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Dynamics of a neuronal pacemaker 
in the weakly electric fish 
Apteronotus
Aaron R. Shifman1,2,3*, Yiren Sun1,2,3, Chloé M. Benoit1,2,3 & John e. Lewis1,2,3

The precise timing of neuronal activity is critical for normal brain function. In weakly electric fish, the 
medullary pacemaker network (pn) sets the timing for an oscillating electric organ discharge (eoD) 
used for electric sensing. This network is the most precise biological oscillator known, with sub-
microsecond variation in oscillator period. The PN consists of two principle sets of neurons, pacemaker 
and relay cells, that are connected by gap junctions and normally fire in synchrony, one-to-one with 
each EOD cycle. However, the degree of gap junctional connectivity between these cells appears 
insufficient to provide the population averaging required for the observed temporal precision of the 
EOD. This has led to the hypothesis that individual cells themselves fire with high precision, but little 
is known about the oscillatory dynamics of these pacemaker cells. As a first step towards testing this 
hypothesis, we have developed a biophysical model of a pacemaker neuron action potential based on 
experimental recordings. We validated the model by comparing the changes in oscillatory dynamics 
produced by different experimental manipulations. Our results suggest that this relatively simple 
model can capture a large range of channel dynamics exhibited by pacemaker cells, and will thus 
provide a basis for future work on network synchrony and precision.

Timing of neuronal spikes is critical to many brain processes, including sound  localization1–3, escape  responses4–6, 
and learning and  memory7,8. When neural processes are periodic, they can form the basis for biological clocks 
which span a range of precision (variability in oscillation period), with a higher variability leading to a less 
reliable clock. Variability in the period of neuronal oscillators (reported as a coefficient of variation: CV = 
s.d./mean) can be relatively high, as in the bullfrog sciatic nerve with a CV = 0.379,10. For reference, a random 
Poisson process has a CV = 1, while cortical neurons can have a CV >  111,12. In contrast, the neural oscillators 
underlying the electric organ discharge (EOD) of the weakly electric fish Apteronotus have a CV as low as ∼ 10−4 
(corresponding to a standard deviation of ∼100ns), making it the most precise biological oscillator  known10,13. 
The high precision of the EOD of Apteronotus therefore makes it a particularly attractive model for the study of 
neural circuit  timing10,13,14.

Apteronotus generates an oscillating electric field (EOD) to sense their environment in the  dark15. Objects in 
the environment interact with the EOD causing field perturbations which are sensed by electroreceptors on the 
skin. The timing of the oscillations underlying the EOD are set by the medullary pacemaker network (PN)13,16–19. 
This nucleus is a collection of two principle cell types: pacemaker cells, which are oscillatory cells and relay cells 
which project down the spinal cord to drive the  EOD14,16,20. Additionally, there are parvalbumin positive cells 
(parvocells) whose function is currently unknown, but are not thought to contribute to the oscillatory function 
of the  PN21.

Within the PN, the pacemakers cells are highly synchronized, with relative phases across cells close to 2% 
of the oscillator  period10,14. In general, networks are thought to achieve high-precision and high-synchrony 
through the population-averaged activity of a large number of strongly-connected  cells14,16,22. However, pace-
maker and relay cells are connected only sparsely, with weak gap  junctions14,16–18. Although network connectivity 
may be functionally enhanced through the electric feedback from the EOD  itself14,23, the apparent disconnect 
between high synchrony/precision and low connectivity in the PN may also be explained by the high precision 
of individual  cells16, with synchrony emerging from weak interactions between precise cells with stereotyped 

open

1Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. 2Center for Neural Dynamics, 
University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. 3uOttawa Brain and Mind Research Institute, Ottawa, 
Ontario K1H 8M5, Canada. *email: ashifman@uottawa.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73566-3&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16707  | https://doi.org/10.1038/s41598-020-73566-3

www.nature.com/scientificreports/

dynamics. Indeed, some underlying oscillatory dynamics are thought to be more amenable to synchronization 
than  others24–26.

Previous studies have used a Hodgkin–Huxley based model to explore PN synchrony and  precision14,16, 
but this model was not intended to accurately represent the action potential waveform of pacemaker neurons. 
While these studies provided insight into pacemaker network interactions, a more accurate biophysical model is 
required to determine how transmembrane currents, intrinsic oscillatory dynamics and gap junctional coupling 
impact single cell precision and network synchrony. To this end, we present a biophysically based pacemaker 
cell model which accurately captures the waveform of pacemaker cells as well as their dynamical responses to 
experimental manipulations.

Results
Model fit.  We developed a biophysical Hodgkin–Huxley-based model of a pacemaker neuron in the PN of a 
weakly electric fish. Motivated by previous  studies27, our model included voltage-dependent sodium, potassium, 
and calcium channels, along with leak channels ( INa , IK , ICa , IL ). We used a differential evolutionary algorithm 
(DEA) to survey a 44-dimensional parameter space (see Methods and Appendix). After optimization, the RMS 
error between model and data waveform was 0.7 mV; when normalized by action potential amplitude, this cor-
responds to a 2.8% error. Note that small differences in action potential timing can lead to relatively large errors 
due to the fast rise and fall times that are typical of action potentials, so the model matches the data even better 
than the RMS error would suggest over most of the action potential cycle (Fig. 1A). For model fits see Tables S2 
and S3.

After the initial fitting process, our model described an action potential of a single cell from an individual 
A. leptorhynchus. It is also of interest to determine how well this model will generalize across individuals and 
to the related species A. albifrons. In Fig. 1B, we show action potential waveforms (dimensionless, normalized 
in both time and amplitude) from pacemaker cells from two individuals of each species (Fig. 1B); the similarity 
across waveforms suggests that the underlying dynamics are also similar. To demonstrate this and to show the 
flexibility of the model, we refit the model to each of these four action potential waveforms with the same param-
eter bounds (Fig. 1C; data from Fig. 1A is indicated by gold star). Over a range of amplitudes and frequencies, 

Figure 1.  Model fit results for A. leptorhynchus (orange) and A. albifrons (grey). (A) Canonical model fit (black 
line) to A. leptorhynchus action potential waveform (orange). (B) Dimensionless waveform (action potential 
normalized by period in time and peak–peak amplitude) from two individuals from each species. (C) Data fits 
showing model flexibility over a range of frequencies, amplitudes and means for A. leptorhynchus (left) and A. 
albifrons (right). Orange star indicates model fit in panel A.
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the model fits involved a worst-case error of 5.3%. And importantly, there were no systematic differences in the 
voltage dependence of the gating variables across all models (Supplemental Figure S1).

Previous results suggest that while calcium can contribute to action potential waveform shape, it does not 
fundamentally underlie pacemaker cell  oscillation27. This is consistent with the relatively low magnitude of GCa 
in our models. We tested this further by setting GCa to 0 ( ICa-Block ) and found that the model continues to 
oscillate with only subtle changes to the waveform (Fig. 2A). In Fig. 2B, we show the contributions of each cur-
rent to the action potential waveform. As expected, the depolarization of the action potential is driven by the 
sodium current, the repolarization/hyperpolarization is driven by potassium current, and as just mentioned, ICa 
has little effect (compare the full model with the ICa-Block model, Fig. 2B). Overall, our modeling results confirm 
previous experimental results suggesting a minimal role of calcium in the pacemaker action potential oscillation.

Models having a large number of parameters are at risk of being overfit, and since we have used a biophysical 
model with 44 parameters to fit a single oscillator waveform, a good fit would not be surprising. Therefore, it is 
important to validate the dynamics of our model against additional data. To this end, we consider the pacemaker 
oscillatory dynamics during two different experimental manipulations: low concentration of extracellular sodium 
(decreased ENa ), and pharmacological block of Na+ and K +  channels27.

Model validation: effects of E
Na

. To test the new pacemaker model, we compared its oscillatory dynam-
ics under conditions that differed from those in the model fitting process. It is common for dynamical systems 
to undergo qualitative changes in behavior as a result of small changes in a system parameter. This property is 
referred to as a  bifurcation28. One particular example of a bifurcation relevant to pacemaker dynamics is the 
transition between an oscillating state and a rest state (non-oscillating), and vice-versa; the nature of this transi-
tion depends on the system properties as well as the particular parameter that is varied.

One classic way in which oscillations can arise is through a Hopf bifurcation. The hallmark of a Hopf bifurca-
tion is that the transition from an oscillating state to rest (or vice-versa) involves a discontinuous jump (i.e. as 
a system parameter is varied, there is an abrupt change in oscillation frequency from some minimum value to 
zero)28. There are two kinds of Hopf bifurcations: one that exhibits a hysteresis and one that does not, referred to 
as subcritical and supercritical respectively. In a subcritical Hopf bifurcation, hysteresis appears as a bistable system 
i.e. at a given parameter value the system can be oscillatory or not. Conversely in a supercritical case hysteresis 
is not present. An alternative type of bifurcation (the homoclinic bifurcation) involves a continuous transition 
from rest to oscillating state along with a gradual change in oscillation frequency (i.e. rest can be thought of as 
an oscillation with infinite period)28. In summary, characterizing the transition between oscillating and non-
oscillating states can provide a test of system  dynamics29.

Lowering the equilibrium potential of sodium ( ENa ) via changes in extracellular Na+ concentration typically 
leads to cessation of action potential generation. We thus used this parameter to explore the transition between 
oscillating and non-oscillating states in both our pacemaker model and in experimental pacemaker preparations. 
In our model, we can manipulate ENa directly. In our experiments, low-Na+ ACSF was washed in to dilute the 
control ACSF, thereby gradually decreasing ENa . Under ideal mixing conditions, the sodium concentration of 
the bath should obey the exponential diffusion equation (1), where r is the flow rate and [Na+out]0 is the initial 
concentration of extracellular Na+

(1)[Na+out](t) = [Na+out]0e
− t

r

Figure 2.  Analysis of currents in canonical model (Fig. 1A) and in model with ICa-block. (A) Model fits for 
both full model (left) and blocked model (right) showing no systematic differences. (B) Current breakdown with 
ICa× 10 (dashed light blue line) showing a 10 × magnified calcium current for illustrative purposes.
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ENa is given by the Nernst equation; therefore by substitution we have in Eq. (2)

where ∝ represents proportionality, and k and α are lumped constants. This implies that ENa should decrease 
linearly in time, and since we do not have a direct measure of ENa , time should be a good proxy.

In Fig. 3, we show the transition between oscillation and rest in both model and experiments. Our experi-
mental analysis reveals that pacemaker frequency decreases over time, with an abrupt shift to the rest state (for 
simplicity we define rest to have zero frequency), as ENa decreases (Fig. 3A). To account for variability between 
experiments, we normalize the time scale such that the PN ceases to oscillate at time t = 1. Measurements from 
individual preparations are shown in grey, with the mean shown in green (N = 5 fish). On average, we see that 
the oscillation stops at ∼260 Hz (Fig. 3B).

For the pacemaker model, we compute a bifurcation diagram showing the system’s state (membrane poten-
tial, Vm) for different values of ENa using  XPP30 (Fig. 3B). As ENa decreases, the model neuron transitions 
from a oscillating (membrane potential extrema in green) to rest (red) at a bifurcation point corresponding to 
ENa = −12.8 mV with no hysteresis. To distinguish a Hopf from a homoclinic bifurcation, we measured the 
frequency of the oscillation as ENa decreases in Fig. 3C (dark green trace). The oscillation frequency follows a 
square-root-like curve until a discontinuity at ENa = −12.8mV, after which the cell stops firing: characteristic 
of a Hopf  bifurcation28. In other words, we can say that as ENa is increased, our model undergoes a supercriti-
cal Hopf bifurcation at ENa = −12.8  mV. We observe qualitatively similar dynamics for the other model fits 
(Fig. 1C, light green traces).

While both the models and recordings undergo a sudden loss of spiking, a feature consistent with a Hopf 
bifurcation, other features of the model dynamics do not match the data. First, the manner in which frequency 
decreases with decreasing ENa is very different, as indicated by an increasing versus decreasing second deriva-
tive (compare Fig. 3A,C). This is possibly due to nonlinear changes in ENa in the experiments resulting from 
variations in mixing and diffusion through the tissue; this would affect the detailed time-course of ENa but 
the relation between ENa and time will still be monotone. Secondly, we note that the experimental data spans 
a larger frequency range ( ∼525 Hz→∼230 Hz; a drop of 60%) whereas the model spans 380–260 Hz, a drop 
of  30% (although for the other model fits we see 40–50% drops). This could be due to several factors, including 
recruitment of additional currents, or homeostatic control of the local extracellular medium. It is important to 

(2)ENa ∝ log
[Na+out](t)

[Na+in]
= −k

t

r
+ α

Figure 3.  Data and model bifurcation analysis. (A) Relative time-series of pacemaker frequency as Na-free 
ACSF is washed in (see Methods) for 5 different pacemaker preparations. Green trace represents average 
(individual preparations in gray) and red trace represents cessation of firing. T = 1 represents bifurcation point. 
(B) Orbit diagram for model bifurcation analysis with respect to ENa . Green trace is action potential extrema. 
Black trace is unstable fixed point and red trace is stable fixed point. Black-Red intersection point is the Hopf 
bifurcation. (C) Frequency analysis of the model Hopf bifurcation. Dark green line represents model in Fig. 1C 
(i). Light green lines represent results from other model fits, Fig. 1C (ii–iv). Red line represents cessation and 
dotted lines show the bifurcation of each model.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16707  | https://doi.org/10.1038/s41598-020-73566-3

www.nature.com/scientificreports/

note however, that despite these quantitative differences, both model and experimental systems show similar 
dynamics, with each exhibiting a Hopf bifurcation.

Model validation: pharmacological manipulations.  In a similar manner, we can also consider how 
PN oscillatory dynamics change as individual currents are manipulated. Smith and  Zakon27 showed that block-
ing either INa or IK channels results in firing cessation in experimental preparations of A. leptorhynchus. Impor-
tantly, they measured action potential waveform parameters as the channel blocker was washed in (i.e. as an 
increasing fraction of the channels are blocked). These data can thus provide another means of model valida-
tion. We simulated this gradual channel block in the pacemaker model by manipulating the conductance of the 
appropriate channel as Gion → (1− β)Gion where β is a number between 0 and 1 ( β = 0 represents no block, 
while β = 1 represents complete block). We demonstrate the effects of progressive block of either sodium (left) 
and potassium (right) channels in Fig. 4A (block level, β = 0 to β = 0.7 ). As in the ENa experiments, we per-
formed a bifurcation analysis in  XPP30 and found that both of these bifurcations are supercritical Hopf bifurca-
tions (not shown). The reader familiar with bifurcation analyses may note that these decreases in GNa appear to 
result in a continuous frequency drop, but over a larger parameter range the discontinuous drop in frequency 
associated with a Hopf bifurcation is in fact observed.

Because we do not know the equivalent block level at the time the waveform properties were measured in the 
experiments, we use the following qualitative comparison based on three action potential waveform features. 
We consider how these features vary as the block level is increased (Fig. 4B), and what block level is required to 
match experimental data (solid circle, Fig. 4B). A good model will be internally consistent in that the required 
block level should be consistent across all waveform features. In Fig. 4B, we show the peak-to-peak amplitude, 
peak rise rate, and peak fall rate (taken as positive for symmetry with rise rate) for both sodium and potas-
sium block as a function of block level ( β ). The equivalent block level (the block level that corresponds to the 
percent change noted in the original data) is indicated by a solid circle. The equivalent level for sodium block 
is 0.59± 0.06 (mean ± standard deviation) whereas that for potassium block is 0.55± 0.007 ; the low variability 
here suggests good model performance.

Overall, our analyses show that this new model captures the main oscillatory dynamics and action potential 
waveforms of pacemaker cells based on the underlying sodium and potassium currents.

Discussion
The pacemaker network (PN) of wave-type electric fish sets the timing of a neural oscillation which exhibits preci-
sion and stability far beyond that of any known biological  oscillator13,14. To understand these dynamics, we have 
developed a biophysically relevant model of pacemaker neurons that reproduces the action potential waveform 
as well as the effects of various experimental manipulations. From a dynamical systems perspective, we show 
that our model undergoes a Hopf bifurcation as ENa is decreased. A similar effect is seen experimentally when 
Na+ is removed from the extracellular medium: oscillations stop with a minimum frequency ∼260 Hz. While our 
data only shows the offset of spiking (and thus super and subcritical bifurcations cannot be distinguished), we 
find that the oscillation stops suddenly, which rules-in a Hopf bifurcation and rules out any form of homoclinic 

Figure 4.  Response to progressive block of Na+ and K + channels. (A) Model response to Na+ channel block 
( GNa , left) and K + channel block ( GK , right). (B) Action potential properties computed as a function of block 
level for peak-peak amplitude (left), action potential rise rate (center) and fall rate (absolute value; right). Dots 
represent block level with equivalent percentage change in each property from data reported  in27.
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bifurcation, where the onset of an oscillation can have an arbitrarily low frequency. In addition, we were not able 
to successfully recover a normal oscillation after low-Na+ treatment, and thus could not differentiate between 
sub and supercritical bifurcations based on the presence of hysteresis. This could be due to a network bistability 
where the control Na+ level could permit both an oscillatory state and a quiescent rest state. Further work is 
required. Nonetheless, our model accurately reproduces the changes in waveform properties such as amplitude 
and peak rise rate caused by partial channel block.

Of particular interest in this study is the fact that our model was fit to data from two related species (A. 
leptorhynchus and A. albifrons). While there are known differences in pacemaker cell counts, and EOD 
 frequencies18,31–34, little is known about the differences in pacemaker network dynamics between these  species14. 
We show preliminary data to suggest that both species have an equivalent dimensionless action potential wave-
form (Fig. 1B) that can vary widely across amplitude, mean and frequency. The implication of this being that 
pacemaker cells in both species have similar dynamics. This is supported by the fact that the model was fit to 
these different waveforms within relatively narrow parameter bounds. Furthermore, experimental validations 
are done with data from both A. albifrons ( ENa ) and A. leptorhynchus (channel block).

This model can also provide important insight into precision and synchrony in the PN. For example, fast, early 
currents such as INaP tend to decrease synchrony across a  network35, whereas some of the slow, late potassium 
 currents35,36 tend to increase network  synchrony35. Interestingly, we found that INaP was not required to explain 
pacemaker waveforms (consistent with recent molecular  work34), and that the gating dynamics of IK converged to 
those similar to a delayed rectifier, with no apparent requirement for the high-threshold potassium currents often 
observed in high-frequency  systems34. The specific dynamics of individual neurons in a network can also influ-
ence network  synchronization35,36. In particular, neurons exhibiting supercritical Hopf bifurcations (also referred 
to as Type II excitability) can lead to more robust synchronization in some  cases25,26. Understanding the specific 
roles of bifurcation structure in PN precision and synchrony will require future modeling and experimental work.

While it is important to note that the channels defined in our model were not tuned to represent the par-
ticular channel subtypes expressed in the  PN27,34, it is nonetheless interesting to compare their dynamics. The 
high-threshold voltage-gated K + channel (Kv1.8) is abundantly expressed in the  PN34. Of note, the relatively long 
time constant typical of these channels would seem inappropriate for the high-frequency firing of PN cells. The 
fast-gating potassium channels (Kv3) found in the auditory  system37 are also present in the Apteronotid  PN34 
and appear better-suited to high frequency firing. Interestingly, both of these channel subtypes have a narrow 
gating window which is significantly more depolarized than the peak of the pacemaker cell waveform. While 
larger action potentials may be generated by relay cells or at distinct locations in the circuitous pacemaker axons, 
it is also possible that slower channel kinetics act to smooth out high-frequency fluctuations leading to a more 
“sinusoidal” current that would facilitate  synchronization38. On the other hand, the K+ channel in our model 
has a relatively low activation threshold ( ∼ −60mV), but it may represent the dynamics of a suite of channels 
in combination, rather than any particular channel. Nonetheless, high-frequency and waveform shape can also 
drive  adaptation39,40, so it is likely that the kinetics of these K+ channels show adaptations better-tuned to the high 
frequencies of the EOD. Indeed, the PN expresses subunits such as Kvβ 2 that are known to modulate channel 
activation time in  Kv134. More work on the biophysics of these channels will be required to clarify these issues.

We acknowledge that our model is a single cell model fit to data from an intact pacemaker network. The 
impact of this is not clear; gap junctional strength is proportional to the voltage between cells, so in a synchro-
nized network, the voltage difference between cells is low, with gap junctional coupling serving primarily as an 
error-correcting entraining force. This suggests that, at least to first order, the network effects of gap junctions may 
be minimal. Nonetheless, given the model exhibits similar oscillatory dynamics to those observed experimentally, 
it will provide a basis for future work focused on how intrinsic neuronal dynamics interact with gap junctional 
coupling to produce high temporal precision and synchrony in the pacemaker network.

Methods
Model developement.  Previous pharmacological experiments have suggested that pacemaker cells express 
the following suite of ionic currents: inactivating sodium ( INa ) and/or persistent sodium ( INaP ), inactivating 
potassium ( IK ), T/R type calcium ( ICa ), and leak ( IL)27. Using the standard Hodgkin–Huxley-style biophysical 
 approach41, these currents underlie the dynamics of our model (Eqs. 3–7), where v is the membrane potential, 
b, m, and, n are calcium, sodium, and potassium channel activation variables, and g, h, and, q are the respective 
inactivation variables. For full specification see supplemental materials.

Model parameters were fit to intracellular recordings from pacemaker cells in Apteronotus albifrons (see exper-
imental methods) and in Apteronotus leptorhynchus (published  previously14). A standard waveform from a 

(3)
dv

dt
= −ILeak − ICa − INa − IK

(4)ILeak = GLeak(v − ELeak)

(5)ICa = GCab
2g2(v − ECa)

(6)INa = GNamh(v − ENa)

(7)IK = GKn
2q2(v − EK )
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representative pacemaker cell comprising two successive action potentials, averaged over 30 sweeps, was used 
to fit the primary model. Fitting two successive action potentials (oscillator cycles), rather than one, minimizes 
frequency drift between model and target waveforms. We also show that the primary model can be generalized 
by fitting it to waveforms from other pacemaker cells in both Apteronotus leptorhynchus and the related species 
Apteronotus albifrons (see Fig. 1). Note that Smith and Zakon (2000) also suggested a role for a persistent sodium 
current ( INap ), but our preliminary studies showed that including this current resulted in many solutions that 
would not spike (not shown), so we did not include INap in our final model. Subsequent work showed that INap 
is not strongly expressed in the PN of either Apteronotid  species34. While low levels of expression of this cur-
rent could nonetheless provide a means of modulating PN frequency, it is not necessary to explain variations in 
pacemaker cell waveform across individuals and species.

We implemented a generic, parameterized model in the Brian2 simulation engine (version 2.3)42, and fit our 
model using a differential evolutionary algorithm provided in the brian2modelfitting package (version 0.3). This 
fitting algorithm (similar to a genetic algorithm) starts with a large set of parameters drawn randomly within set 
bounds. Based on the fitting performance (i.e. “fitness”; see later discussion on fitting error), some parameter 
values will have a higher or lower probability of being used in the next iteration. Stochastic perturbations within 
the parameters allow for an efficient sampling of large parameter  spaces43,44. The algorithm was initialized with 
5000 initial samples of each parameter, and run for 3 iterations. Each parameter was sampled uniformly between 
upper and lower bounds, based roughly on known biophysical principles (see table S1).

Fitting error was quantified using the root mean squared (RMS Eq. 8) error when the two waveforms (experi-
mentally measured: Ve , and model: Vm ) were aligned by first spike time (defined as the action potential peak).

experimental methods. To validate the model, brain slices of the pacemaker nucleus were prepared as 
described  previously10,14. Briefly, adult black ghost knifefish (A. albifrons) were obtained from commercial fish 
suppliers and housed on a 12/12 light-dark cycle in flow-through tanks at water temperature 27–28 ◦ C and 
conductivity 150–250 µ S. All housing and experimental procedures were approved by the Animal Care Com-
mittee of the University of Ottawa and were according to the guidelines of the Canadian Council on Animal 
Care (protocol BL-1773).

Fish (N = 5) were deeply anaesthetized using 0.1% Tricaine methanosulfate (TMS, Syndel International 
Inc, Nanaimo, BC, Canada) before being transferred to a bath of ice-cold artificial cerebrospinal fluid (ACSF; 
in mM: 124 NaCl, 24 NaHCO3 , 10D-Glucose, 1.25 KH2PO4 , 2 KCl, 2.5 MgSO4 , 2.5 CaCl2 ; bubbled with 95% 
O 2 /5% CO2 ). The brain was quickly removed and the pacemaker nucleus cut away using fine scissors ( ∼1 mm 
rostral, 2 mm caudal, 1 mm dorsal) and transferred to a 35 mm petri dish perfused with oxygenated room-
temperature (22 ◦ C) ACSF. After a minimum of 30 min, pacemaker recordings (intracellular and extracellular) 
were performed with borosilicate glass sharp electrodes (30–90 M � , P-2000 electrode puller, Sutter Instrument 
Company, Novato, CA, USA) using an Axoclamp 2B amplifier (Molecular Devices, Sunnyvale, CA, USA). Data 
was acquired using a Digidata 1440a digitizer (Molecular Devices) at a sampling frequency of 100 kHz using 
pClamp 10 (Molecular Devices). Low Na+ ACSF was prepared in a similar fashion as ACSF, only substituting 
NaCl for equimolar amounts of sucrose (Fisher Chemical, Fair Lawn, NJ, USA). The perfusion system involved 
a transfer time of approximately 4 min when switching between Na+ and low-Na+ ACSF solutions.

Action potential frequency in the PN was measured from 1-s recordings taken at 20 s intervals using Fourier 
analysis (as the highest power, dominant frequency). Cessation of spiking was determined when the power at the 
dominant frequency was less than 1.5 times the power at 60 Hz (signal-to-noise ratio, SNR<1.5). This criterion, 
along with the dominant frequency being within 5 Hz of a power line harmonic, was additionally used to identify 
overly noisy recordings prior to cessation; these recordings were removed from the analysis.

Data availability
All model code and analysis is freely available on GitHub https ://githu b.com/aaron shifm an/SCI_REP_2020_
Shifm an_et_al_Pacem aker_Dynam ics

Received: 22 July 2020; Accepted: 14 September 2020

References
 1. Carr, C. E. & Konishi, M. Axonal delay lines for time measurement in the Owl’s Brainstem. Proc. Natl. Acad. Sci. 85, 8311–8315 

(1988).
 2. Grothe, B. & Pecka, M. The natural history of sound localization in mammals—a story of neuronal inhibition. Front. Neural Circuits 

8, 1–19 (2014).
 3. Singheiser, M., Gutfreund, Y. & Wagner, H. The representation of sound localization cues in the Barn Owl’s inferior colliculus. 

Front. Neural Circuits 6, 1–15 (2012).
 4. Von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970 (2014).
 5. Shimazaki, T., Tanimoto, M., Oda, Y. & Higashijima, S. I. Behavioral role of the reciprocal inhibition between a pair of mauthner 

cells during fast escapes in zzebrafish. J. Neurosci. 39, 1182–1194 (2019).
 6. Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive control of escape behaviour. Trends Cognit. Sci. 23, 334–348 (2019).
 7. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).
 8. Paton, J. J. & Buonomano, D. V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98, 687–705 

(2018).

(8)RMS =

√

∑

(Ve − Vm)2

n

https://github.com/aaronshifman/SCI_REP_2020_Shifman_et_al_Pacemaker_Dynamics
https://github.com/aaronshifman/SCI_REP_2020_Shifman_et_al_Pacemaker_Dynamics


8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16707  | https://doi.org/10.1038/s41598-020-73566-3

www.nature.com/scientificreports/

 9. Hagiwara, S. Analysis of interval fluctuations of the sensory nerve impulse. Jpn. J. Physiol. 4, 234–240 (1954).
 10. Moortgat, K. T., Bullock, T. H. & Sejnowski, T. J. Precision of the pacemaker nucleus in a weakly electric fish: network versus cel-

lular influences. J. Neurophysi. 83, 971–83 (2000).
 11. Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. Neural variability and sampling-based probabilistic representations in the visual 

cortex. Neuron 92, 530–543 (2016).
 12. Gabbiani, F. & Cox, S. J. Mathematics for Neuroscientists (Elsevier, London, 2010).
 13. Moortgat, K. T., Keller, C. H., Bullock, T. H. & Sejnowski, T. J. Submicrosecond pacemaker precision is behaviorally modulated: 

the gymnotiform electromotor pathway. Proc. Natl. Acad. Sci. 95, 4684–4689 (1998).
 14. Lucas, K. M., Warrington, J., Lewis, T. J. & Lewis, J. E. Neuronal dynamics underlying communication signals in a weakly electric 

fish: implications for connectivity in a pacemaker network. Neuroscience 401, 21–34 (2019).
 15. Moller, P. Electric Fishes: History and Behavior (Chapman & Hall, London, 1995).
 16. Moortgat, K. T., Bullock, T. H. & Sejnowski, T. J. Gap junction effects on precision and frequency of a model pacemaker network. 

J. Neurophysiol. 83, 984–997 (2000).
 17. Zupanc, G. K. Dynamic neuron-glia interactions in an oscillatory network controlling behavioral plasticity in the weakly electric 

fish, Apteronotus leptorhynchus. Front. Physiol. 8, 1–7 (2017).
 18. Elekes, K. & Szabo, T. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus lep-

torhynchus) with particular reference to comparative aspects. Exp. Brain Res. 60, 509–520 (1985).
 19. Dye, J. & Heiligenberg, W. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, 

during modulatory behaviors. J. Comp. Physiol. A 161, 187–200 (1987).
 20. Ellis, D. B. & Szabo, T. Identification of different cell types in the command (pacemaker) nucleus of several gynotiform species by 

retrograde transport of horseradish peroxidase. Neuroscience 5, 1917–1929 (1980).
 21. Smith, G. T., Lu, Y. & Zakon, H. H. Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. J. Comp. 

Neurol. 423, 427–39 (2000).
 22. Herzog, E. D., Aton, S. J., Numano, R., Sakaki, Y. & Tei, H. Temporal precision in the mammalian circadian system: a reliable clock 

from less reliable neurons. J. Biol. Rhythms 19, 35–46 (2004).
 23. Shifman, A. R. & Lewis, J. E. ELFENN: a generalized platform for modeling ephaptic coupling in spiking neuron models. Front. 

Neuroinform. 13, 1–11 (2019).
 24. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2007).
 25. Fink, C. G., Booth, V. & Zochowski, M. Cellularly-driven differences in network synchronization propensity are differentially 

modulated by firing frequency. PLoS Comput. Biol. 7, 1–14 (2011).
 26. Mofakham, S., Fink, C. G., Booth, V. & Zochowski, M. R. Interplay between excitability type and distributions of neuronal con-

nectivity determines neuronal network synchronization. Phys. Rev. E 94, 1–10 (2016).
 27. Smith, G. T. & Zakon, H. H. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly 

electric fish. J. Neurobiol. 42, 270–286 (2000).
 28. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering 2nd edn. (Westview 

Press, Boulder, 2014).
 29. Smeal, R. M., Bard Ermentrout, G. & White, J. A. Phase-response curves and synchronized neural networks. Philos. Trans. R. Soc. 

B: Biol. Sci. 365, 2407–2422 (2010).
 30. Ermentrout, G. B. Simulating, Analyzing, and Animating Ddynamical Systems: a Guide to XPPAUT for Researchers and Students 

(SIAM, Philadelphia, 2002).
 31. Shifman, A. R. & Lewis, J. E. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the 

jamming avoidance response in weakly electric fish. J. R. Soc. Interface 15, 1–11 (2018).
 32. Elekes, K. & Szabo, T. Synaptology of the command (pacemaker) nucleus in the brain of the weakly electric fish, sternarchus 

(Apteronotus) albifrons. Neuroscience 6, 443–460 (1981).
 33. Dunlap, K. D. & Larkins-Ford, J. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apter-

onotus. J. Comp. Physiol. A 189, 153–161 (2003).
 34. Smith, G. T., Proffitt, M. R., Smith, A. R. & Rusch, D. B. Genes linked to species diversity in a sexually dimorphic communication 

signal in electric fish. J. Comp. Physiol. A 204, 93–112 (2018).
 35. Hansel, D., Mato, G. & Pfeuty, B. The role of intrinsic cell properties in synchrony of neurons interacting via electrical synapses. In 

Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, Chap. 15 (eds Schultheiss, N. et al.) 361–398 (Springer, 
New York, 2012).

 36. Ermentrout, B., Pascal, M. & Gutkin, B. The effects of spike frequency adaptation and negative feedback on the synchronization 
of neural oscillators. Neural Comput. 13, 1285–1310 (2001).

 37. Gan, L. & Kaczmarek, L. K. When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing 
neurons. J. Neurobiol. 37, 69–79 (1998).

 38. Dodla, R. & Wilson, C. J. Spike width and frequency alter stability of phase-locking in electrically coupled neurons. Biol. Cybern. 
107, 367–383 (2013).

 39. Swapna, I. et al. Electrostatic tuning of a potassium channel in electric fish. Curr. Biol. 28, 2094-2102.e5 (2018).
 40. Zakon, H. H. Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc. Natl. Acad. Sci. USA 109, 

10619–10625 (2012).
 41. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (Massachusetts 

Institute of Technology Press, Cambridge, 2005).
 42. Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural simulator. eLife 8, 1–41 (2019).
 43. Svensson, C. M., Coombes, S. & Peirce, J. W. Using evolutionary algorithms for fitting high-dimensional models to neuronal data. 

Neuroinformatics 10, 199–218 (2012).
 44. Van Geit, W., De Schutter, E. & Achard, P. Automated neuron model optimization techniques: a review. Biol. Cybern. 99, 241–251 

(2008).

Acknowledgements
This work was supported by an Alexander Graham Bell Canada Graduate Scholarship (CGS-D) to AS from the 
National Sciences and Engineering Research Council of Canada (NSERC) and an NSERC Discovery Grant to 
JL (05872).

Author contributions
A.R.S. and J.E.L. conceived the project. A.R.S. designed the model and performed the simulations with input 
from J.E.L. C.M.B. and Y.S. performed experimental recordings. A.R.S. wrote the first draft; A.R.S. and J.E.L. 
edited the manuscript. All authors have read and approved the final manuscript.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16707  | https://doi.org/10.1038/s41598-020-73566-3

www.nature.com/scientificreports/

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-73566 -3.

Correspondence and requests for materials should be addressed to A.R.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-73566-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Dynamics of a neuronal pacemaker in the weakly electric fish Apteronotus
	Results
	Model fit. 
	Model validation: effects of . 
	Model validation: pharmacological manipulations. 

	Discussion
	Methods
	Model developement. 
	Experimental methods. 

	References
	Acknowledgements


