
Cataract, defined as any opacity in the lens, is the leading 
cause of blindness around the world, affects up to 80% of the 
human population over the age of 70, and seriously impairs 
vision and quality of life [1]. It has increased in prevalence 
in many countries as a result of a growing elderly popula-
tion and the incidence of cataract is expected to rise in the 
future [2]. Currently, the only effective treatment for cataract 
is surgical removal and replacement of the cataract with an 
artificial intraocular lens. However, cataract surgery may 
result in complications such as posterior capsular opacity, 
glaucoma, endophthalmitis, uveitis, retinal detachment, etc 
[3]. In addition, the cost of surgery poses an economic burden 
on patients. Therefore, it is important to explore alternative 
pharmacological measures for the treatment of cataract.

Cataract is a multifactorial eye disease associated with 
several risk factors such as oxidative damage, abnormality 
of glucose metabolism, irradiation damage, and intoxicant 
damage. Both epidemiological and experimental studies 
have provided evidence that oxidative stress is a major 
mechanism in the initiation and progression of cataract [4]. 
According to the oxidative stress hypothesis of cataract 
formation, reactive oxygen species (ROS) lead to a surge 

of detrimental biochemical reactions, including oxidation, 
crosslinking and aggregation of lens proteins, peroxidation 
of membrane lipids, and apoptosis of the lens epithelial cells 
[5]. There exists a group of oxygen eliminators in the lens, 
including reduced glutathione (GSH), superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase (Gpx), gluta-
thione reductase (GR), and glutathione S-transferase (GST), 
protecting crystallins from oxidative damage, but their active 
oxygen-scavenging activities are not strong enough to coun-
teract cataract formation in the lens [6].

Selenite-induced cataract is a cataract model that is caus-
ally related to oxidative stress, where oxidation of the critical 
sulfhydryl groups is essential for the initiation of cataracto-
genesis [7]. This model is widely used because of its rapidity, 
easiness, and reproducibility. Various compounds have been 
shown by experimental studies to prevent selenite-induced 
cataractogenesis, including ascorbic acid [8], pyruvate [5], 
resveratrol [9], melatonin [10], ellagic acid [11], carnosine, 
N-acetylcysteine [12], and onion juice [13]. However, these 
may generate secondary metabolic reactions that need to be 
eliminated in vivo, and because their reducibility is so strong, 
the metabolic oxidation-reduction reactions in the lens may 
be disturbed.

Recent studies have demonstrated that molecular 
hydrogen (H2), a novel antioxidant, has a therapeutic role in 
many diseases. Hydrogen does not influence the metabolic 
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oxidation-reduction reactions, innate immune system, or 
physiologic parameters in vivo [14,15]. Hydrogen gas may 
selectively reduce hydroxyl radicals and inhibit oxidative 
stress–induced organ injuries, such as those of the brain, 
heart, liver, lung, kidney, and pancreas [14,16-20] The 
administration of hydrogen saline has been shown to reduce 
retinal ischemia, protect against glutamate-induced retinal 
injury and hyperoxia-induced retinal neovascularization, 
inhibit corneal neovascularization caused by alkali burn, 
and prevent diabetic retinopathy [19,21-24]. It is reasonable 
and interesting to investigate whether molecular hydrogen 
has a potential therapeutic value for cataractogenesis. In this 
study, we tested the effects of intraperitoneal application of 
hydrogen saline on cataractogenesis in a selenite-induced 
cataract rat model.

METHODS

Materials: Sodium selenite was obtained from Sigma Chem-
ical Company (Beijing, China). Protein and enzyme quan-
tification kits were purchased from the Jiancheng Bioengi-
neering Institute (Nanjing, China). Sprague-Dawley rats were 
provided by the Animal Laboratories of the Fourth Military 
Medical University (Xi’an, China). All other chemicals and 
reagents used in biochemical measurement were obtained 
from local companies.

Hydrogen saline preparation: For the saturated hydrogen 
saline preparation, purified H2 was dissolved into normal 
saline for 2 h under 0.6 MPa. The hydrogen-saline was stored 
under atmospheric pressure at 4 °C in an aluminum bag with 
no dead volume. Hydrogen saline was freshly prepared every 
week to maintain a constant concentration of 0.6 mmol/l [25].

Experimental groups: All experimental procedures were 
performed in accordance with the Association for Research 
in Vision and Ophthalmology Statement for the Use of 
Animals in Ophthalmic and Vision Research and Guidelines 
on Animal Care and approved by Fourth Military Medical 
University Animal Protocol Management and Review 
Committee. Neonatal rat pups of the Sprague-Dawley strain 
initially weighing 12–18 g on the 7th day of age were used 
in this study. The pups were housed along with their mother 
in polypropylene cages under a 12h:12h light-dark cycle, at 
room temperature (24±1 °C). The animals were maintained 
on a standard laboratory animal diet and provided water ad 
libitum.

Cataract was induced in suckling rats at postnatal day 
12 by a single subcutaneous injection of sodium selenite 
(19–30 μmol/kg bodyweight) [7]. The doses of H2 saline 
(5 ml/kg bodyweight) and sodium selenite (25 μmol/kg body-
weight) were based on the results of the preliminary study.

In the preliminary experiments, the rat pups were 
randomly divided into six groups and labeled as A, B, C, D, 
E, and F. The doses were as follows:

• Group A: Rat pups received only saline;

• Group B: Rat pups received sodium selenite alone (on 
the 12th day of age);

• Group C: Rat pups received sodium selenite (on the 
12th day of age) and H2 saline (from the 8th day up to the 
17th day of age);

• Group D: Rat pups received sodium selenite (on the 
12th day of age) and H2 saline (from the 8th day up to the 
12th day of age);

• Group E: Rat pups received sodium selenite (on the 
12th day of age) and H2 saline (from the 17th day up to the 
21st day of age);

• Group F: Rat pups received only H2 saline (from the 8th 
day up to the 17th day of age).

The examination of both eyes of each rat pup was carried 
out weekly for 2 weeks by slit-lamp microscopy. Rats in 
Groups A and F exhibited complete transparency of the lens. 
The extent of lens opacification in Group C was significantly 
less than in Group B, but the extent of lens opacification in 
Groups D and E were similar to that in Group B. Therefore, 
we chose Groups A, B, and C for the following study.

In the study, the rat pups were randomly divided into 
three groups, each comprising 20 pups, as follows:

• Group A: the untreated normal control group, which 
received only saline,

• Group B: the untreated model control group, which 
received sodium selenite alone (cataract-untreated); and

• Group C: the H2 saline–treated group, which received 
sodium selenite and H2 saline (cataract-treated).

Each rat pup in Groups B and C received a single subcu-
taneous injection of sodium selenite (25 μmol/kg bodyweight) 
on the 12th day of age. Group C received an intraperitoneal 
injection of H2 saline (5 ml/kg bodyweight) daily from post-
natal day 8 to postnatal day 17.

Slit-lamp microscope examination and cataract classifica-
tion: Cataract could be visualized from the 16th day of age 
with the naked eye when the rat pups first opened their eyes. 
The development of cataract was assessed weekly for 2 weeks 
by slit-lamp examination. At final examination, the pupils 
were dilated with 0.5% tropicamide solution twice at an 
interval of 5 min. All eyes of rats were observed under a slit-
lamp microscope (Haag-Streit BQ 900 model; Hagg-Streit 
International, Koeniz, Switzerland) on postnatal day 26, 
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using 40× magnification. Classification of the cataract stages 
was graded according to the method reported by Hiraoka 
and Clark [26], briefly described as follows: grade 0, normal 
transparent lens; grade 1, initial signs of posterior subcap-
sular or nuclear opacity involving tiny scatters; grade 2, slight 
nuclear opacity with swollen fibers or posterior subcapsular 
scattering foci; grade 3, diffuse nuclear opacity with cortical 
scattering; grade 4, partial nuclear opacity; grade 5, nuclear 
opacity without lens cortex; and grade 6, mature cataract of 
the entire lens. The double-blind method was used to classify 
the degree of lens opacification.

Preparation of lenses for analysis: All rats were sacrificed 
with an overdose of anesthesia with chlorpromazine (50 mg/
kg) on postnatal day 26. The lenses were removed from eyes 
that had been excised by a posterior approach. Each lens was 
weighed, added to nine times its mass (1 g: 9 ml) of 0.9% 
ice-cold saline (pH=7.2), homogenized by a handheld homog-
enizer for 15 min over ice, and finally centrifuged at 2,200g 
for 10 min at 4 °C to obtain a clear supernatant.

Protein determination: Protein concentration in each sample 
was determined by Coomassie brilliant blue method by using 
the protein assay kit from the Jiancheng Bioengineering Insti-
tute. The clear supernatant was used for water-soluble protein 
determination according to the manufacturer’s instructions. 
The blue complexes were read at 595 nm, and the results were 
expressed as g/l.

Assay of antioxidant enzyme activity:

Superoxide dismutase—SOD activity in lens homog-
enate was measured with xanthine oxidase method according 
to instructions of the SOD assay kit [27]. The degree of 
inhibition of 4-nitro-blue tetrazolium chloride (NBT) using 
the xanthine-xanthine oxidase system to generate superoxide 
anions was measured. SOD inhibits auto-oxidation of hydrox-
ylamine. The absorbance values were detected by a spectro-
photometer with ultra-micro cuvettes. The wavelength was 
set at 550 nm and the results were expressed as U/mg protein.

Catalase—CAT activity was assayed using the ammo-
nium molybdate method according to instructions of the 
CAT assay kit [28]. The faint yellow complexes were read 
at 405 nm. The results were expressed as U/mg protein and 
1 U of CAT activity represents 1 μmol H2O2 decomposition 
per second.

Glutathione peroxidase—Gpx activity was measured 
according to the instructions of the Gpx assay kit from the 
Jiancheng Bioengineering Institute. The rate of glutathione 
oxidation catalyzed by Gpx present in the supernatant was 
determined, with H2O2 as a cofactor [29]. The resulting 

yellow was read spectrophotometrically at 412 nm. The 
enzyme activity was expressed as U/mg protein. One U of 
Gpx activity is defined as the amount of enzyme that converts 
1 μmol of GSH to the oxidized glutathione in the presence of 
H2O2 per minute.

Glutathione reductase—GR activity was assayed 
according to instructions of the GR assay kit from the 
Jiancheng Bioengineering Institute. The reaction was initi-
ated by the addition of 20 μl of lens homogenates. Oxidized 
glutathione was reduced to GSH catalyzed by GR with 
nicotinamide adenine dinucleotide phosphate (NADPH) as a 
cofactor. The decrease in the optical density was read at 340 
nm over 2 min at intervals of 30 s on a spectrophotometer. 
The enzymatic activity was calculated using an extinction 
coefficient of 6.22 mM/cm for NADPH [30]. The enzyme 
activity was expressed as U/g protein. One U of GR activity is 
equivalent to the oxidation of 1 mmol of NADPH per minute.

Glutathione S-transferase—GST activity was 
measured according to instructions of the GST assay kit 
from the Jiancheng Bioengineering Institute. The conjuga-
tion of GSH with 1-chloro, 2–4 dinitrobenzene, a hydrophilic 
substrate, was observed spectrophotometrically at 412 nm to 
measure the activity of GST [31]. The enzyme activity was 
expressed as U/mg protein. One U of GST activity is defined 
as the amount of enzyme required to conjugate 1 μmol of 
1-chloro, 2–4 dinitrobenzene with GSH per minute.

Determination of malondialdehyde content: The content of 
malondialdehyde (MDA) was determined by thiobarbituric 
acid reaction chromometry with reference to the MDA assay 
kit from the Jiancheng Bioengineering Institute. The intensity 
of the resulting pink color was read at 532 nm [32]. The level 
of lipid peroxide is expressed as nmol of MDA formed per 
mg protein.

Determination of reduced glutathione and total sulfhydryl 
content: The GSH content in each lens was determined with 
5, 5′-dithiobis-nitrobenzoic acid, using the 10% trichloro-
acetic acid–soluble fraction of the supernatants. The absor-
bance of the resulting yellow color was measured using a 
spectrophotometer at 420 nm. The results were expressed as 
μmol/g protein.

The total sulfhydryl content was determined using the 
total sulfhydryl assay kit from Jiancheng Bioengineering 
Institute according to the manufacturer’s instructions. The 
yellow compound yielded by the reaction of sulfhydryls and 
5, 5′-dithiobis-nitrobenzoic acid exhibited highest absorption 
of light at 412 nm on a spectrophotometer [33]. The results 
were expressed as μmol/g protein.
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Statistical analysis: All data were expressed as the mean± 
standard deviation (SD). Statistical analysis of the data was 
subject to one-way analysis of variance (ANOVA) followed 
by the least significant difference (LSD) test. The chi-square 
test was applied for the categorical variables. All statistical 
calculations were carried out using the Statistical Package 
for Social Science version 18.0 (SPSS, Chicago, IL). The 
significance level was set at p<0.05.

RESULTS

Lens opacification observed under slit-lamp microscope: 
At the final examination on postnatal day 26, the pups 
were evaluated for cataract development and photographed. 
Different grades of selenite cataracts are demonstrated in 
Table 1 and Figure 1. Group A rats that received normal saline 
exhibited complete transparency of the lens. Subcutaneous 
injections of sodium selenite resulted in lens opacities in all 
eyes in Group B. Among these, 20% of the eyes developed 
partial nuclear opacity (Grade IV), 25% developed nuclear 
opacity (Grade V), and 55% developed mature cataract of the 
entire lens (Grade VI). In contrast, in the H2 saline injection 
group (Group C, 5 ml/kg), 5% of the eyes developed slight 
nuclear opacity (Grade II), 25% developed diffuse nuclear 
opacity (Grade III), 45% developed partial nuclear opacity 

(Grade IV), 15% developed nuclear opacity (Grade V), and 
10% developed mature cataract of the entire lens (Grade 
VI). There was a statistically significant difference between 
Group C and Group B (p<0.05).

Protein determination: There was a significant (p<0.05) 
decline in water-soluble protein contents in Group B 
(1.61±0.12 g/l) compared to Group A (4.16±0.25 g/l). Treat-
ment with H2 saline augmented the water-soluble protein 
level, as a statistically significant difference was shown 
between Group C (4.15±0.33 g/l) and Group B (p<0.05; 
Figure 2).

Activities of antioxidant enzymes:

Superoxide dismutase—The mean activity of SOD in 
Group B (9.60±0.76 U/mg protein) was significantly (p<0.05) 
lower than that of in Group A (24.45±1.61 U/mg protein), 
while treatment with H2 saline in Group C restored SOD 
activity. SOD activity in Group C (21.73±2.34 U/mg protein) 
was found to be significantly higher (p<0.05) than that in 
Group B (Figure 3A).

Catalase—A significantly (p<0.05) lower mean activity 
of CAT was observed in Group B (2.04±0.31 U/mg protein) 
when compared with Group A (5.82±0.14 U/mg protein). H2 

Table 1. Slit-lamp microscope examination and cataract classification.

Experi-
mental groups

Number 
of rats

0 I II III IV V VI

Group A 40 40 (100%)
Group B* 40 8(20%) 10(25%) 22(55%)
Group C# 40 2(5%) 10(25%) 18(45%) 6(15%) 4(10%)

Data are presented as N(%); Statistics analysis was by χ2 test; The degree of opacification was graded as follows: 
grade 0, normal transparent lens; grade 1, the initial sign of posterior subcapsular or nuclear opacity involving tiny 
scatters; grade 2, the slight nuclear opacity with swollen fibers or posterior subcapsular scattering foci; grade 3, the 
diffuse nuclear opacity with cortical scattering; grade 4, the partial nuclear opacity; grade 5, nuclear opacity without 
lens cortex; grade 6, mature cataract of entire lens. Group A: Rat pups received only saline. Group B: Rat pups re-
ceived only selenite. Group C: Rat pups received selenite and hydrogen-saline. * Compared with Group A: p<0.05. 
# Compared with Group B: p<0.05.

Figure 1. Lens opacification in 
the eyes of the 26-day-old rat 
pups under slit-lamp microscope 
(magnification of 40×) in various 

experimental groups. A: Rat pups received only saline (Group A). B: Rat pups received only selenite (Group B). C: Rat pups received 
selenite and H2 saline (Group C).
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saline treatment resulted in a significant (p<0.05) increase of 
CAT activity in Group C (3.69±0.15 U/mg protein) compared 
to Group B (Figure 3B).

Glutathione peroxidase—The administration of sele-
nite, which induced oxidative stress in the lenses, resulted 
in significantly (p<0.05) reduced activity of Gpx in Group 
B (34.90±1.11 U/mg protein) compared with that in Group A 

Figure 2. The concentrations of water-soluble proteins in lenticular 
samples of the 26-day-old rat pups in various experimental groups. 
Group A: Rat pups received only saline. Group B: Rat pups received 
only selenite. Group C: Rat pups received selenite and hydrogen 
saline. Values are expressed as mean±standard deviation (SD). 
Statistical analysis of the data was subject to one-way analysis 
of variance (ANOVA) followed by the least significant difference 
(LSD) test. *Group B is compared with Group A: p<0.05. # Group 
C is compared with Group B: p<0.05 (n=9).

Figure 3. The activities of antioxidant enzymes in lenticular samples of the 26-day-old rat pups in various experimental groups. Group A: 
Rat pups received only saline. Group B: Rat pups received only selenite. Group C: Rat pups received selenite and hydrogen saline. A: The 
activity of superoxide dismutase (SOD) in lens (n=9). B: The activity of catalase (CAT) in lens (n=9). C: The activity of glutathione peroxidase 
(Gpx) in lens (n=6). D: The activity of glutathione reductase (GR) in lens (n=9). E: The activity of glutathione S- transferase (GST) in lens 
(n=9). Values are expressed as mean±standard deviation (SD). Statistical analysis of the data was subject to one-way analysis of variance 
(ANOVA) followed by the least significant difference (LSD) test. * Compared with Group A: p<0.05. # Compared with Group B: p<0.05.
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(58.31±3.06 U/mg protein), but this reduction was reversed to 
a near-normal level in Group C (55.15±3.98 U/mg protein) by 
H2 saline (p<0.05; Figure 3C).

Glutathione reductase—The activity of GR in Group 
B (1.79±0.17 U/g protein) was significantly (p<0.05) lower 
than that in Group A (4.53±0.50 U/g protein). The enzymatic 
activity showed that selenite damaged the activity of GR 
in the lenses of rat pups. The reduction of GR activity was 
almost reversed (p<0.05) by H2 saline treatment in Group C 
(4.19±0.38 U/g protein; Figure 3D).

Glutathione S-transferase—The activity of GST was 
reduced significantly (p<0.05) in Group B (2.77±0.41 U/mg 
protein) in comparison with that in Group A (5.75±0.18 U/mg 
protein). GST activity was notably recovered by H2 saline 
treatment in Group C (4.17±0.19 U/mg protein) as compared 
with Group B (p<0.05; Figure 3E).

Levels of malondialdehyde content: MDA, an indicator of 
lipid peroxidation, was significantly (p<0.05) increased 
in Group B (0.47±0.07 nmol/mg protein) compared with 
Group A (0.22±0.02 nmol/mg protein). The mean concentra-
tion of MDA in Group C (0.28±0.03 nmol/mg protein) was 
significantly (p<0.05) lower than that in Group B (Figure 4). 
The results suggested that H2 saline possibly protected the 
structural integrity of lenticular membrane lipids, thereby 
preventing opacification of the lens.

Levels of reduced glutathione and total sulfhydryl contents: 
Selenite administration resulted in a significant (p<0.05) 

reduction of GSH in the concentration in comparison with 
Group A (8.26±0.69 μmol/g protein), whereas the treatment 
with H2 saline in Group C (7.04±0.50 μmol/g protein) was 
found to maintain a significantly (p<0.05) higher level of 
GSH concentration compared to Group B (2.04±0.18 μmol/g 
protein; Figure 5A).

Compared with Group A (28.50±4.66 μmol/g protein), 
Group B (9.08±1.22 μmol/g protein) exhibited a significant 

Figure 4. The level of malondialdehyde (a lipid peroxidation product 
index) in lenticular samples of the 26-day-old rat pups in various 
experimental groups. Group A: Rat pups received only saline. 
Group B: Rat pups received only selenite. Group C: Rat pups 
received selenite and hydrogen saline. Values are expressed as 
mean±standard deviation (SD). Statistical analysis of the data was 
subject to one-way analysis of variance (ANOVA) followed by the 
least significant difference (LSD) test. * Compared with Group A: 
p<0.05. # Compared with Group B: p<0.05 (n=8).

Figure 5. The levels of reduced glutathione and sulfhydryl content in lens. A: The levels of reduced glutathione in lenticular samples of the 
26-day-old rat pups in various experimental groups (n=6). B: The levels of total sulfhydryl content in lenticular samples of the 26-day-old 
rat pups in various experimental groups (n=6). Group A: Rat pups received only saline. Group B: Rat pups received only selenite. Group 
C: Rat pups received selenite and hydrogen saline. Values are expressed as mean±standard deviation (SD). Statistical analysis of the data 
was subject to one-way analysis of variance (ANOVA) followed by the least significant difference (LSD) test. * Compared with Group A: 
p<0.05. # Compared with Group B: p<0.05.
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(p<0.05) decrease in total sulfhydryl contents. In contrast, 
the total sulfhydryl contents in Group C (24.66±3.33 μmol/g 
protein) were significantly (p<0.05) higher than in Group B 
(Figure 5B). All of the above data indicated that the antioxi-
dant capacity of H2 saline may be involved in both nonenzy-
matic and enzymatic antioxidant systems.

DISCUSSION

This study represents an early attempt to evaluate the poten-
tial therapeutic value of hydrogen saline (H2) against cataract 
formation. The results showed that hydrogen saline could 
reduce cataract formation and restore antioxidant capacity in 
the selenite cataract model. These protective effects included 
maintaining water-soluble protein contents, GSH level, total 
sulfhydryl groups, and antioxidant enzymes activities, and 
reducing MDA accumulation in the lenses of selenite-treated 
rat pups.

Selenite-induced cataract has received much attention 
as a model system for oxidative stress–induced cataract. 
It is similar to human cataract in many aspects, including 
increased calcium, protein aggregation, decreased water-
soluble protein, and reduced glutathione levels [34]. Oxygen 
free radicals disturb cellular homeostasis through the modifi-
cation of proteins and lipid peroxidation. The lens has a well-
designed system of defense against oxidation. Selenite causes 
oxidation of protein and nonprotein sulfhydryl groups, which 
leads to ion pump damage and disturbance of the electrolytic 
balance. The intracellular calcium level increases, which 
activates a protease—calpain—resulting in the partial hydro-
lysis of intracellular proteins, especially lens β-crystallin. 
Assembled protein aggregates scatter light, and thus increase 
opacity, which is accompanied by a decrease in activities of 
antioxidant enzymes [9,10]. Primary defenses, including 
nonenzymatic antioxidants and enzymatic antioxidants such 
as glutathione, SOD, CAT, Gpx, GR, and GST, neutralize free 
radicals and repair, recover, or degrade molecules that are 
damaged [7]. Free radicals also react with the protein-thiol 
groups, leading to crosslinking and protein aggregation until 
the increase of water-insoluble proteins finally results in the 
formation of cataract [35].

The antioxidant enzymes are able to catalytically remove 
free radicals and other reactive species. A wide array of 
enzymatic antioxidant defenses exists, including SOD, CAT, 
Gpx, GR, and GST. SOD exists in two forms, one containing 
Mn2+, confined to the mitochondria, and a cytosolic form 
containing Zn2+ and Cu2+. It converts superoxide to H2O2. 
The two-electron dismutation of H2O2 is catalyzed into 
ground-state oxygen and water by CAT and enzymes of the 
glutathione redox cycle, including GR and Gpx [36]. Gpx 

is the predominant GSH-consuming enzyme, and the Gpx 
family uses GSH as a cofactor to destroy H2O2 and lipoper-
oxides at low levels of H2O2; at a higher concentration, the 
principal mechanism for the removal of H2O2 is CAT [37]. 
GR is the rate-controlling enzyme of the glutathione redox 
cycle, and the intracellular level of GSH is maintained by GR 
via preserving the integrity of cell membranes and stabilizing 
the sulfhydryl groups of proteins [38,39]. GST, a typical 
multifunctional enzyme, is viewed as a defense mechanism 
against lipid peroxidation, and plays a role in the hydrophobic 
compounds as a thioltransferase-like redox regulator [40].

In our experiments, the mean activities of SOD, CAT, 
Gpx, GR, and GST significantly decreased in the lenses of 
the untreated selenite-injected group (Group B) compared 
with the normal control group (Group A). In rat pups treated 
with hydrogen saline (Group C), the mean activities of 
antioxidant enzymes were largely restored when compared 
with the lenses in Group B. Hydrogen saline modulates 
several biological functions, and exhibits anti-inflammatory 
and antioxidant activities. The ability of hydrogen saline 
to neutralize free radicals, especially the hydroxyl radicals 
and other important ROS, has been reported under condi-
tions of hyperoxia-induced oxidative stress [24]. In addition, 
elevated activities of antioxidant enzymes have been reported 
in senescence-accelerated mice [41].

GSH, a major nonprotein thiol, is a vital intra- and extra-
cellular antioxidant that protects against oxidative stress. It 
exists in a high concentration in the lens and is important for 
sustaining lens proteins in a reduced state through its redox 
and detoxification reactions [42]. Composed of cysteine, 
glutamic acid, and glycine, GSH protects the lens from 
oxidative damage and maintains the transparency of the lens, 
allowing it to perform normal functions by protecting the 
protein sulfhydryl groups from oxidation [43]. In selenite-
induced cataract, the depletion of GSH occurs through 
a nonenzymatic reaction of GSH with selenite to form a 
derivative, selenodiglutathione (GS-Se-SG), giving rise to 
the formation of superoxide anion as an intermediate [44]. 
Sulfhydryl oxidation is demonstrated to be one of the major 
pathological events leading to disulfide crosslinking and 
molecular aggregation, and through this, to protein precipita-
tion and lens opacification [45]. Lipid peroxidation has been 
strongly implicated in the mechanism of cataractogenesis. 
MDA, a product of lipid peroxidation, is accepted as a reli-
able marker of the lipid peroxidation that occurs because of 
oxidative stress [46].

In the present study, when the rat pups were treated with 
hydrogen saline (Group C), the mean GSH and total sulf-
hydryl were found to be significantly higher than those in 
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the lenses of the untreated cataract group (Group B). These 
findings corroborate an earlier report demonstrating that 
hydrogen saline significantly restored GSH levels in rats 
with oxidative stress–induced damage in skeletal muscle 
after acute exhaustive exercise [47]. The enhancement of 
GSH levels can be included among the beneficial effects 
of hydrogen saline treatment, and may be due to a higher 
expression of the enzymes involved in glutathione synthesis. 
The observed increase of the MDA level in the lenses of the 
untreated model control group (Group B) compared with the 
untreated normal control group (Group A) may account for 
the disruption of membrane lipids. In addition, the reduction 
of the MDA level in hydrogen saline treated group (Group C) 
suggests that hydrogen saline possibly prevented the disrup-
tion of lenticular membrane lipids, thereby impeding opaci-
fication of the lens. Similar findings regarding the effects of 
hydrogen saline on lipid peroxidation were reported by Huang 
et al. in relation to hyperoxia-induced retinopathy [24].

Therapeutic antioxidant medical gas may be a reasonable 
approach for the treatment of oxidative stress [48]. Hydrogen 
is one very promising gaseous agent that has come to the 
forefront of research over the last few years. Hydrogen saline 
has been proved to have antioxidant properties both in vitro 
and in vivo [49]. It is superior to hydrogen gas because higher 
concentrations of hydrogen can be dissolved, and hydrogen 
saline is safer and easier to handle [50]. There is accumu-
lating evidence that hydrogen saline reduces oxidative injury 
in various disease models [19,21-24]. Hydrogen can easily 
penetrate biomembranes and diffuse into the cytosol, mito-
chondria, and nucleus due to its small molecular weight [17]. 
Hydrogen specifically scavenges hydroxyl radicals, peroxyni-
trites, and other important ROS, e.g., H2O2 and O2

-, both of 
which are extremely reactive and damaging to nucleic acids, 
lipids, and proteins. H2 decreases hydroxyl radicals levels in 
the nuclear region and reduces hydroxyl radicals, but does 
not affect •O2

-; H2O2 has its own physiological roles. In the 
presence of catalytically active metals, however, detoxifica-
tion of superoxide to H2O2 by SOD generates more potent 
hydroxyl radicals.

Ohsawa drew the conclusion that hydrogen gas protects 
cells from oxidative damage through selective scavenging 
of hydroxyl radicals and peroxynitrites [14]. In addition, 
hydrogen does not disturb the metabolic oxidation-reduction 
reactions or the innate immune system [14]. It has also 
been found that hydrogen does not influence physiological 
parameters (temperature, blood pressure, pH, partial pres-
sure of oxygen[ pO2]) [15]. Hydrogen has many advantages 
from the aspect of toxicity, as it has no cytotoxicity even 
at high concentrations. Furthermore, safety standards have 

been established for high concentrations of hydrogen gas 
for inhalation, since high-pressure hydrogen gas is used in 
deep diving gas mixes to prevent decompression sickness and 
arterial gas thrombi. The safety of hydrogen for humans has 
been demonstrated by its application in Hydreliox, an exotic 
breathing gas mixture of 49% H2, 50% helium and 1% O2, 
which has been used to prevent decompression sickness and 
nitrogen narcosis during very deep technical diving [51-54]. 
The tissue compatibility of hydrogen is better than that of 
many other antioxidants. Moreover, compared to other drugs, 
the cost of hydrogen therapy is much lower.

In conclusion, the data from our experiments demon-
strated that hydrogen saline effectively retarded selenite-
induced cataract formation. As an antioxidant agent, 
hydrogen saline increased the levels of GSH, protected the 
sulfhydryl groups, maintained antioxidant enzyme activi-
ties, and inhibited lipid peroxidation, thus sustaining lens 
transparency. Furthermore, hydrogen saline appears to be a 
potential therapy with advantages of less expense and safer 
implementation in many clinical settings.
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