips in diameter between 0.0 and 0.5 mm, 0.5

and 1.0 mm, 1.0 and 1.5 mm, 1.5 and 2 mm and greater than 2.0 mm respectively; p-values were given in parentheses behind mean squares.

https://doi.org/10.1371/journal.pone.0221008.t002
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into three categories, namely low, medium and high performance groups based on mean and

standard deviation of each trait under both OP and LP conditions (Table 5). This classification

mainly shows the frequency distribution of genotypes for studied root traits under both OP

and LP conditions. For all studied traits, a larger number of genotypes were classified into the

medium group. A critical review of performance under different P conditions revealed that

among 153 genotypes studied, the greater number of genotypes were grouped in the high

group in LP condition for PRL, TRL, TRV, RAD and TRT. Under LP condition, 8 (20%), 7

(16%) and 10 (15%) genotypes from IRV, ABL and GL groups showed larger TRL. For all

traits except TSA, the GL group had a lower proportion of genotypes with high performance

(� �x þ SD) than either the IRV or ABL groups under two P regimes. Except for the trait TRL,

ABL group had a lower proportion of genotypes with high performance ((� �x þ SD) than the

IRV group under two P regimes. This indicates that more genotypes with P responsive root

traits are present in the order IRV>ABL>GL groups under the two P regimes.

The Shannon-Weaver diversity index (H’) was calculated to study the diversity among the

tested traits in different genotypic groups (Table 5). The H’ values varied for traits PRL, TRL,

TSA, TRV, RAD, TRT and RF with an average of 0.80 in mungbean genotypes. Among the

studied groups H’ was maximum for Indian Released Varieties. Under OP condition, PRL and

TSA exhibited higher H’ value in studied mungbean genotypes whereas in LP condition TRL,

TRV, RAD, TRT and RF revealed higher H’ value. Under both Pregimes, RAD and PRL

showed a relatively higher level of variation while TRV and RF were less variable across

Fig 1. Frequency distribution of variation for seven root traits in 153 mungbean lines. PRL, primary root length; TRL, total root length; TSA, total

root surface area; RAD, root average diameter; TRV, total root volume; TRT, total root tips; RF, root forks; OP, optimum phosphorus condition; LP,

low phosphorus condition.

https://doi.org/10.1371/journal.pone.0221008.g001
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different genotypic groups. All root traits except PRL and TSA showed higher H’ values indi-

cate higher diversity under the LP condition than the OP condition. For three traits, TRL,

RAD and RF under OP condition and three traits, TRL, TRV and TRT under LP condition

showed higher diversity in the IRV group than ABL and GL group.

Principal component analysis

The principal component analysis was carried out to know the most contributing traits

under two P regimes. The first two principal components (PCs) explained 79.19% and

78.84% of the total variation among the tested mungbean genotypes under OP and LP condi-

tions (Table 6 and Fig 3). The first principal component explained the 61% and 59% of total

Table 3. Pearson correlations among tested traits under optimumand low phosphorus conditions (sample size = 153).

OP PRL TRL TSA TRV RAD TRT RF

PRL 1

TRL 0.417��� 1

TSA 0.398��� 0.953��� 1

TRV 0.350��� 0.855��� 0.953��� 1

RAD 0.058 0.149 0.379��� 0.576��� 1

TRT 0.398��� 0.685��� 0.599��� 0.496��� -0.089 1

RF 0.249�� 0.824��� 0.807��� 0.717��� 0.097 0.526 1

LP

PRL 1

TRL 0.415��� 1

TSA 0.399��� 0.951��� 1

TRV 0.335��� 0.819��� 0.929��� 1

RAD -0.102 -0.146 0.121 0.397��� 1

TRT 0.329��� 0.708��� 0.611��� 0.492��� -0.288�� 1

RF 0.262�� 0.805��� 0.723��� 0.560��� -0.284�� 0.577��� 1

�� and ��� significant at p<0.01 and p<0.001.

OP, optimum phosphorus; LP, low phosphorus; PRL, primary root length; TRL, total root length; TSA, total root surface area; TRV, total root volume; RAD, root

average diameter; TRT, total root tips; RF, root forks; �� and ��� significant at p<0.01 and p<0.001 respectively.

https://doi.org/10.1371/journal.pone.0221008.t003

Table 4. Percentage distribution of root traits across five root diameter classes under optimum and low phosphorus conditions in different groups.

Traits Treatment Root diameter class (mm)

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 >2.0

A IRV ABL GL A IRV ABL GL A IRV ABL GL A IRV ABL GL A IRV ABL GL

RL (%) OP 92.20 91.61 92.58 92.32 6.78 7.39 6.43 6.62 0.70 0.69 0.68 0.73 0.27 0.25 0.26 0.29 0.05 0.05 0.05 0.04

LP 90.73 89.68 90.80 91.30 8.11 9.13 8.03 7.57 0.80 0.82 0.80 0.77 0.32 0.32 0.31 0.32 0.04 0.05 0.05 0.04

RSA (%) OP 79.06 78.32 79.41 79.30 15.66 16.64 15.27 15.28 3.09 2.98 3.06 3.17 1.72 1.57 1.69 1.83 0.48 0.48 0.57 0.42

LP 77.48 75.85 77.04 78.73 17.10 18.70 17.34 16.00 3.20 3.22 3.30 3.12 1.82 1.82 1.84 1.81 0.40 0.42 0.48 0.35

RV (%) OP 53.69 53.72 53.41 53.85 25.82 26.94 25.29 25.43 9.39 8.96 9.38 9.68 7.48 6.78 7.37 8.00 3.62 3.60 4.55 3.04

LP 53.63 52.32 52.15 55.37 26.74 28.40 27.21 25.42 9.29 9.09 9.59 9.22 7.53 7.37 7.63 7.56 2.82 2.83 3.41 2.43

RT (%) OP 99.38 99.37 99.34 99.40 0.55 0.55 0.60 0.52 0.05 0.06 0.04 0.04 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

LP 99.04 99.02 99.08 99.04 0.85 0.86 0.83 0.86 0.06 0.08 0.05 0.06 0.03 0.04 0.03 0.03 0.01 0.01 0.01 0.01

OP, optimum phosphorus; LP, low phosphorus; A, all 153 mungbean genotypes: IRV, indianreleased varieties: ABL, advanced breeding lines: GL, germplasm lines; RL,

root length; RSA, root surface area; RV, root volume; RT, root tips.

https://doi.org/10.1371/journal.pone.0221008.t004
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variation under OP and LP condition, revealed that TRL and TSA, and their highly corre-

lated traits TRV and RF are the most important contributing traits. The most important con-

tributing trait in the second principal component is RAD, which contributed nearly 20% of

the total variation.

Fig 2. Percentage of root traits across five diameter classes assessed under two phosphorus regimes. RL, root length; RSA, root surface area; RV,

root volume; RT, root tips; OP, optimum phosphorus condition; LP, low phosphorus condition; A, all 153 mungbean genotypes; IRV, Indian released

varieties; ABL, advanced breeding lines; GL, germplasm lines.

https://doi.org/10.1371/journal.pone.0221008.g002

Table 5. The Shannon-Weaver diversity index (H’) and performance categories under two different phosphorus conditions.

Traits Treatment All 153 mungbean genotypes Indian Released varieties Advanced breeding lines Germplasm lines

Low Medium High H’ Low Medium High H’ Low Medium High H’ Low Medium High H’

PRL OP 25 102 26 0.87 5 28 8 0.85 8 30 6 0.84 14 44 10 0.89

LP 22 103 28 0.83 4 29 8 0.79 5 29 10 0.86 11 48 9 0.81

TRL OP 21 112 20 0.77 5 29 7 0.80 6 33 5 0.73 11 50 7 0.75

LP 23 106 24 0.86 5 28 8 0.84 4 33 7 0.73 11 47 10 0.83

TSA OP 22 109 22 0.80 6 30 5 0.77 5 33 6 0.74 9 49 10 0.79

LP 21 110 22 0.79 5 29 7 0.80 4 35 5 0.65 13 46 9 0.85

TRV OP 17 114 22 0.74 5 31 5 0.73 4 35 5 0.65 9 48 11 0.81

LP 21 107 25 0.82 6 27 8 0.87 3 35 6 0.64 11 48 9 0.81

RAD OP 17 113 23 0.75 9 25 7 0.94 4 35 5 0.65 12 45 11 0.87

LP 28 101 24 0.88 5 29 7 0.80 6 29 9 0.87 10 52 6 0.70

TRT OP 18 118 17 0.69 3 33 5 0.62 7 29 8 0.88 8 51 9 0.73

LP 25 105 23 0.84 8 25 8 0.94 6 34 4 0.69 11 47 10 0.83

RF OP 18 110 25 0.78 5 27 9 0.86 7 32 5 0.77 6 51 11 0.72

LP 22 109 22 0.79 5 29 7 0.80 8 29 7 0.88 9 50 9 0.76

OP, optimum phosphorus; LP, low phosphorus; PRL, primary root length; TRL, total root length; TSA, total root surface area; TRV, total root volume; RAD, root

average diameter; TRT, total root tips; RF, root forks.

https://doi.org/10.1371/journal.pone.0221008.t005
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Comprehensive phosphorus efficiency measurement

By using subordination function value analysis, the CPEM value, as a comprehensive synthetic

index was derived to study the efficiency of root morphology among mungbean genotypes

under P deficiency (S2 Table). Based on CPEM values, all mungbean genotypes were classified

into five groups. Group 1 includes 21 genotypes showed high P efficiency with CPEM values

greater than 0.9. Group 2 with 25 genotypes showed P efficiency with CPEM values between

0.7 and 0.9. Group 3 with 48 genotypes showed moderate efficiency with CPEM values

Table 6. Principle component analysis of seven traits under two phosphorus conditions.

Characters OP LP

PC1 PC2 PC1 PC2

PRL 0.24 -0.25 0.25 -0.09

TRL 0.46 -0.12 0.48 -0.05

TSA 0.47 0.09 0.47 0.18

TRV 0.45 0.29 0.42 0.41

RAD 0.16 0.80 -0.03 0.82

TRT 0.34 -0.43 0.37 -0.27

RF 0.41 -0.10 0.40 -0.22

EigenValues 4.29 1.25 4.10 1.41

% Variance 0.61 0.18 0.59 0.20

Cumulative % Variance 0.61 0.79 0.59 0.79

Most contributing traits TSA, TRL, TRV RAD TRL, TSA, TRV RAD

OP, optimum phosphorus; LP, low phosphorus; PC1, principal component 1; PC2, principal component 2; PRL,

primary root length; TRL, total root length; TSA, total root surface area; TRV, total root volume; RAD, root average

diameter; TRT, total root tips; RF, root forks.

https://doi.org/10.1371/journal.pone.0221008.t006

Fig 3. Biplots of first two principal components (PC) showing variation among seven root traits under optimum P and Low P condition. PRL,

primary root length; TRL, total root length, TSA, total root surface area; RAD, root average diameter; TRV, total root volume; TRT, total root tips; RF,

root forks; OP, optimum phosphorus condition; LP, low phosphorus condition.

https://doi.org/10.1371/journal.pone.0221008.g003
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between 0.5 and 0.7. Group 4 with 41 genotypes showed inefficiency with CPEM values

between 0.3 and 0.5 while group 5 including 18 genotypes were highly inefficiency with CPEM

values less than 0.3. The genotype which comes under respective groups is listed in S2 Table.

Based on CPEM values, variation in root architectural traits of contrasting genotypes is pre-

sented in Table 7 and Fig 4. Genotype IPM-288 with the highest CPEM value recorded higher

values for TRL, TSA, TRV and TRT under LP condition compared to OP condition. Geno-

types with low CPEM values, M1131 and PS-16 were found to be poor performers for TRL,

TSA and TRV under LP condition compared to OP condition. The mean values of the P effi-

ciency coefficient for each trait in five groups with different levels of P efficiency are shown

in Fig 5. The mean values of P efficiency coefficient for all root traits were highest in group 1,

moderate in group 2, 3 and 4, and lowest in group 5 except for RAD. This result indicates

that P efficient mungbean genotypes with higher CPEM values also had higher P efficiency

coefficients.

Discussion

Characterization of mungbean genotypes for stress tolerance traits and screening for P effi-

cient genotypes are indispensable for the success of the breeding programme. Conventionally,

a higher root to shoot ratio has been considered as an index for P efficiency due to the increase

in root biomass and large deep root system able to extract more nutrients [58, 59]. Total root

length represents the sum of primary, seminal, crown, basal and lateral roots. The various

components of the root system have also been selected as important traits for the screening

of genotypes under P deficiency. In this study, we examined the influence of low P on root

morphology of 153 mungbean genotypes and investigated the various root traits including

PRL, TRL, TSA, TRV, TRT and RF. We found significant variation, medium to high heritabil-

ity, approximately normal distribution and significant correlations for these root traits. Low

coefficient of variation and high heritability of these traits indicates the genetic stability of

the traits in the genotypes. The observed results were in agreement with reports of previous

researchers [60–62]. The widely used indicator, RAD, was highly heritable suggesting that it is

Table 7. Variation in root architectural traits of ten contrasting mungbean genotypes under optimum and low phosphorus conditions.

Genotypes CP EM Root traits

PRL TRL TSA TRV RAD TRT RF

OP LP OP LP OP LP OP LP OP LP OP LP OP LP

Top five genotypes

IPM-288 1.77 25.00 32.67 839.70 1198.07 82.17 129.37 0.62 1.11 0.30 0.35 618.70 1067.33 2669.00 2301.33

TM 96–25 1.55 32.00 31.00 525.00 740.40 65.87 84.27 0.44 0.76 0.32 0.36 474.67 849.33 1517.33 1566.67

TM 96–2 1.48 44.33 41.00 777.53 932.53 70.67 100.20 0.51 0.86 0.29 0.34 728.33 1138.67 1817.33 2028.67

M 1477 1.37 28.83 32.33 631.75 740.74 60.34 78.67 0.44 0.72 0.30 0.35 594.00 653.33 1252.33 1644.33

PUSA 1342 1.27 29.33 44.00 734.35 928.65 73.73 96.42 0.52 0.80 0.31 0.33 898.33 742.00 1765.00 2017.33

Bottom five genotypes

M 1131 0.18 38.00 33.00 843.25 509.77 85.62 49.83 0.61 0.37 0.31 0.31 900.67 703.67 2402.00 1388.33

PS—16 0.19 26.67 23.00 591.66 277.07 67.35 35.60 0.61 0.36 0.37 0.41 697.33 233.67 1107.33 448.67

PUSA VISHAL 0.19 38.00 32.33 1449.93 726.73 175.81 88.14 1.68 0.94 0.37 0.41 1222.00 475.00 3755.67 1204.00

M 831 0.22 41.00 32.17 945.84 662.59 95.35 63.94 0.65 0.49 0.30 0.31 1209.33 785.67 3234.00 1556.00

IC 325828 0.23 41.00 36.67 1061.36 709.37 113.83 77.45 0.95 0.67 0.35 0.35 960.67 793.00 3559.33 1502.33

Contrasting genotypes identified using Comprehensive phosphorus efficiency measurement value. PRL, primary root length; TRL, total root length; TSA, total root

surface area; TRV, total root volume; TRT, total root tips; RAD, root average diameter; RF, root forks; OP, optimum phosphorus; LP, low phosphorus.

https://doi.org/10.1371/journal.pone.0221008.t007
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Fig 4. Variation in root system architecture in four contrasting mungbean genotypes grown under optimum and low phosphorus conditions.

https://doi.org/10.1371/journal.pone.0221008.g004

Fig 5. The mean values of phosphorus efficiency coefficient for seven traits in five groups classified for phosphorus efficiency. Groups 1, 2, 3, 4

and 5 represent mungbean genotypes identified with highly efficiency, efficiency, moderate efficiency, inefficiency and highly inefficiency. N = 21, 25,

48, 41 and 18 for groups 1, 2, 3, 4 and 5 respectively. PRL, primary root length; TRL, total root length; TSA, total root surface area; RAD, root average

diameter; TRV, total root volume; TRT, total root tips; RF, root forks.

https://doi.org/10.1371/journal.pone.0221008.g005
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a reliable parameter for P efficiency. Frano et al [63] reported that root traits especially root

diameter increases (hypertrophy) in response to abiotic stress conditions. The root diameter

mainly controls the root length and surface area and results in bigger root dry weight [64].

Although the genetic variation of root system varies from plant to plant, the presence of

very fine roots (<0.5 mm diameter) and fine roots (0.5 to 2.0 mm) determines the most per-

centage of root traits, is important for nutrient and water uptake [48, 65 and 66]. In this study,

we identified the high percentage of fine roots in diameter class from 0.5 to 2.0 mm in LP com-

pared to OP condition, while the percentage of very fine roots with<0.5 mm diameter was

more in OP condition. This indicates the effect of P availability on the percentage of fine root

distribution at different diameter classes in studied mungbean genotypes. Under low P, plants

may increase the development of root cortical aerenchyma which enables the plant to maintain

greater root diameter but reduce overall total root cost and root respiration [67, 68]. Greater

fine root production results in increasing the overall adsorption area as an adaptive mecha-

nism of stress tolerance [69].

The principal component analysis showed that TRL, TSA, TRV and RAD were responsible

for most of the phenotypic variation at the seedling stage in the tested mungbean genotypes.

TRL was significantly and positively correlated with TSA, TRV, TRT and RF under both OP

and LP conditions. In combination with principal component analysis, we identified that TRL,

TSA and TRV were sufficient to explain most of the variation and these were proved to be

ideal traits for P efficiency screening at the seedling stage. Under the LP condition, RAD was

significantly and negatively correlated with TRT and RF. This indicates that RAD is a key trait

to differentiate P availability among the tested root traits. Moreover, these traits showed high P

efficiency coefficient values in P efficient mungbean genotypes. This result is in agreement

with previous reports. Pandey et al. [32] reported significantly higher root surface area and

root volume in P efficient mungbean genotype under P stress. Root surface area has been

found to be in close association with the nutrient absorption rate [70, 71]. Vigorous root

growth with high root length and surface area ensures the efficient absorption of macro and

micronutrients at the early growth stage of the plant [72]. Furthermore, root architectural

traits mainly total root length and root number were significantly and positively correlated

with biomass and grain yield [73, 74]. Therefore, the vigorous root system of the plant not

only supports good crop establishment but also ensures the plants’ survival under stressful

conditions.

Diversity in root architecture enables us to improve nutrient and water use efficiency under

stressful conditions. A combination of availability of diverse mungbean genotypes and stress

tolerance ability will be key criteria for the success of crop improvement programme. Consid-

ering the mean performance and standard deviation of root traits as selection criteria, geno-

types were categorized into high, medium and low performance groups [46, 51]. Furthermore,

the Shannon–Weaver diversity index (H’) was calculated based on the categorization of geno-

types to compare the phenotypic diversity among the traits. Among all traits, TRL and RAD

(>0.8) showed a relatively high level of H’ under LP condition and PRL showed the relatively

highest value of H’ (>0.8) under both P regimes. Independently of root length, greater diver-

sity in diameter is due to the changes in the fine root distribution for each root diameter in

response to the nutritional environment [75]. The high value of H’ indicates greater pheno-

typic diversity and balanced frequency distribution [76], while low H’ indicates an extremely

unbalanced frequency distribution with a lack of diversity [77]. The Shannon-Weaver diversity

index has been used previously to describe root traits diversity in rice [78], maize [79], wheat

[80] and cowpea [81].

In this study, a comparison of root morphological traits across different genotypic groups

indicated that the IRV group showed greater diversity for root traits than ABL and GL groups.
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The presence of high H’ values in the IRV group for TRL, TSA, TRV and TRT with medium to

high heritability and number of genotypes in the high group in LP condition indicates that

these genotypes used in the study are a rich source to improve the plant performance under

LP. Results from broad-sense heritability, Shannon-weaver diversity index and principal com-

ponent analysis facilitate the root architectural traits suitable for target genotype selection in

cowpea [81]. Presence of more variable root architectural traits with high heritability suggests

that genotypes are more P efficient in soybean under P limiting condition [82]. Among tested

traits, RF was found to be less variable root trait conferring P efficiency in this study. In maize,

RF was less variable due to less H’ value in all studied lines in response to water stress condi-

tion at the seedling stage [46]. Root traits, PRL and RAD were observed to be more variable

across different genotypic groups under two P regimes. Further mean values of both these

traits were significantly high in LP compared to OP condition and can be used as indicators of

P deficiency. Plasticity of root traits including root length, root average diameter and percent-

age of lateral roots confers the improved plant performance under P stress condition [83].

Reduction of root diameter was reported under low P compared sufficient P condition in

maize [62] and Aegilops tauschii [84]. Term ‘root etiolation’ has been suggested for the reduc-

tion in root diameter under P stress in common bean genotypes to increase soil exploration

and to reduce metabolic cost [85]. In response to P deficiency growth of PRL was observed to

be inhibited in Arabidopsis [86]. Whereas, enhanced induction of primary root was observed

in rice [87]. Reduction in growth of primary root of P deficient plants correlates with inhibi-

tion of cell differentiation in primary root meristem and the reduction of cell proliferation in

the root elongation part [88]. However, in present study, a comprehensive index CPEM has

been estimated considering all the tested traits with irrespective of the nature of trait. For

example, genotype with shorter or longer PRL, CPEM will consider ratio of trait value derived

from LP and OP conditions. Further, CPEM is based on relative trait values i.e. PEC of traits

and degree of membership between trait value and P efficiency i.e. MFVP [89]. In combination

with correlation and principal component analysis, TRL with high H’ value and significant

and positive correlation with TSA and TRV indicates that these traits are sufficient to explain

the variation and could be used as selection criteria for P efficiency at the seedling stage. In

maize, total root length and root dry weight were able to provide the most contribution to total

phenotypic variation and sufficient to improve other root traits [46, 79]. This result provides

valuable information to improve both agronomic traits as well as nutrient use efficiency traits

in the mungbean breeding programme. In the 21st century, due to environmental concerns

and the high cost of inorganic fertilizers, nutrient efficient crop plants play an important role

in improving crop yields compared to 20th century [90].

Based on CPEM values, mungbean genotypes were classified as highly efficient, efficient,

moderately efficient, inefficient and highly inefficient groups. Among these, IPM-288, TM 96–

25, TM 96–2, M-1477, PUSA 1342 were identified as best five highly efficient genotypes

whereas M-1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient genotypes.

Except for RAD, P efficiency coefficients for all traits were highest in group 1, intermediate in

group 2, 3 and 4 while lowest in group 5. This type of classification is required for screening

and selection of genotypes for desirable root traits under varied P conditions. Further, these

genotypes with contrasting traits can be exploited in recombination breeding programme to

develop P efficient cultivars [91, 92]. In this study, 21 highly efficient genotypes with a well

developed root system were identified and these could be used in the mungbean breeding pro-

gramme for further improvement of tolerance to abiotic stresses.

In conclusion, the veracity of the root system was maintained by growing the tested mung-

bean lines in hydroponic culture. The in vitro screening method of hydroponics proves to be

the ideal method to screen large set genotypes with the least effect of environmental influence
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[93]. Previous reports examined the root traits using the simple hydroponic system based on

the aerated nutrient solution with different levels of P with the replacement of solution at a

fixed interval in maize [94], soybean [95], mungbean [32] and wheat [96]. In the present study,

we identified a range of responses to P deficiency in mungbean genotypes for root system traits

at the seedling stage. We found that TRL, TSA and TRV are the ideal selection criteria at the

seedling stage for predicting the nutrient use efficiency in the field. Thus, the root system

response to P deficiency can be studied without root damage in hydroponic culture by control-

ling access to water and nutrients. Further, the tested mungbean genotypes need to be evalu-

ated at the adult stage under OP and LP conditions. In addition, the association of seedling

stage root traits with adult stage traits needs to be further examined.
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