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Broadly neutralizing antibodies are promising candidates for
treatment and prevention of HIV-1 infections. Such antibodies can
temporarily suppress viral load in infected individuals; however,
the virus often rebounds by escape mutants that have evolved
resistance. In this paper, we map a fitness model of HIV-1 interact-
ing with broadly neutralizing antibodies using in vivo data from
a recent clinical trial. We identify two fitness factors, antibody
dosage and viral load, that determine viral reproduction rates
reproducibly across different hosts. The model successfully pre-
dicts the escape dynamics of HIV-1 in the course of an antibody
treatment, including a characteristic frequency turnover between
sensitive and resistant strains. This turnover is governed by a
dosage-dependent fitness ranking, resulting from an evolution-
ary trade-off between antibody resistance and its collateral cost
in drug-free growth. Our analysis suggests resistance–cost trade-
off curves as a measure of antibody performance in the presence
of resistance evolution.
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HIV-1 infection is characterized by a high turnover rate in
combination with high mutation rates, which contribute to

the virus’s extraordinary capacity to evade the immune response
of the host (1). In return, the immune system explores a broad
set of responses, creating a coevolution of the two systems (2, 3).
In recent years, the discovery of broadly neutralizing antibodies
(bnAbs) created the prospect of antibody-mediated prevention
(4, 5) or treatment (6–8) of HIV-1 infection. Such antibodies
have been isolated from a minority of HIV-1–infected individ-
uals, termed elite neutralizers, and can potently neutralize a
large spectrum of existing HIV-1 strains. They target relatively
conserved sites on the envelope protein of the virus (9), block-
ing virus entry into cells. Additionally, they can engage the host
immune system to target infected cells (10). Clinical studies show
that in individuals infected with sensitive viral strains, antibody
treatment leads to an initial decline in viral load. However, the
decline is followed by a rebound on a timescale of weeks, indi-
cating viral escape from antibody neutralization (11–14). Specific
insight into the escape dynamics comes from two recent studies
recording viral populations in cohorts of HIV-1–infected individ-
uals following infusion of specific bnAbs (12, 13). These studies
provide time-resolved in vivo data, including viral load, anti-
body concentration, and single-virion genome sequences. They
reveal complex escape dynamics involving the turnover of several
resistant mutant strains.

Here, we establish a biophysically grounded, predictive fit-
ness model for the dominant HIV-1 variant and common escape
mutants in response to a bnAb. In the first part of the paper, we
use the data in refs. 12 and 13 to infer viral within-host repli-
cation rates of sensitive and resistant strains. These rates depend
on two key factors: the antibody concentration, which determines
the likelihood of antibody–antigen binding, and the virion den-
sity, which is subject to saturation effects setting the carrying
capacity of the HIV-1 population in a given patient. Both of
these densities vary by orders of magnitude in the course of a

treatment protocol. Remarkably, we can quantify their effects
on viral growth with a fitness model based on a few parameters,
which are independent of the host-specific genomic background.
This model captures escape patterns, including time-dependent
viral load and antibody resistance levels, reproducibly across
individuals.

Our fitness model contains two key parameters characterizing
a given HIV-1 strain: its growth rate in the absence of anti-
bodies and its resistance to bnAbs, defined as the reduction in
the antibody–antigen binding that confers neutralization of viral
growth. We infer an in vivo trade-off between these parame-
ters; mutants with increased antibody resistance have a reduced
reproductive rate in the absence of antibodies. This trade-off
reflects a well-known general phenomenon; resistance mutations
can involve collateral costs (15). Mutations can reduce the sta-
bility of protein folding and thereby, decrease fitness (16, 17).
Moreover, since bnAbs target conserved sites of the virus, muta-
tions in these regions can impair viral function. The cost of
escape mutations can be quantified in several ways. Using virus
replication assays, Lynch et al. (14) showed that escape from
VRC01-class bnAbs targeting the CD4 binding site results in
reduced viral replication. Computational methods based on deep
mutational scanning (18), deep sequencing of longitudinal sam-
ples (19), or multiple sequence alignment (20) can also reveal
a fitness cost at target sites. Similar trade-offs between evolu-
tion of resistance and function have been observed in microbial
systems (21) and for cancer (22). However, to our knowledge,
a resistance–growth rate trade-off arising in the in vivo escape
from bnAbs has not been inferred so far.

Significance

Broadly neutralizing antibodies (bnAbs) show promise for
antibody-mediated prevention or treatment of HIV-1 infec-
tion. Recent clinical trials, however, indicate that the virus
can evolve resistance mutations that escape neutralization
by bnAbs. Here, we establish a fitness model for the escape
dynamics of HIV in humans. We show that this model can
be applied universally across different human hosts, provid-
ing a proof of principle that the in vivo response of HIV to
bnAb therapies is predictable. Our analysis identifies a fitness
trade-off in viral evolution that can inform antibody design
and therapy protocols.
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The resistance–growth spectrum inferred here has an impor-
tant consequence for viral dynamics; it determines a bnAb
dosage-dependent fitness ranking of sensitive and resistant
strains, which in turn, drives strain turnover during the escape
process. We infer a maximum-growth curve that determines the
dosage-dependent equilibrium viral load resulting from the sen-
sitive strain and the observed escape mutants. Furthermore, the
resistance–growth spectrum can be used to compare different
bnAbs and their suitability for treatment.

In the second part of the paper, we show that the fitness
model can successfully predict viral escape dynamics during
bnAb treatment, given host-specific initial data of viral load
and standing variation of resistance mutations prior to bnAb
exposure. Predictable features of these dynamics include the
strain turnover during the escape process, manifesting in the
dosage-dependent ranking of strains in our fitness model. We
discuss the consequences of our findings for the evolutionary
optimization of antibodies and of time-dependent treatment
protocols.

Results
Time-Resolved In Vivo Data of bnAb Escape. Here, we use data
from two studies of viral dynamics under bnAb treatment in
humans. First, in the study of Caskey et al. (12), 17 individ-
uals infected with HIV-1 received a single intravenous dose
of the CD4 binding site–directed bnAb 3BNC117 at various
dosages. Second, in the study of Caskey et al. (13), 19 individ-
uals infected with HIV-1 received a single infusion of the V3
loop–directed antibody 10-1074. The total viral load N (mea-
sured in RNA copies per milliliter) and the bnAb dosage A
(measured in micrograms per milliliter) were tracked over sev-
eral weeks after the infusion in both studies. Additionally, in the
10-1074 study, single-virion genome sequencing was performed
on plasma samples obtained at specific time points, providing
frequency estimates of sensitive and mutant strains. The neu-
tralizing power of the antibody against the sensitive strain was
measured in terms of the half maximal inhibitory concentration
(IC50), which we denote as Kwt. Here, we infer analogous IC50
values for mutant strains and use them as a measure of bnAb
resistance.

We use the data from the 10-1074 study for the 11 individuals
who responded to the bnAb infusion, were not on antiretroviral
therapy, and had single-genome sequencing performed at three
or more time points. Similar pruning has been performed on the
3BNC117 data; SI Appendix has details and the full datasets.
Sequence analysis and phenotype analyses with pseudoviruses
show that the viral escape from neutralization with bnAb 10-1074
can be associated with amino acid changes at one of the gp120
epitope residues 334, 332, or 325 away from the wild-type (wt)
allele that is common to all sensitive strains (23, 24). The escape
mutations at residue 334 or 332 eliminate a glycosylation site, at
which the antibody makes a critical contact to a glycan. Given
this functional equivalence, we group them together as mutant 1
(mt1). The escape mutation at residue 325 (mt2) alters a differ-
ent contact site of the antibody. We will show that the fitness of
the sensitive (wt) and resistant (mt1, mt2) strains is largely inde-
pendent of the genetic background, which differs between viral
populations in different host.

An Ecological Fitness Model for Viral Escape. HIV-1 replicates in
a complex intrahost environment under constraints set by the
external bnAb and by the host’s intrinsic immune response.
Here, we describe the growth of a viral strain by a continuous
birth–death process. The birth term includes the entire replica-
tion cycle of virions, including cell entry, replication within host
cells, and cell exit. The death term describes clearance of viri-
ons from circulation. In a minimal model, a given viral strain
i (wt, mt1, or mt2) has an intrahost replication (birth) rate

that depends on the antibody dosage and on an effective viral
load:

bi(A,Nu) = b0i
exp(−CNu)

1 +A/Ki
. [1]

In this model, the basic replication rate, b0i , is reduced by
three factors characterizing the intrahost environment. First,
we use a simple Hill model of neutralization; functional anti-
body binding prevents new cell infections by constraining repli-
cation to unbound virions. The fraction of unbound virions,
pu = 1/(1 +A/Ki), depends on the antibody dosage A and the
strain-specific antibody resistance Ki , defined as the dissociation
constant of binding that confers neutralization. Similar biophys-
ical fitness models linking functional binding and growth have
been established in other microbial and viral systems (25–30).
Second, the replication rate of the virus is reduced by a sat-
uration factor qu = exp(−CNu) characterizing the autologous
immune pressure from B cells that target free virions in the
blood or cytotoxic T cells that target infected CD4+ T cells;
the level of immune activation depends strongly on the viral
load. Third, another host factor, the local depletion of unin-
fected CD4+ T cells, affects replication in a similar way (31) (SI
Appendix). Autologous constraints act on the effective viral load
Nu =

∑
i Ni/(1 +A/Ki), defined as the total number of infec-

tive virions, which are not neutralized by bnAbs. Neutralized,
bnAb-bound virions do not count for these saturation effects
because they do not contribute to cell infection. In the minimal
model, these processes define a strain-independent parameter
C of autologous constraint; this simplification will be justified a
posteriori from our inference procedure. We describe clearance
of virions, either by active immune processes or by decay, by a
single clearance (death) rate d , which will turn out to be host
independent.

Replication and clearance determine the net growth rate or
absolute fitness of a given strain:

fi(A,Nu) = bi(A,Nu)− d . [2]

The basic fitness in the low-density regime (i.e., in the absence of
saturation effects and autologous immune pressure) is denoted
by the shorthand fi(A) = fi(A,Nu = 0). In summary, the fitness
defined in Eq. 2 combines the intrinsic growth rate of the virus
with ecological pressures from its intrahost environment. These
ecological pressures are shaped by the antibody dosage and the
autologous immune pressure.

Ecology Shapes Viral Escape Dynamics. How do these ecological
pressures determine clinical patterns of viral load? First, the
autologous constraint sets the equilibrium viral load, or carry-
ing capacity, prior to the start of treatment. This point is defined
by the equality of birth and death rates of the sensitive strain,
bwt(A= 0,Nu) = d , and can be computed in the minimal model
(Methods). Second, ecology impacts the load through viral evo-
lution; the fitness model determines bnAb dosage-dependent
growth rate differences (selection coefficients) that govern the
competition between coexisting viral strains. Selection, in turn,
shapes strain composition and viral load at future points of the
treatment protocol. The minimal model defined by Eqs. 1 and 2
determines specific selection coefficients

sij (A,Nu) = fi(A,Nu)− fj (A,Nu). [3]

Importantly, because of the saturation effect of autologous
immune response, these selection coefficients depend on the
viral load (SI Appendix, Fig. S1). In ecology, this dependence
is known as density-dependent selection (32, 33). For compar-
ison, we also consider an alternative model with linear niche
constraint, fi(A,N ) = fi(A)− C̃Nu , which defines selection
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coefficients sij (A) = fi(A)− fj (A) independent of the viral load
(32). In the following, we will show that the viral escape data
are best described by the saturation model Eqs. 1 and 2 with
universal (host-independent) fitness parameters b0i , Ki , d , and
host-specific autologous constraint C .

Model-Based Ecoevolutionary Dynamics. The observed escape
dynamics of HIV-1 after the infusion of a bnAb show a remark-
ably complex strain turnover, which involves a sensitive strain
and multiple resistant strains. These dynamics depend on the
fitness of strains and on the mutation rates that govern the gener-
ation of resistant variants from an initially predominant sensitive
strain. In the following, we describe time-dependent strain pop-
ulation sizes by a multistrain mutation selection model of the
form

Ṅi = fi(A,Nu)Ni +µMi , [4]

which includes the fitness model defined by Eqs. 1 and 2.
The terms Mi describe the mutational turnover between strains
given by Mmt1 = 2Nwt−Nmt1, Mmt2 =Nwt−Nmt2, and Mwt =
Nmt1 +Nmt2− 3Nwt, taking into account the multiplicity of
amino acid changes and assuming a uniform point mutation
rate, µ= 1.2× 10−5 day−1 (19). These dynamics determine the
time-dependent viral load, N (t) =

∑
i Ni(t), as well as the evo-

lution of strain frequencies, yi(t) =Ni(t)/N (t), which follow
a Wright–Fisher population dynamics under time-dependent
selection (34). We note that the specific resistance mutants,
the corresponding mutation rates, and hence, the initial strain
frequencies depend on the antibody used for treatment.

At a given antibody dosage, the strain dynamics of Eq. 4 lead to
a mutation selection equilibrium that is dominated by the fittest
strain (in the present system, we will show that this can be wt,
mt1, or mt2, depending on dosage). In the saturation model Eqs.
1 and 2, the equilibrium viral load, or carrying capacity, at a
fixed dosage A increases slower than linearly with the dosage-
dependent maximum fitness f ∗(A) = maxi fi(A), reflecting the
load-dependent increase of autologous immune pressure. In con-
trast, the linear constraint model sets a carrying capacity that is
proportional to the fitness (Methods and SI Appendix).

Viral Load Trajectories. A convenient starting point for data anal-
ysis is the time-dependent viral load data under bnAb treatment
in 11 hosts (Fig. 1A). A host indicator (1HB1, etc.) is shown
directly above each trajectory in the figure. Prior to the start
of treatment, there is a host-specific load N0, which we identify
with the carrying capacity of HIV in a drug-free environment.
In our model, the variation of initial loads translates into host-
specific constraint parameters C , as given by Eq. 6 in Methods
(SI Appendix, Table S2). Following the infusion at time t0, the
antibody concentration decays exponentially,

A(t) =A0 exp

(
− t − t0

τ

)
, [5]

with host-specific initial values A0 in the range (103−
105) µg/mL and a characteristic decay time τ = 10± 3 d (SI
Appendix, Fig. S3 and Table S2). In contrast, the relative
load shows a common initial response to bnAbs, N (t)/N0 =
exp[−dwt(t − t0)], from which we infer a universal clearance rate
of the wt strain, dwt = (0.45± 0.03) day−1 (Fig. 1B). Consis-
tently, antibody concentrations in the initial time interval are
well above the average wt IC50 concentration Kwt = 0.08µg/mL
(13), which implies that most virions are bound to antibodies
and cannot replicate. The rebound of the viral load is driven
by the bnAb-resistant strain mt1 in 9 of 11 hosts (see the
data points in Fig. 3A). In these hosts, shifting the time axis
to a common initial load, we obtain a data collapse describ-

ing the rebound to ∼ 90% of the initial load (Fig. 1C). This
indicates a universal growth pattern that extends throughout
the approach to the carrying capacity, as given by Eqs. 4 and
6. The rebound is marked by an initially exponential increase
of the load, N (t)/N0' x0,mt1 exp[f 0mt1(t − t0)], from which we
estimate a universal basic growth rate f 0mt1≡ b0mt1− d (we will
show below that the growth of mt1 is independent of A since
Kmt1�A0). The analysis of viral load trajectories from the
3BNC117 dataset, which targets the more complex CD4 binding
site, produces consistent results (SI Appendix, Fig. S4). Model-
based trajectories with host-independent reproduction rate bmt

and clearance rate d consistently describe the viral load dynamics
of nine individuals after the bnAb infusion. Together, this gives
evidence that a universal growth pattern across different hosts
may be a general feature of HIV-1 escape from bnAbs.

On the other hand, the initial viral population, which has
evolved in the autologous immune environment, turns out to be
strongly host specific. By extrapolating the measured (unshifted)
rebound curves back to t = t0, we can infer the mutant frequency
x0,mt1 in the unperturbed viral population at the start of the
treatment with bnAb 10-1074 (Fig. 1D). We find host-specific
mutant frequencies of order 10−3 to 10−2 (SI Appendix, Table
S2), which are higher than frequency estimates obtained from
deep sequencing data in two individuals (SI Appendix, Tables
S5 and S9) and estimates from mutation selection balance (SI
Appendix). This difference may point to activation of resistant
strains in the latent repertoire contributing to seeding the viral
rebound (35); such seeding effects are included in our initial
condition x0,mt1 (Fig. 1D).

Simulations of the viral escape dynamics Eqs. 1–5 highlight
the complementary roles of fitness parameters for viral load
trajectories (SI Appendix, Fig. S2). The host-independent basic
fitness parameters bmt1 and d set the slopes of decline and
rebound, respectively. For given values of bmt1 and d , the initial
mutant frequency x0,mt and the niche constraint C indepen-
dently determine the minimum load and the stationary load after
rebound.

Bayesian Inference of the Fitness Model. To infer the full fitness
model for the 10-1074 data, we use a Bayesian procedure based
jointly on the time series data of viral load and strain frequen-
cies. Optimal fitness parameters as well as host-specific initial
mutant frequencies are inferred using a Markov Chain Monte
Carlo algorithm that constructs a posterior distribution best fit-
ting the in vivo escape data; details are given in Methods and SI
Appendix.

The maximum-likelihood fitness model has strain-dependent
basic replication rates b0i , resistance parameters Ki , and a strain-
independent clearance rate d (SI Appendix, Table S1). In Fig.
2A, the resulting basic fitness values f 0i = b0i − d in the absence
of antibodies are plotted against Ki for all strains; error bars
indicate 95% CIs obtained from the posterior distribution. The
universal maximum-likelihood fitness model reproduces the viral
load trajectories across all 11 hosts (blue lines in Fig. 1A). In par-
ticular, the maximum-likelihood fitness parameters f 0mt1 and d
and initial frequencies x0,mt1 agree well with the corresponding
values obtained by fitting decline and rebound of the viral load
(SI Appendix, Fig. S5 and Table S1).

Apart from estimating the fitness parameters in Eqs. 1 and
2, Bayesian inference can also serve to rank the fitness model
components against alternative functional forms. First, the data
support the Michaelis–Menten function b∼ (1 +A/K )−1 link-
ing growth to antibody density; an alternative model with a
fitness cost linear in A has a significantly lower likelihood (SI
Appendix). Second, the data favor the saturation model, b∼
exp(−CNu), against the alternative model with linear niche con-
straint. The saturation model is also supported by the observed
nonlinearity of the carrying capacity; the observed load ratio
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Fig. 1. Viral load trajectories have universal growth parameters. (A) Observed time series of the viral load in 11 individuals (RNA copies per milliliter; red
dots) are shown together with the load trajectory of the maximum-likelihood fitness model. (B) Collapse plot of the initial load decline. Individual hosts
are indicated by color. Measured relative load N/N0 (solid lines) and universal (host-independent) exponential fit with inferred clearance rate d = (0.45±
0.03) day−1 (dashed line). (C) Collapse plot of the load rebound. Measured relative load N/N0 plotted against the time from a common initial value N/N0 =

10−2 (solid lines), universal fit curve (dotted line), and exponential fit to the initial rebound with inferred mutant growth rate f0
mt1 = (0.20± 0.04) day−1

(dashed line). (D) Inference of the initial mutant frequency. The measured relative load N/N0 is plotted against the time from the start of treatment at
t = t0 (solid lines). Extrapolation of the exponential rebound back to t0 (dashed lines) provides estimates of the initial frequencies x0,mt1 (intercept with the
vertical axis).

N̄mt1/N̄0 = 0.85± 0.15 is larger than the fitness ratio f 0mt1/f
0
wt =

0.5± 0.12 that would set the load ratio given a linear niche con-
straint (Methods and SI Appendix). Importantly, good fits of the
saturation model are obtained with a strain-independent param-
eter C , which models the host-specific autologous constraint.
Because the niche constraint is strain independent, the autolo-
gous immune system exerts similar pressure on the wt and the
escape mutant strains of the virus.

Resistance–Cost Trade-Off and Dosage-Dependent Selection. As
shown in Fig. 2A, the drug-free growth rate f 0i and the anti-
body resistance vary between strains in a correlated way; higher
resistance (i.e., weaker binding to bnAbs) implies slower growth
in the absence of antibodies. This resistance–cost trade-off is
intuitive; more drastic changes to a viral protein (here, gp120)
can more effectively reduce bnAb binding but also, have larger
impact on protein stability and/or reproductive functions, such as
binding to host cells. Here, we infer a trade-off of considerable
amplitude; the cost of escape, defined as (f 0wt− f 0mt)/f

0
wt, is about

50% for both escape mutants.

Fig. 2B shows the dosage-dependent growth profile fi(A)
of the wt and escape mutant strains, as obtained from our
maximum-likelihood fitness model. For a given strain, the growth
rate takes a sigmoid (Michaelis–Menten) form that interpo-
lates between the asymptotic values fi(A)' f 0i = b0i − d in the
low-binding regime (A�Ki) and fi(A)'−d in the strong-
binding regime (A�Ki), with a cross-over at the half-binding
point (IC50 concentration, A=Ki). Specifically, mt1 is in the
weak-binding regime throughout (i.e., Ki�A0 in all hosts),
and no dosage dependence of its fitness is inferred from this
dataset.

The growth profiles of Fig. 2B exhibit an important conse-
quence of the resistance–cost trade-off; the fitness ranking of
viral strains depends on the antibody dosage. The fittest strains
are the wt at low dosage, mt2 at intermediate dosage, and mt1 at
high dosage. The resulting dosage-dependent maximum-growth
rate, f ∗(A), is the envelope of the growth profiles of individ-
ual strains (gray line in Fig. 2B); this growth rate determines
a dosage-dependent carrying capacity by Eq. 6. The maximum-
growth curve of the virus in the presence of the bnAb is the
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A B C

Fig. 2. Resistance–cost trade-off and dosage-dependent fitness ranking of viral strains. (A) The inferred drug-free growth rate, f0
i , is plotted against the

antibody resistance Ki of the viral strains i = wt, mt1, mt2 (maximum-likelihood values; error bars indicate 95% CIs). (B) Michaelis–Menten growth profiles
fi(A) of the strains i = wt, mt1, mt2 interpolate between the basic growth rate f0

i and the clearance rate d with an IC50 concentration Ki (solid lines). The
maximum-growth rate f*(A) (dashed line) is the envelope of the growth profiles of individual strains. (C) Dosage-dependent selection between resistance
mutants. Estimates of the selection coefficient s21 = fmt2 to fmt1 obtained from relative frequency changes (dots; bars indicate sampling errors, and large
bars indicate inequalities involving frequencies below the sampling threshold) are compared with the predicted Michaelis–Menten form ŝ21(A) (yellow line).

key immune feature inferred in this paper; it characterizes the
potency of the antibody while accounting for the evolutionary
response of the virus.

Another aspect of the fitness ranking is a dosage-dependent
selection coefficient between the two escape mutants, s21(A) =
fmt2(A)− fmt1(A), which changes sign at a specific dosage A12∼
10 µg/mL. In Fig. 2C, we compare the model prediction ŝ21(A)
(yellow line) with data points obtained from changes in the

frequency ratio between subsequent sampling time points, plot-
ted against the average bnAb concentration in between these
points (Methods and SI Appendix). The observed frequency
changes are seen to be in agreement with the predicted func-
tional form (large error bars reflect instances where at least
one of the mutants is observed at only one of the two time
points, resulting in an inequality for the corresponding data
point for s21).

B

A

Fig. 3. Prediction of escape evolution. (A) Observed time series of strain frequencies (dots; bars indicate sampling errors) are shown together with predicted
frequency trajectories for 11 validation protocols (lines). The host indicator of each trajectory is displayed directly above each axis. Fitness parameters used
for predictions are obtained from complementary training sets. The first data point for each strain (open circles) is used as the initial condition, and the
subsequent points (filled dots) are to be compared with predictions. When mt2 is first observed, the normalization of the predicted trajectories is updated. (B)
Model predictions of strain frequency changes, ŵ = ŷi(tk+1)/yi(tk), are plotted against the corresponding observed changes, w = yi(tk+1)/yi(tk). Frequency
ratios with yk+1 (yk) below the sampling threshold are evaluated with pseudocounts. Frequency increase is correctly predicted in 22 of 28 instances (first
quadrant), and frequency decline is correctly predicted in 21 of 28 instances (third quadrant).
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Predicting Evolutionary Escape Trajectories. The resistance–cost
trade-off and the dosage-dependent fitness ranking of strains
lead to an evolutionary prediction of our fitness model; in a bnAb
treatment with time-dependent dosage, there is a reproducible
turnover between prevalent strains. Here, we test this prediction
by training the model on subsets of 10 hosts and using frequency
trajectories of the 11th host for prediction and validation; this
protocol is detailed in Methods.

In Fig. 3A, we show the predicted frequency trajectories given
by Eq. 4 for 11 validation protocols together with the observed
frequency data, which have been excluded from the model
training step. The model successfully predicts salient qualitative
features of the evolutionary strain turnover. First, the rebound of
the viral load, which takes place while bnAb dosage is still high,
is predominantly carried by mt1. Exceptions to this pattern are
observed in hosts 1HD6K and 1HD10K, where the wt is not fully
suppressed in the initial treatment phase, suggesting increased
values of Kwt and a limitation of fitness universality across
individuals. Second, at intermediate times and bnAb dosages,
mt2 appears and qualitatively follows the predicted trajecto-
ries. However, we do not attempt to predict the appearance of
mt2 in the observable frequency range because its low-frequency
dynamics appear to be more susceptible to the host-specific
environment, and more initial-state sequencing would be nec-
essary to determine its initial frequency x0,mt2. Instead, when
mt2 appears, this observation is integrated into the initial data
for predictions of the subsequent time points (the corresponding
renormalization of frequencies is seen as jumps of the model tra-
jectories). Third, a rebound of the wt occurs at late times and low
bnAb dosages. This rebound is observed in almost all protocols
where strain frequencies have been tracked over a sufficiently
long time interval (& 50 d).

To test the quantitative predictability of frequency trajecto-
ries, we predict validation trajectories from one sampling time
point to the next and compare model predictions of strain fre-
quency changes, ŵ = ŷi(tk+1)/yi(tk ), with observed changes in
the same time interval, w = yi(tk+1)/yi(tk ) (Fig. 3B) (hats indi-
cate predicted quantities). The model correctly predicts 22 of 28
instances of frequency increase and 21 of 28 instances of decline,
which amount to an overall prediction accuracy of 77%. The
main limiting factor of predictability appears to be the incom-
plete knowledge of low-frequency escape mutations, which can
be mitigated by deeper sampling of the initial populations.

Discussion
In this paper, we establish a fitness model for HIV-1 that success-
fully predicts the in vivo ecoevolutionary response of the viral
system to bnAbs, given simple treatment protocols extending
over limited periods. In a broader context, the predictability of
evolution under realistic ecological conditions remains a largely
open question. In the present system, we show that predictability
emerges from a partial universality; viral fitness parameters gov-
erning the short-term escape from bnAbs depend only weakly
on host environment and viral genomic background, while ini-
tial loads and mutant frequencies reflect autologous immune
pressures that are variable across hosts. These ecological con-
ditions enter our model as initial data but are beyond the scope
of predictions.

Recent mechanistic and genomic fitness models for HIV
(20, 36, 37) provide a more detailed picture of the intrahost
reproductive dynamics and the viral genome sites relevant for
resistance evolution. In contrast, our model gives a coarse-
grained description of the viral dynamics geared to inference
from limited in vivo time series data. Despite its simplicity, the
model captures viral escape from bnAbs across sets of hosts
with varying immunological responses and genetic variation of
the viral population, as observed for two bnAbs included in
our study.

Our inference of viral fitness factors suggests biological fea-
tures of antigen–antibody interactions. First, the resistance
mutations analyzed in this study operate largely independently
of their genetic background, which differs between viral pop-
ulations in different hosts. Second, the host-to-host variation
in autologous immune response can, over the limited time
intervals of our treatment protocols, be absorbed into a host-
dependent constraint parameter C . This parameter is uniform
across strains, indicating that wt and escape mutants are in
the same niche of the host’s immune environment. In other
words, we do not find evidence that the bnAb escape mutants
studied here confer escape from autologous immune control.
Third, we find evidence of density-dependent selection on escape
mutations, suggesting a specific form of autologous immune
suppression; a viral strain of increased basic fitness induces a
supralinear increase in activation of the immune system, gener-
ating, in turn, a sublinear increase of the viral load as observed
in our data.

A striking feature of bnAb treatment protocols is the complex
strain turnover observed already over short timescales. Our fit-
ness model explains this turnover in terms of time-dependent
bnAb dosages together with a dosage-dependent fitness rank-
ing between strains. This interplay is likely to be generic; bnAb
treatment protocols generate antigenic fitness seascapes driving
time-dependent strain prevalence. Given bnAb exposure over
longer timescales, the strain dynamics is expected to become
even more complex. In particular, compensatory mutations can
stabilize mutant strains by reducing the fitness cost of antibody
escape (14, 17).

The key fitness characteristic driving viral escape evolution is
a trade-off between resistance against bnAb neutralization and
growth in the absence of antibody challenge (Fig. 2A). This find-
ing has implications for the optimization of bnAbs, which is a
topic of high current interest (38–40). The standard procedure
to measure the power of bnAbs is based on neutralization assays
against a panel of reference strains, which determine the potency
(i.e., the mean IC50 against susceptible strains) and the breadth
(i.e., the number of reference strains against which the IC50 is
lower than a threshold value) of neutralization. However, these
measures do not take into account the specific genetic changes
that carry resistance evolution against that antibody. In con-
trast, the maximum-growth curve, f ∗(A), inferred in this paper
determines the bnAb dosage-dependent carrying capacity result-
ing from the evolution of sensitive strains and escape mutants.
Conceptually, this result underscores that the ecology and evo-
lution of the antigen population are critical to describe clinical
patterns of time-dependent viral load and resistance against
antibodies. The maximum-growth curve also sets a necessary
criterion for clinically suitable bnAbs; at therapeutically sustain-
able dosages A, the growth of common resistance mutants must
be suppressed, f ∗(A)< 0. Importantly, resistance–cost trade-offs
and maximum-growth curves can be used to compare the per-
formance of bnAbs targeting different viral epitopes, including
antibody combinations.

The predictability of the viral escape dynamics is also an
important tool for designing optimal bnAb dosage protocols.
Any such protocol has to balance medical limitations and physi-
ological collateral costs of treatment with their effect of curbing
the viral load. In particular, the effectivity of multistep pro-
tocols crucially depends on timing and strength of individual
applications (41, 42). The optimization of protocols has to
take into account the full ecoevolutionary response of the viral
population, including the turnover in strain prevalence. Here,
we have established a proof of principle that this response
is computable for realistic treatment settings. Extending the
method to other bnAbs and to more complex, resistance-limiting
therapies with multiple bnAbs is an important avenue for
future work.
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Methods
Inference of Ecoevolutionary Dynamics. In the Bayesian inference of the fit-
ness model, we use the following input data: time series data of the total
population size N, time series data of strain frequencies Y, and time series data
of host-specific antibody dosages A. These data are used to infer the fitness
parameters F (including the replication rates, clearance rate, and antibody
resistances), initial strain frequency data X, and host-dependent niche con-
straint parameters C. To this end, we construct an error model that gives the
log likelihood Σ(model|data) = log P(F, X, C|N, Y, A) and minimizes the error
with respect to F, X, and C. Details are given in SI Appendix.

Model Comparison. In the main text, we compare two ecological fitness
models: the saturation model defined by Eqs. 1 and 2 and a model with a lin-
ear constraint of strength C̃, where fitness takes the form fi(A, Nu) = b0

i /(1 +

A/Ki)− d− C̃Nu. First, the log likelihood obtained from our Bayesian infer-
ence favors the saturation model (details are given in SI Appendix). Second,
we compare the stationary viral load. In the saturation model, we obtain

N̄(A) =
1 + A/K*

C
log

f*(A) + d

d
, [6]

where we assume that the population contains a dominant fittest strain
with parameters f*(A), d, and K*. This load depends in a sublinear way on
the fitness f*(A). In contrast, the stationary load of the linear model,

N̄(A) =
f*(A)

C̃
, [7]

is proportional to the replication rate f*(A). This leads to different pre-
dictions for the load ratio between mutant and wt strains (SI Appendix);
comparison with the data again favors the saturation model.

Dosage-Dependent Selection. Selection coefficients can be inferred from
observed frequency trajectories Ymt1 and Ymt2. The log frequency ratio,
ξ(t)≡ log (ymt2(t)/ymt1(t)), changes with the instantaneous selection coef-
ficient,

d

dt
ξ(t) = s21(A(t)), [8]

where the selection coefficient s21 = fmt2− fmt1. Then, the observed log fre-
quency change in a time interval (tk, tk+1) measures the average selection
coefficient,

ξ(tk+1)− ξ(tk)

tk+1− tk
= s̄21(tk+1, tk), [9]

which is plotted in Fig. 2C against the average bnAb dosage A in the same
time window. Details are given in SI Appendix.

Predicting Viral Escape Evolution. In order to predict the escape evolution
for a given individual α, we use the following scheme. First, we divide the
data into a training set (N, Y)−α that contains data of individuals β 6=α

and a test set (N, Y)α that contains data of individual α. Then, the fitness
parameters are inferred from the training set using the Bayesian inference
scheme of the fitness model. To predict the viral escape for individual α,
it is necessary to first obtain the host-specific parameters. The initial load
Nα

0 (which sets the niche constraint C) and initial dosage A0 are given by
measurements, while the initial frequency xα

mt is given by deep sequencing
where available (in patients 1HB3 and 1HD1) or inferred from backward
extrapolation of the load rebound of Nα using a fitness parameter f0

mt1
inferred from the training set (Fig. 1C and SI Appendix, Table S2); we
set x0,mt2 = 0. The extrapolation procedure is a substitute for direct deep
sequencing of the genetic variation in the initial strain population, which
is not available for the whole dataset. The trajectories N̂α can be com-
puted using Eqs. 1–3 using the fitness parameters inferred from the training
set. This results in the predicted trajectories Ŷα

i = N̂i/N̂tot that are com-
pared with the data. For validation, we compare the predicted frequency
change between subsequent sampling points Ŵ = ŷα

i (tk+1)/yi(tk) with the
corresponding observed changes W = yi

(
tk+1/yi(tk) . Details are given in

SI Appendix.

Data Availability. All study data are included in the article and/or SI
Appendix.
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