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Abstract

OBJECTIVE: In the personal care industry, viscosity is a critical

quality attribute that influences product quality and process eco-

nomics. Like many industrial liquids, personal care liquids are com-

plex non-Newtonian liquids made up of aqueous surfactant systems

whose viscosity depends on the build-up of micellar networks. Mea-

suring the viscosity of complex liquids offline is easily done using

benchtop rheometers and viscometers. The challenge lies in mea-

suring the viscosity of personal care liquids online during manufac-

turing. Being able to track the viscosity of such products through

their manufacturing cycle will not only allow for better process

control but also more enhanced quality control. Therefore, the aim

of this work was to investigate how proxy measurements using

inline near-infrared (NIR) spectroscopy in transmission mode can

be used to predict the viscosity of shampoo. NIR spectroscopy has

not, to the best our knowledge, been used to predict the viscosity of

complex surfactant systems like shampoo and could significantly

affect the way quality is monitored in a manufacturing environ-

ment.

METHOD: This work focuses on viscosity changes because of dif-

ferences in chloride content as salt is often used to adjust viscos-

ity. The relationship between salt content and the viscosity of

shampoo is well known following the salt curve. From an indus-

trial perspective the region of interest for the formulation studied

in this work only covers a small section of this curve. Therefore,

two predictive models were developed: one covering the full

range of the salt curve and another focusing on the industrially

applicable region.

RESULT: Models were produced using partial least squares (PLS)

where both datasets showed some predictive ability with the con-

centrated region of interest showing enhanced performance [root

mean square error of prediction (RMSEP) – 2.32 Pa s] compared

with the larger range (RMSEP – 4.44 Pa s).

CONCLUSION: This work provides a good starting point for devel-

oping robust predictive models for in situ viscosity measurements

for shampoo manufacturing, where further work into different

sources of variation and the extent of the modelling capability with

regards to different formulations should be studied.

R�esum�e
OBJECTIF: Dans le secteur des soins personnels, la viscosit�e est

une caract�eristique de qualit�e cruciale qui influe sur la qualit�e du

produit et l’�economie en mati�ere de processus. Comme de nom-

breux liquides industriels, les liquides destin�es aux soins personnels

sont des liquides non newtoniens complexes compos�es de syst�emes

tensioactifs aqueux dont la viscosit�e d�epend de l’accumulation de

r�eseaux micellaires. Mesurer la viscosit�e de liquides complexes hors

ligne est facilement effectu�e �a l’aide de rh�eom�etres et de visco-

sim�etres de paillasse. Le d�efi consiste �a mesurer la viscosit�e des

liquides destin�es aux soins personnels en ligne pendant la fabrica-

tion. Pouvoir suivre la viscosit�e de tels produits tout au long de

leur cycle de fabrication permettra non seulement de mieux con-

trôler le processus mais aussi d’obtenir un meilleur contrôle qualit�e.

Par cons�equent, l’objectif de ce travail �etait d’�etudier comment des

mesures par procuration en utilisant la spectroscopie proche infra-

rouge (NIR) en ligne en mode de transmission peuvent être utilis�ees

pour pr�edire la viscosit�e du shampooing. La spectroscopie proche

infrarouge n’a pas, au mieux de nos connaissances, �et�e utilis�ee
pour pr�edire la viscosit�e de syst�emes tensioactifs comme le sham-

pooing, et elle pourrait significativement affecter la fac�on dont la

qualit�e est surveill�ee dans un environnement de fabrication.

M�ETHODE: Ce travail se concentre sur les changements au niveau

de la viscosit�e en raison de diff�erences dans la teneur en chlorure

puisque le sel est souvent utilis�e pour ajuster la viscosit�e. La rela-

tion entre la teneur en sel et la viscosit�e du shampooing est bien

connue suivant la courbe du sel. D’un point de vue industriel, le

domaine d’int�erêt pour la formulation �etudi�ee dans ce travail cou-

vre seulement une petite section de cette courbe. Par cons�equent,

deux mod�eles pr�edictifs ont �et�e d�evelopp�es : l’un portant sur la

gamme compl�ete de la courbe du sel et l’autre se concentrant sur

le domaine applicable �a l’industrie.

R�ESULTAT: Les mod�eles ont �et�e fabriqu�es en utilisant la m�ethode
des moindres carr�es partiels (partial least squares, PLS) o�u les deux

ensembles de donn�ees ont montr�e un certain degr�e de capacit�e

pr�edictive, le domaine concentr�e d’int�erêt ayant fait preuve d’une

meilleure performance (Root Mean Square Error of Prediction,

RMSEP – 2,32 Pa s) par rapport �a la plage de plus grande enver-

gure (RMSEP – 4,44 Pa s).

CONCLUSION: Ce travail fournit un bon point de d�epart pour �elabo-

rer des mod�eles pr�edictifs robustes servant �a mesurer la viscosit�e
in situ durant la fabrication des shampooings, mais d’autres travaux

portant sur diff�erentes sources de variation et sur l’ampleur de la

capacit�e de mod�elisation de diverses formules doivent être effectu�es.
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Introduction

Characterizing the rheological properties of materials is of great

importance in many industries in terms of product quality and pro-

cess economics. In the personal care industry, viscosity is a critical

quality attribute that needs to be accurately and precisely con-

trolled. The viscosity of products like shampoo and conditioner

need be thick enough to handle but fluid enough to be squeezed

out of a bottle. Like all rheological problems, achieving this com-

promise requires an understanding of the material’s microstructure,

the parameters that affect the viscosity and an efficient and effec-

tive means of measuring it. Measuring the viscosity of products like

shampoos and conditioners offline is well established using bench-

top rheometers and viscometers [1–4]. Measuring viscosity in situ,

however, is more of a grey area. With rheology being important

across many industries, online and inline technologies have been

marketed for similar applications each with benefits and drawbacks

to their operation or implementation [4]. Some classical instru-

ments that had been marketed for use as online viscometers work

around the same principle as their offline counterparts – for exam-

ple the Brookfield TT100 measures viscosity based on the resis-

tance of the geometry to shearing, similar to a conventional offline

steady state rheometer measurement. Cambridge Piston viscometers

that base their viscosity measurements on the speed that an oscil-

lating piston moves through the liquid can be found in both labo-

ratory and manufacturing environments. These instruments have

been found to have issues with robustness, cleaning and have poor

data acquisition rates [4,5].

Other methods proposed involve measuring velocity profiles to

track the viscosity of a product throughout manufacture including

ultrasonic velocity profiling (UVP) [6–8] and electrical resistance

tomography (ERT) [5,9]. UVP requires the use of reflective parti-

cles, in the case where they are not present tracer particles need

to be added. The use of different tracer particles is a popular

method of monitoring velocity profiles [10], however, addition of

trace particles is undesirable in strictly regulated process environ-

ments.

Electrical resistance tomography has been shown to be applica-

ble for measuring the velocity profile of shampoo in a batch flow

set up [5]. ERT exploits the idea that conductivity varies with

microstructure because of local shear rates – however, many sham-

poo additives are conductive (i.e. viscosity modifiers and anti-static

agents) which may cause complications when monitoring the con-

ductivity of the system.

Calorimetric studies that involve inferring viscosity from heat trans-

fer capacity measurements have also been explored for non-Newto-

nian polymers [11] and fermentation broths [12] in stirred tank

reactors. A major limitation to this method is that the heat transfer

area needs to be small compared with the reactor volume which could

be an issue with pilot and small-scale applications. The work was also

restricted due to the power output of calibration heaters.

A recent and novel approach based on vibrating wire rheological

instrumentation has been presented by Malara et al. [13]. The

uniqueness in the measurement lies in the incorporation of a fibre

Bragg grating sensor that has incomparable strain sensitivity allow-

ing for accurate measurements that cannot be accomplished using

normal rheometers. Temperature and mechanical variation are

known to affect the readings and therefore may pose an issue in

process environments.

Another method involves tracking the decay of a fluorescence

dye over time [14]. This again involves adding a substance into

the product which is undesirable. The dye used for this work is

Thioflavin T (ThT) which is described as corrosive, irritant and

toxic to humans and the environment. Another potential problem

is that the dye also needs to be well incorporated into the bulk of

the mixture prior to tracking – in the study conducted by Ponjavic

et al. [14] the dye was left to dissolve for at least an hour which

would increase batch turnover time.

The objective of this work is to explore the use of near-infrared

(NIR) spectroscopy (4000–12 000 cm�1) that uses the principle of

light extinction as a result of absorption and/or light scattering, as

a means of measuring viscosity in situ. With the introduction of

chemometrics, NIR analysis has become a powerful tool [15]. Many

industries use predictive models based on spectroscopic data that

have been processed using chemometric methods, like partial least

squares regression (PLSR) and principal component regression

(PCR). Many studies have been conducted on the use of near-in-

frared spectroscopy combined with PLSR to predict the viscosity of

petroleum products [16–21]. These studies show the potential for

NIR to predict the viscosity of Newtonian liquids. Previous work in

the literature have been found that use NIR spectroscopy to predict

the viscosity of non-Newtonian fluids: pharmaceutical cream [22],

gravy [23], chocolate [24] and latex [25,26]. They all clearly show

strong relationships between composition and viscosity where spec-

tral variance is attributed to known compositional differences

which show a distinct observable difference in NIR spectra. For this

work, the only differences in the shampoo samples used are water

and salt in trace amounts making comparative spectral analysis dif-

ficult. To the best of our knowledge no work has been found look-

ing specifically at predicting the viscosity of shampoo using NIR

spectroscopy.

In this paper the capability of inline near-infrared spectroscopy

as a viscosity sensor for shampoo products is assessed. Shampoos

are complex non-Newtonian aqueous surfactant systems whose vis-

cosity can be adjusted by electrolyte and surfactant concentration.

This work will focus on viscosity changes because of differences in

chloride content. The relationship between salt content and the vis-

cosity of shampoo is parabolic following the well-established salt

curve [2,27–30]. Increases in salt concentration induce an increase

in viscosity up to a maximum value. Salt ions act to shield the

head groups from repulsion between each other resulting in micel-

lar growth and entanglement. A sharp decline with further increas-

ing salt concentration then results because of increased branching

of these entangled networks [27,28]. In the personal care industry,

the region of interest for shampoo lies between 3 and 15 Pa s cov-

ering less than half of the salt curve (Fig. 1). This work investigates

models produced covering the full range of the salt curve and a

range that is more applicable in an industrial setting for the formu-

lation used in this work.

Materials and methods

Samples

Table I shows the composition of the shampoo sample used. The

batch was produced at Unilever (Port Sunlight, U.K.) with a formu-

lation hole of 5.15% to adjust the viscosity of samples as necessary.

The viscosity of the samples was altered by varying electrolyte

(NaCl) content (and H2O) and ranged from 0.24% to 3.83% cover-

ing a range of 1–36 Pa s that is larger than the ideal range for

shampoos (3–15 Pa s) in order to produce a robust model.

Twenty-five samples were included in the training set and four
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samples used for test set validation (0.62%, 0.83%, 1.08%, 2.63%)

for the full salt curve model (model one). Nineteen samples ranging

from 0.24% to 1.35%, were included in the training set for the

industrially significant model (model two). Four samples were kept

for test set validation (0.50%, 0.74%, 0.79%, 1.08%). Training and

test set samples were treated in the same manner throughout the

experimental and model development process. Note that only the

first replicate of NIR data was used in the external validation set.

Although both models have small training sets (25 and 19), it is

important to note that for feasibility studies, 20–30 samples are

sufficient for preliminary investigations [31]. Since process vari-

ances (temperature, flowrate) have not been incorporated into this

model, it is expected that larger sample sets would not significantly

affect the model performance at this stage. For fully developed and

validated models, larger sample sets would be required while incor-

porating other sources of process variation.

NIR data collection

The spectra were acquired with a Matrix F FTNIR (Bruker, Karl-

sruhe, Germany) fibre-coupled to a transmission process probe with

a pathlength of 2 mm (Excalibur XP 20). The spectral range cov-

ered the whole of the NIR region (4000–12 000 cm�1). Spectra

were acquired at 8 s�1 (2074 datapoints), averaged over 32 scans,

with the samples at ambient temperature (�25°C) and no tempera-

ture control being used. Samples were measured twice using a

background of air. To simulate real process conditions, spectra

were acquired with the sample flowing through a pipe specifically

designed to ensure flow through the sample gap of the NIR probe

(Fig. 2). The pipe measured 200 mm in length and samples were

pumped into the system at 25 mL min�1.

Multivariate analysis

Partial least squares regression was employed to extract the useful

data from the spectra and produce predictive viscosity models based

on reference measurements. PLS TOOLBOX chemometrics software

(PLS_Toolbox_8.0.1; Eigenvector Research Inc., Wenatchee, WA,

U.S.A.) that runs as a GUI in MATLAB (MATLAB 8.3, The Mathworks

Inc., Natick, MA, U.S.A.) was used to perform this analysis.

Partial least squares regression decomposes both the predictor

(spectroscopic) and response (viscosity measurements) data into

latent variables (LV’s) that best describe the respective datasets

while showing the maximum covariance between them. Prior to

the building of the model, spectra should be pre-processed to mini-

mize variances unrelated to the property of interest. For the data

acquired in this study, strong baseline offsets and shifts were evi-

dent and are commonly associated with scattering effects [32].

Standard normal variate (SNV) and multiple scatter correction

(MSC) are techniques commonly used to remove these interfer-

ences. In mathematical terms, SNV standardizes each observation

(i.e. the rows of the predictor matrix), whereas MSC uses a refer-

ence spectrum (usually the mean of the spectra) to correct the

measured spectra using coefficients related to the intercept and

slope. Using either of these pre-processing techniques therefore

eliminates variation because of scattering, so the subsequent spec-

tra show only effects associated with light absorption.

Both pre-treatments were trialled with different spectral regions

of the NIR spectrum to determine the best conditions with which

to continue building the model. The root mean square error statis-

tics of calibration [root mean square error of calibration (RMSEC)],

Table I Sample composition

Ingredient Purpose %

Sodium lauryl ether sulphate

(SLES)

Primary surfactant 17.71

Cocoamidopropyl betaine (CAPB) Secondary surfactant 5.33

Dimethiconol Conditioning agent 1.50

Carbomer Viscosity modifier 0.40

Sodium benzoate Preservative 0.50

Guar Viscosity modifier/Conditioning

agent

0.25

Citric acid pH modifier 0.10

EDTA Chelating agent 0.05

Water Solvent Varies

Sodium chloride Viscosity modifier Varies

Model 1

Model 2

Figure 1 Salt curve displaying ranges for each

model.
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cross validation [root mean square error of cross validation

(RMSECV)] and prediction [root mean square error of prediction

(RMSEP)] were used as figures of merit for comparison across the

various pre-processing approaches, where RMSEC was the least

significant as it gives little indication to the predictive ability of the

proposed models. Cross validation was applied on the calibration

samples using the venetian blinds method. In this case, samples

were split systematically into five subsets, with duplicates in the

Inlet – syringe pump 
set to 25 mL min–1 

Near infrared probe – 
sample gap of 2 mm  

Other spectroscopic 
probes outside the 
scope of this work 

Figure 2 Experimental setup to simulate process conditions using a small section of perspex pipe designed to hold various inline process probes. Flow was sim-

ulated using a syringe pump able to hold 50 mL of sample and set to 25 mL min�1.
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same subset. This procedure prevents the ‘sample replicate trap’,

where each sample is independent and leads to overfitting in the

model.

Along with the RMSE statistics, residual predictive deviations

(RPD) were also calculated providing a more objective metric to

quantifying the model’s predictive capabilities taking into account

the standard deviation of the measured values and the RMSEP.

Outlier analysis involved reviewing residual statistics (Q), Hotel-

ing’s T2 statistics and studying scores plots. The Q statistic defines

the predictive ability of the model for each sample and T2 determi-

nes how far into the model space samples lie, where potential out-

liers are observed outside of the 95% confidence limit. Combining

this analysis with scores plot analysis allowed for real outliers to be

detected and removed as necessary. After the above analysis, four

samples were found to be outliers and were therefore removed.

Reference method

The viscosity of each sample was measured using a TA AR2000

Rheometer (TA Instruments, DE, U.S.A.). Shampoos show apparent

shear thinning behaviour using rotational viscometry, therefore,

single point measurements were taken at a shear rate of 0.4 s�1

(within the Newtonian region) using a cone and plate geometry

(diameter of 40 mm and angle of 4°). Samples were averaged over

two measurements, temperature controlled (30°C) and covered to

prevent drying during the experiment.

Results & discussion

Model one – full salt curve – 0.24–3.83%

Raw spectral analysis

Figure 3 displays a diagram of all the NIR spectra superimposed.

As NIR is prone to overlapping peaks, the CH vibrational over-

tones comprise of CH, CH2 and CH3 bond absorptions, with the

CH2 having the largest presence because of the long alkyl chains

present in sodium lauryl ether sulphate. The OH overtones are

representative of water molecules as water accounts for at least

65% of each sample.

The regions of interest are the first and second overtones of CH

(6398–5596 cm�1 & 8797–7995 cm�1 respectively) and the sec-

ond overtone of OH (10 398–9596 cm�1). The combination bands

at the lower wavelengths (4300–5400 cm�1) and the first

overtone of OH (7427–6020 cm�1) both show intensities too high

to be included in calibration model. The combinations bands show

very little transmission (almost total absorbance) where noise is

dominating the signal and the first overtone of OH is potentially

affected by nonlinearity where at this stage the interest is in corre-

lating spectral responses to compositional changes showing linear

responses.

Optimization of wavelength range and spectral pre-processing

The modelling process involved determining the best pre-treatment

for the spectra to eliminate variation that is not associated with the

component of interest. Clear observations of the spectra showed dif-

ferences in baseline shifts commonly overcome using SNV or MSC.

Both pre-treatments were trialled individually with datasets being

mean centred after to emphasize the differences in the data.

The spectral regions trialled are detailed in Fig. 3 excluding the

combination bands of OH and NH and the first overtone of OH

because of reasons described earlier in raw spectral analysis. The pre-

treatments (i.e. SNV, MSC & mean centring) were applied to different

combinations of the regions of interest (outlined in raw spectral anal-

ysis) where scatter correction (i.e. SNV or MSC) was followed by

mean centring. The spectral regions were fixed from the start with

no further variable selection or optimization. Figure 4 summarizes

the models formed with different combinations of spectral regions

and pre-treatment for a single latent variable model. The variance

detected in this first latent variable should represent the greatest vari-

ance in the dataset. As PLS looks for the maximum covariance

between the spectral data and the offline viscosity data, the first LV

should be most relevant in the prediction of viscosity. Therefore, trail-

ing with the first latent variable provides a clear picture of where in

the spectra viscosity changes are being detected and which pre-treat-

ments work best to emphasize the variance in these regions.

The choice of parameters was based on RMSEP, RMSECV and the

RMSEC. Ideally, the errors should all be similar and low. The best

prediction errors (i.e. low and equally distributed) are seen when

using the second overtone of CH with SNV as the chosen pre-process-

ing technique.

Partial least squares model

The best model is formed using 10 latent variables (LV’s) as deter-

mined by the minimum in RMSECV using Fig. 5 with RMSECV and

RMSEC of 5.88 and 1.08 Pa s respectively. Using eight LV’s shows

comparable performance with a RMSECV of 5.94 Pa s and was
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Figure 3 Near infrared spectra for all samples

spanning the maximum spectral range possible

(4000–12 000 cm�1).
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chosen to prevent overfitting and noise contributions. As viscosity

was explicitly included in the model, it is represented by LV1

(98.45%) as seen in Fig. 6 where the changing colour (blue to pink)

represents increasing viscosity. The additional sources of variability

as captured by the other LV’s remain unknown, though temperature

is thought to have been captured as a latent variable being known

to affect NIR spectra. As temperature was not controlled or mea-

sured, the association with one of the additional LV’s could not be

explored further.
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ciated with the shape and structure of micelle networks.
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Figure 6 displays the scores plot for LV1 and LV2 and seems to

show four distinctive clusters that may be related to the structure

of the micelle networks. The clusters are numbered with increasing

salt content where it is thought that in cluster one spherical

micelles dominate, cluster two is associated with worm like

micelles, cluster three are the highly viscous samples made up of

long and highly entangled structures and cluster four entangled

and branched networks with the highest salt content.

Validation

The model was validated using cross validation (venetian blinds

using five data splits leaving out 20% of the data with a sample thick-

ness of two) and test set validation using four samples. RMSECV and

RMSEP were calculated to be 5.94 and 4.44 Pa s, respectively, as

seen in Fig. 7 where the dashed line represents the identity line (i.e. a

perfect model). The RPD was found to be 4.17 where typically models

with RPD of more than 3.0 are deemed adequate, those between 5.0

0 10 20 30 40 50 60 70 80
–10

0

10

20

30

40

50

60

70

80

Cross Validated Predic�ons Test Set Predic�ons Iden�ty 

Measured viscosity (Pa s)

Pr
ed

ic
te

d 
vi

sc
os

ity
 (P

a 
s)

RMSEC = 1.93 Pa s
RMSECV = 5.94 Pa s
RMSEP = 4.44 Pa s

RPD = 4.17
R2 (Cal, Val, Pred) = 0.99, 0.89, 0.98

Figure 7 Correlation plot for model one cross validation and test set predictions.

3.52 3.52 3.88 3.87 3.52 3.52
4.89 4.91 4.76 4.76 3.60 3.59 4.64 4.64

5.19 5.19 4.93 4.92 5.19 5.19

6.29 6.35 5.93 5.93

4.12 4.12

5.85 5.91

4.46 4.46 4.35 4.34 4.46 4.46

5.73 5.78
5.38 5.38

3.66 3.65

5.32 5.34

1S
T 

O
VE

RT
O

N
E 

CH

2N
D 

O
VE

RT
O

N
E 

CH

2N
D 

O
VE

RT
O

N
E 

O
H

1S
T 

O
VE

RT
O

N
E 

CH
 &

 2
N

D 
O

VE
RT

O
N

E 
CH

1S
T 

O
VE

RT
O

N
E 

CH
 &

 2
N

D 
O

VE
RT

O
N

E 
O

H

2N
D 

O
VE

RT
O

N
E 

CH
 &

 2
N

D 
O

VE
RT

O
N

E 
O

H

1S
T 

O
VE

RT
O

N
E 

CH
, 2

N
D 

O
VE

RT
O

N
E 

CH
 &

 2
N

D 
O

VE
RT

O
N

E 
O

H

RMSEP RMSECV RMSEPMSC
SNV

Figure 8 Comparison of statistical errors for model two using different pre-processing and spectral regions.
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and 6.4 suitable for quality control and those above 6.4 good for pro-

cess control [33]. These results indicate that the model, at present,

would not be suitable for quantitative analysis.

A noteworthy observation is that many of the calibration set

samples are concentrated in the low viscosity range (>50%) with

only a few reaching into the higher viscosities. Adding more sam-

ples of higher viscosity may improve the model. It is also worth-

while to note that there are no samples present between about 40–
60 Pa s in the calibration set as they were deemed to be outliers

after T2, Q residual and scores plot analysis.

Model two – industrially relevant range – 0.24–1.35%

Optimization of wavelength range and spectral pre-processing

Spectral region and pre-processing optimization were conducted

using the same method as model one. Figure 8 shows that the

errors produced using SNV and MSC are comparable, therefore

either pre-treatment option could be implemented. SNV was pre-

ferred as it was also used for model one. Using the second overtone

of CH and OH clearly gives the best model performance.

Partial least squares model

The best model is formed using six LV’s as determined by the mini-

mum in RMSECV as in Fig. 9 that shows the calibration and vali-

dation errors converge using up to three variables. Increasing the

number of LV’s from three to six does not significantly change the

error of cross validation, therefore, a three LV model was employed

that captured 99.95% of the variance in the dataset. Figure 10

shows a scores plot for LV1 and LV2 where the data points are

coloured according to their measured viscosity.

The shape of scores plot (Fig. 10) shows a distinctive arch.

Initially, it was thought that this is indicative of the horsehoe

effect because of the distortion of the data as a result of nonlin-

earity in spectral regions when using absorbances covering large

regions of contiguous wavenumbers [34,35]. Analysing these

plots without knowledge of this effect could lead one to believe

there is a connection between the high and low viscous samples

because of their scoring on LV2. By taking the samples on the

edge of the horseshoe (0.24% & 1.35%) and plotting their absor-

bances against one another for the region indicative of the sec-

ond overtone of CH (Fig. 11) it is clear that nonlinearity is

present in these spectral regions. Though the horseshoe effect

may be affecting the shape of the plot, it may also likely be
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Figure 9 Residual error sum of squares plot for model two where the low-
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because of the dataset having a single dominant direction of

variation as LV1 accounts for more than 99% of variation in

the dataset.

Validation

The model was validated using cross validation (venetian blinds

using five data splits leaving out 20% of the data) and test set
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Figure 12 Correlation plot for model two cross

validation and test set predictions.
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validation using four samples. RMSECV and RMSEP were calcu-

lated to be 1.48 and 2.32, respectively, as shown in Fig. 12 where

the dashed line represents a perfect model.

Model one performs best when concentrated solely on the second

overtone of CH, whereas model two requires information from the

second overtone of OH as well as the second overtone of CH.

The RPD for the model was calculated to be 4.12. This result

shows the model is not yet good enough to be used in quality con-

trol but still provides some indication of viscosity variation. As only

four samples are included in the validation set, it is thought that

further development of such a model would improve its perfor-

mance and therefore the RPD value.

It is thought that the information contained in the second over-

tone of OH may be related to salt content because of previous

works found that were able to detect differences in salt in aqueous

solutions using the OH overtones obtained in NIR spectroscopy

[30,36,37]. To test this idea, the data from model one were used

to develop rough models based on salt content rather than viscos-

ity using the second overtone of OH and the second overtone of

CH individually. No pre-processing techniques were investigated

(note that both datasets were mean centred only) and the models

developed only focused on latent variable optimization. Figures 13

and 14 show that using the second overtone of CH produces a

better model with a RMSECV of 0.17% – nearly half of that com-

pared with using the second overtone of OH (0.32%). This shows

that information regarding salt content is more prevalent in the

second overtone of CH but is still present in the OH region. As

well as having some association with salt content, it is suspected

that the variability detected in the CH spectral regions is also

attributed to alignment changes of the lipophilic tails of surfactant

systems. The viscosity of such systems is increased with initial

addition of salt, that acts to shield the polar heads from one

another allowing for tighter and increased packing of micelles.

This may be influencing the alkyl chains that are becoming

increasingly confined which could be affecting their vibrational

motion.

The variation found in the OH overtone may be related to the

quantity of bound water molecules which varies as the micelles

structure evolves with increasing salt concentration. At the lower

salt concentrations as micelles change from spherical to elongated

and entangled more water molecules become trapped in the struc-

ture. Further increases in salt results in a fall in viscosity where

water molecules become less structured as the micelles form

branched networks. With moderately branched micelle networks, it

is thought that the microstructure is quite chaotic and prone to

unfavourable interactions between bound water and lipophilic

cores that change the structure of the water [38], which could

explain why only model two finds useful information in the OH

spectral region as the salt concentrations used here are not high

enough to induce any branching and enter into the disordered

microstructural phase, however, further investigation is required to

understand how the water molecules behave as a result of the

evolving micelles.

Conclusion

The development of NIR calibrations using quantitative PLS models

for the inline measurement of the viscosity of shampoo has been

successfully demonstrated. Two models were generated covering

different viscosity ranges. Model one included samples covering the

whole salt curve. Model two focused on the region that would be

of significance from an industrial standpoint for the formulation

used in this study. Both models showed some predictive ability with

model two showing better performance. It is important to note that

this study reports on preliminary work for a predictive model for

the viscosity shampoo. For the model to be of use, larger samples

sets would be required to ensure that the model is robust but also

to ensure that validation is done properly.

Model one shows satisfactory predictive ability with a RMSECV

of 5.94 Pa s and RMSEP of 4.44 Pa s. Model two shows very good

errors of cross validation and prediction (1.48 & 2.32 Pa s respec-

tively). From an industrial standpoint, these statistics show promise

as a preliminary exploration into the ability of NIR spectroscopy to

predict the viscosity of shampoo inline within a manufacturing

environment removing the need for offline testing and therefore

improving process efficiency and subsequently quality control.

Further work should involve including sources of variation

encountered in manufacturing environments (i.e. batch, tempera-

ture variation). To better understand the scope of near-infrared

modelling for the viscosity of shampoo formulations, investigations

into the effect of different additives and surfactant systems on NIR

spectra and models should be explored. Furthermore, this study is

based on viscosity changes because of salt content. Salt is one of

many materials that can be used to alter the viscosity of personal

care liquids. Exploring how and if NIR can be used to determine

the viscosity of shampoos when modified with different materials

will allow for a better understanding into the extent of variation

that can be included in such predictive models. Further work will

also involve exploring how (if at all) the liquid is stressed upon

entering the sample gap of the NIR probe using computational fluid

dynamics (CFD), which could lead to designing a new probe able to

overcome this issue. This work is also being investigated using pro-

cess Raman, mid-Infrared (MIR) and nuclear magnetic resonance

(NMR) spectroscopy where synergistic models are being considered.
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