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Impact of protein supplementation during
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Abstract

Background: Protein supplementation improves physiological adaptations to endurance training, but the impact
on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to
determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5-
weeks of endurance training.

Results: Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance
training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially
expressed after 5-weeks of endurance training in both groups (q-value< 0.05). In addition, the number of genes
differentially expressed was higher in the protein group (PRO) (892, q-value< 0.05) when compared with the control
group (CON) (440, q-value< 0.05), with no time-by-treatment interaction effect (q-value> 0.05). Endurance training
primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater
in PRO than in CON.

Conclusions: Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle
transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important
factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov
as NCT03462381, March 12, 2018.

Trial registration: This trial was registered at clinicaltrials.gov as NCT03462381.

Background
Skeletal muscle is an extraordinary malleable tissue which
is demonstrated by its rapid remodeling and adaptation to
exercise training [1, 2]. Repetitive bouts of endurance ex-
ercise, e.g. endurance training, lead to various metabolic
and morphological adaptations in skeletal muscle [3, 4].
At the myocellular level, long term skeletal muscle adapta-
tion is supposed to be the result of repeated modifications

in transcriptional and translational responses of each exer-
cise bout thereby increasing the synthesis of specific pro-
teins required for remodeling [5–8]. However, training-
induced changes in baseline transcriptome have also
shown to play an important role [9–11]. Skeletal muscle
transcriptome analysis provides an unbiased examination
of the molecular alterations to exercise training, thereby
potentially unravelling novel pathways involved in adap-
tion to endurance training [12–14].
Protein feeding following endurance exercise has shown

to affect mRNA-specific pathways involved in extracellular
matrix, myogenesis, immunogenic response, and energy
metabolism [15], suggesting that repeated post-exercise
endurance protein feeding may enhance the adaptive
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response to endurance training. Whether protein supple-
mentation also impacts the changes in the skeletal muscle
transcriptome following a period of endurance training re-
mains to be elucidated. We have recently demonstrated
that protein supplementation during endurance training
enhances physiological adaptations, where the major part
of the adaptations was observed during the first 5-weeks
of the 10-weeks training intervention [16]. Therefore, we
decided to specifically focus the present analysis on the ef-
fect of protein supplementation on changes in skeletal
muscle transcriptome during 5-weeks of endurance train-
ing. To this end, we assessed the impact of protein supple-
mentation during 5-weeks of endurance training on
changes in the skeletal muscle transcriptome. We
hypothesize that protein supplementation elicits greater
changes in the skeletal muscle transcriptome when com-
pared to carbohydrate supplementation.

Results
Baseline characteristics
In total, four subjects dropped out during the conduc-
tion of the study for various reasons. Analysis was exe-
cuted on the 40 subjects who completed the 5-weeks
training program (CON: n = 21 vs PRO: n = 19). Baseline
characteristics were not different between groups and
can be found in Table 1.

Endurance training program and effect
For more detailed information regarding the endurance
training program and supplementation strategy the
reader is referred to our recently published paper [16].
Briefly, the monitored training sessions were performed
between 0900 and 2100. Exercise training adherence, in-
tensity and supplementation adherence were not differ-
ent between groups, a . Five weeks of endurance training

Fig. 1 Venn diagram showing the number of differentially expressed genes per group. Selected genes (F-test q-value< 0.05) for each the CON
group and the PRO group and the groups combined (raw p-value< 0.0001)

Table 1 Baseline characteristics and physiological effects of 5-weeks endurance training. Values are means ± standard deviation. P-
values are from mixed model analysis. CON = control group. PRO = protein group

CON group (n = 21) PRO group (n = 19) P-values

0 weeks 5 weeks 0 weeks 5 weeks Training Treatment Interaction

Age (yr) 22.5 ± 2.3 21.5 ± 1.6

Body mass (kg) 77.2 ± 7.2 76.3 ± 5.4

Height (m) 1.85 ± 0.1 1.85 ± 0.1

BMI (kg/m-2) 22.4 ± 1.3 22.3 ± 1.5

Lean mass (kg) 61.0 ± 4.2 61.1 ± 4.1 60.1 ± 4.8 61.6 ± 5.3 = 0.0001 = 0.9 = 0.000

Fat mass (kg) 12.8 ± 4.5 12.7 ± 4.6 12.8 ± 2.9 12.2 ± 3.1 = 0.02 = 0.8 = 0.089

VO2max (L·min-1) 3.9 ± 0.3 4.1 ± 0.3 3.8 ± 0.4 4.2 ± 0.5 = < 0.0001 = 0.7 = 0.004

VO2max (mL·kg-1·min-1) 50.8 ± 3.9 53.0 ± 4.9 49.9 ± 3.4 54.9 ± 4.8 = < 0.0001 = 0.7 = 0.016

Citrate synthase (μmol·g − 1·min − 1) 21.8 ± 5.4 28.7 ± 4.4 23.4 ± 6.2 31.9 ± 5.2 = < 0.0001 = 0.1 = 0.206

Time-trial performance (seconds) 982.3 ± 86.1 871.1 ± 45.8 957.8 ± 106.5 839.1 ± 53.4 = < 0.0001 = 0.1 = 0.796
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Table 2 Top 20 significant genes in the CON and PRO group sorted on level of significance (F-test q-value< 0.0001) in the CON (A)
and PRO (B) group. Q-values for CON and PRO group as well as the interaction effect of endurance exercise training with protein
supplementation are adjusted IMBT p-values. FC is the signed fold change. CON is the change in the control group. PRO is the
change in the protein group. Inter is the interaction effect between protein supplementation and endurance training

(A). Gene FC CON FC PRO Q-val. CON Q-val. PRO P-val. Inter Q-val. Inter

LAMA4 1.39 1.57 0.000 0.000 0.051 0.821

COL4A1 1.69 1.87 0.000 0.000 0.311 0.933

A2M 1.22 1.33 0.000 0.000 0.029 0.796

MYO1B 1.37 1.44 0.000 0.000 0.476 0.957

CD34 1.28 1.33 0.000 0.000 0.496 0.958

NFIX −1.12 −1.09 0.000 0.001 0.288 0.926

THBS4 1.61 1.94 0.000 0.000 0.081 0.853

COL4A2 1.54 1.77 0.000 0.000 0.144 0.881

RYR3 1.42 1.12 0.000 0.336 0.003 0.647

FXYD1 −1.15 −1.13 0.000 0.000 0.612 0.974

COX4I1 1.19 1.15 0.000 0.001 0.441 0.952

TMEM159 −1.41 −1.23 0.000 0.026 0.083 0.854

SMTNL1 −1.55 − 1.39 0.000 0.003 0.298 0.929

LAMB1 1.46 1.79 0.000 0.000 0.025 0.782

ALDH1B1 1.35 1.25 0.000 0.005 0.254 0.916

RHOJ 1.32 1.15 0.000 0.090 0.035 0.799

SMOC2 1.31 1.37 0.000 0.000 0.482 0.958

LXN 1.41 1.28 0.000 0.007 0.254 0.916

ANKRD29 1.42 1.16 0.000 0.198 0.020 0.756

DECR1 1.19 1.17 0.000 0.000 0.767 0.989

(B). Gene FC PRO FC CON Q-val. CON Q-val. PRO P-val. Inter Q-val. Inter

LAMA4 1.57 1.39 0.000 0.000 0.051 0.821

A2M 1.33 1.22 0.000 0.000 0.029 0.796

LAMB1 1.79 1.46 0.000 0.000 0.025 0.782

COL4A1 1.87 1.69 0.000 0.000 0.311 0.933

THBS4 1.94 1.61 0.000 0.000 0.081 0.853

COL4A2 1.77 1.54 0.000 0.000 0.144 0.881

MYO1B 1.44 1.37 0.000 0.000 0.476 0.957

NID1 1.48 1.26 0.002 0.000 0.022 0.756

CD34 1.33 1.28 0.000 0.000 0.496 0.958

SPARC 1.45 1.29 0.000 0.000 0.075 0.848

COL15A1 1.43 1.25 0.001 0.000 0.045 0.816

UTRN 1.22 1.12 0.003 0.000 0.029 0.796

EDNRB 1.70 1.34 0.005 0.000 0.016 0.756

PXDN 1.75 1.48 0.000 0.000 0.107 0.863

ETS1 1.43 1.26 0.001 0.000 0.063 0.839

MXRA5 2.51 1.90 0.000 0.000 0.110 0.863

COL3A1 2.06 1.70 0.000 0.000 0.178 0.893

IGFBP7 1.35 1.26 0.000 0.000 0.233 0.914

ANXA5 1.35 1.10 0.268 0.000 0.001 0.558

CAPN6 1.83 1.46 0.003 0.000 0.060 0.836
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significantly increased maximal aerobic capacity and
skeletal muscle oxidative capacity. Protein supplementa-
tion caused a greater gain in maximal aerobic capacity
and stimulated lean mass accretion but did not further
increase skeletal muscle oxidative capacity and endur-
ance performance (Table 1). A full discussion of the
physiological effects of endurance training with or with-
out protein supplementation can be found elsewhere
[16].

Muscle transcriptome
Endurance training differentially expressed gene in the
muscle transcriptome in both the CON and the PRO
group. The activity of more genes was altered by endur-
ance training in the PRO group than in the CON group
(893 vs. 441, respectively, F-test q-value < 0.05). Table 2
shows the top 20 significant genes based on level of sig-
nificance for both CON group and PRO group. Among
the top 20 significant genes for the CON group are genes
related to extracellular matrix organization including col-
lagen type IV alpha chain (COL4A2), collagen type IV
alpha 1 chain (COL4A1), laminin subunit alpha 4

(LAMA4), laminin subunit beta 1 (LAMB1) and alpha-2-
macroglobulin (A2M). Top 20 significant genes for the
PRO group were comparable with those of the CON
group and relate to extracellular matrix organization in-
cluding collagen type III alpha 1 chain (COL3A1), se-
creted protein acidic and cysteine rich (SPARC), collagen
type IV alpha 2 chain (COL4A2), collagen type IV alpha 1
chain (COL4A1), laminin subunit alpha 4 (LAMA4), per-
oxidasin (PXDN), laminin subunit beta 1 (LAMB1), alpha-
2-macroglbulin (A2M) and nidogen 1 (NID1).

Effect of protein supplementation
Figure 1 (Venn diagram) shows the number of genes
regulated as a result of endurance training for each
the CON group and the PRO group and the groups
combined. After 5-weeks of endurance training, gene
expression count was greater in the PRO group com-
pared with CON. In addition, the top 20 and overall
gene transcript change in muscle transcriptome was
consistently greater in the PRO group when compared
to the CON group (Fig. 2). Figure 3 shows a heatmap
of the genes that were differentially expressed by

Table 3 Top 10 gene ontology biological processes from EnrichR regulated in the CON group (A) and PRO group (B) based on the
total number of genes that was significantly regulated in the CON group (n = 440) and PRO group (n = 892) group (F-test q-value<
0.05)

A Name of biological process Genes (n) P-value Q-value

1 extracellular matrix organization 25 0.000 0.000

2 sarcomere organization 7 0.000 0.002

3 muscle contraction 19 0.000 0.000

4 positive regulation of sprouting angiogenesis 7 0.000 0.001

5 positive regulation of B cell differentiation 3 0.001 0.041

6 regulation of angiogenesis 16 0.000 0.001

7 mitochondrial ATP synthesis coupled proton transport 3 0.012 0.180

8 regulation of release of sequestered calcium ion into cytosol 8 0.000 0.003

9 actomyosin structure organization 11 0.000 0.000

10 myofibril assembly 8 0.000 0.002

B Name of biological process Genes (n) P-value Q-value

1 extracellular matrix organization 55 0.000 0.000

2 regulation of smooth muscle cell migration 8 0.001 0.000

3 mitochondrial ATP synthesis coupled proton transport 5 0.002 0.075

4 collagen fibril organization 11 0.000 0.000

5 regulation of angiogenesis 25 0.000 0.000

6 positive regulation of cell migration 27 0.000 0.001

7 positive regulation of smooth muscle cell migration 4 0.001 0.049

8 regulated exocytosis 19 0.000 0.005

9 basement membrane organization 4 0.000 0.026

10 cellular protein modification process 76 0.000 0.001
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endurance training in both the CON group and PRO
group (40 genes, F-test q-value< 0.0001). The changes
in gene expression following 5-weeks of endurance
training did not markedly differ between the CON
group and PRO group (time-by treatment interaction,
F-test q-value> 0.05). No major differences can be ob-
served with regard to training response between the
PRO and CON group. Gene-set-enrichment analysis
showed a similar result, as gene sets that were signifi-
cant for the CON group were generally also significant
for the PRO group.

Biological processes
Based on all significant genes altered (F-test q-value< 0.05)
in each group, gene ontology biological processes revealed
extracellular matrix organization as the process with the
highest change in gene expression profile in both the CON
group and the PRO group (Table 3). In the CON group 25
genes were linked to extracellular matrix organization

whereas 55 genes in the PRO group. Accordingly, gene set
enrichment analysis (Table 4) showed time-by treatment
interaction for extracellular matrix organization processes
such as extracellular matrix receptor interaction (q-value<
0.001), extracellular matrix glycoproteins (q-value = 0.006)
and collagen formation (q-value = 0.041). Gene set enrich-
ment also showed significant increases in energy metabol-
ism and oxidative phosphorylation with no clear
differences between the CON group and the PRO group
(q-value> 0.05).

Discussion
We have recently demonstrated that protein supplemen-
tation enhances physiological adaptations to endurance
training. The greater physiological adaptations elicited
by protein supplementation were mainly observed dur-
ing the first 5 weeks of training of a 10 week endurance
training intervention [16]. Likewise, changes in the

Fig. 2 Scatterplots with line of identity to visualize the magnitude of change in muscle transcriptome per group. Figs. A & B are based on the
total number of genes changed per group (184 for CON (a) and 384 for PRO (b), F-test q-value< 0.05). Figs. C & D are based on the top 20
significant genes changes in the CON (c) and PRO (d) group
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skeletal muscle transcriptome were primarily observed
during the first 5 weeks of training with no further
changes from week 5 to 10 weeks of training. Therefore,
to gain further insight regarding the effects of protein
supplementation during endurance training on changes
in the skeletal muscle transcriptome, the present analysis

focused on changes in skeletal muscle transcriptome
during 5 weeks of endurance training.
Five weeks of endurance training increased maximal

aerobic capacity. Adding protein supplementation elic-
ited a greater increase in maximal aerobic capacity and
stimulated lean mass gain. For a more detailed

Fig. 4 Schematic overview of the study protocol. Forty subjects completed 10 wk. of progressive endurance training while consuming either 25 g
carbohydrates or 25 g protein post-exercise and daily before sleep. All measurements were assessed before, midterm (week 6) and after (week
12). Strongest effect of protein supplementation was observed following 5 weeks of endurance training. To gain more insight into mechanisms
underlying greater physiological adaptation as a result of protein supplementation we analyzed skeletal muscle transcriptome data from baseline
to midterm. Black dots: measurement points, bleu dots: exercise sessions. Grey part: contains physiological and microarray data analyzed for
this manuscript

Fig. 3 Heatmap of changes in gene expression per group. (F-test q-value< 0.0001) in the CON (left) and PRO (right) groups
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discussion on the changes in physiological outcome
measures the reader is referred to our recently published
paper [16]. At the skeletal muscle transcriptional level,
endurance training caused relatively small (FC < 2) but
consistent and statistically robust changes in the skeletal
muscle transcriptome. Furthermore, changes in the skel-
etal muscle transcriptome tended to be greater in the
PRO group as compared to the CON group. However,
the differences in changes in the skeletal muscle tran-
scriptome between the two groups are far less clear. This
lack of clear differences in skeletal muscle gene expres-
sion transcripts between the PRO and CON group is
likely due to timing of muscle tissue sampling, low sam-
ple size and high inter-individual variation.
In this study we demonstrated that the physiological

adaptive response to endurance training was accompan-
ied by significant changes in the skeletal muscle tran-
scriptome. Gene set enrichment analysis showed that
endurance training caused significant changes in gene
expression transcripts involved in extracellular matrix,
which is in line with previous reports that have investi-
gated changes in skeletal muscle transcriptome following
prolonged endurance training [13, 14]. Several upregu-
lated genes among the top 20 genes are involved in
extracellular matrix organization, including COL4A2,
COL4A1, LAMA41, LAMB1 and A2M. The results of
gene-ontology biological processes and gene set enrich-
ment analysis are consistent with the top 20 genes,
showing increased extracellular matrix remodeling. The
observed changes in gene expressions transcripts related
to extracellular matrix remodeling tended to be more
pronounced in the PRO group than the CON group.
The latter suggests that the greater changes in skeletal
muscle transcriptome, in particular the extracellular
matrix, may reflect the greater physiological adaptations
observed in the PRO group (e.g. greater gain in VO2max

and stimulation of lean mass accretion).

The extracellular matrix is composed of collagen, gly-
coproteins and proteoglycans [17]. Moreover, extracellu-
lar matrix remodeling is a primary adaptation to
endurance training [4]. The extracellular matrix is im-
portant for muscle cell development, structure mainten-
ance, force transmission, and tissue remodeling through
the modulation of growth factors and extracellular mol-
ecule interactions [18]. Extracellular matrix degradation
is an important morphological adaptation by allowing
growth of new capillaries from existing ones in response
to endurance training [19–24]. Whether the exercise-
induced growth of capillaries was further stimulated by
protein supplementation and contributed to the larger
increase in maximal aerobic capacity cannot be con-
cluded from these data.
Our observation that protein supplementation may in-

creases extracellular matrix remodeling to endurance
training is new and further elaborates on previous work,
which demonstrates that addition of protein to post-
exercise carbohydrate-lipid nutrition differentially alters
the transcriptome involved in tissue structure and re-
modeling through regulation of extracellular matrix [15].
General skeletal muscle adaptations to exercise training
include regulation of angiogenesis, mitochondrial bio-
genesis, myogenesis and alterations in structural support
such as the extracellular matrix [25, 26]. There is sur-
prisingly little known about the role of the extracellular
matrix in response to endurance training. Our data show
that the gene expression transcriptional response to
endurance training in skeletal muscle is related to extra-
cellular matrix components and that protein supplemen-
tation tended to enlarge this adaptive response. In this
study, it could be that the extent in which the extracellu-
lar matrix remodeled reflects the degree of muscle
growth. Lean mass substantially increased in the protein
group and this was accompanied by stronger regulations
in gene expression transcripts related to extracellular

Table 4 Top 10 significant enriched gene sets in both the CON group and the PRO group (interaction effect). CON is the training,
Inter is the interaction effect. ES is the enrichment score. The ES reflects the degree to which the genes in a gene set are
overrepresented at the top or bottom of the entire ranked list of genes

GSEA Name of biological process ES CON ES Inter q-value CON q-value Inter

1 Kegg ECM receptor interaction 0.70 0.58 0.000 0.000

2 Naba core matrisome 0.73 0.47 0.000 0.000

3 Naba ECM glycoproteins 0.73 0.46 0.000 0.006

4 Pid integrin1 pathway 0.69 0.54 0.000 0.007

5 Reactome integrin cell surface interactions 0.63 0.51 0.000 0.012

6 Biocarta RHO pathway 0.81 0.62 0.000 0.019

7 Pid TCR pathway 0.64 0.51 0.000 0.032

8 Reactome collagen formation 0.60 0.52 0.000 0.041

9 Pid syndecan 1 pathway 0.73 0.53 0.000 0.051

10 Pid integrin 3 pathway 0.53 0.54 0.000 0.051
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matrix remodeling. Previous research postulated that re-
modeling of the extracellular matrix is required for
exercise-training induced muscle growth [27].
In contrast to the observed effect of protein supple-

mentation on physiological adaptation, we were unable
to find a clear additional effect of protein supplementa-
tion on the skeletal muscle transcriptome besides the
extracellular matrix. It is possible that the effects of pro-
tein supplementation already started to manifest during
the early hours of recovery from exercise, when mRNA
abundance generally peaks [8, 28]. Although the precise
mechanisms by which protein supplementation elicited a
greater increase in maximal aerobic capacity to endur-
ance training cannot be derived from this analysis, it is
likely that protein supplementation enhanced the gene/
protein expression changes after each exercise session
thereby improving skeletal muscle tissue adaptation,
resulting in cumulatively meaningful changes in recovery
and phenotypic adaptation over a prolonged period of
time.

Conclusion
Thus far, much attention has been given to the acute mo-
lecular responses to a single bout of exercise, and the
current theory suggests that acute signals predict/drive
phenotypic adaptation over time. For example, the AMP-
activated protein kinase and peroxisome proliferator-
activated receptor-y coactivator-1ɑ, have been proposed
as primary regulators of muscle tissue adaptation in re-
sponse to endurance training [29–32]. Whether these
genes are truly critical for metabolic and performance ad-
aptations to endurance training has yet to be determined.
Indeed, training-induced changes in baseline transcrip-
tome have also shown to play an important role [9–11].
Our transcriptomic analysis revealed that the extracellular
matrix may be an important factor for skeletal muscle
adaptation in response to endurance training. Thus, we
argue that mRNA expression changes in human skeletal
muscle during later stages of recovery from a single bout
of endurance exercise reflect more prolonged molecular
responses to short-term energy and ionic homeostasis
challenges rather than chronic steady-state adaptation to
endurance training [7]. Protein supplementation subtly
impacts endurance training-induced changes in the skel-
etal muscle transcriptome. In addition, our transcriptomic
analysis revealed that the extracellular matrix may be an
important factor for skeletal muscle adaptation in re-
sponse to endurance training.

Methods
Subjects
The investigation was approved by the Medical Ethical
Committee of Wageningen University, in accordance
with the Declaration of Helsinki. This trial was

registered at clinicaltrials.gov as NCT03462381 and ad-
heres to CONSORT guidelines for clinical trials. A de-
tailed description of subject participation, experimental
design, endurance training program, supplemental strat-
egy, whole-body physiological outcome measures can be
found in our previous publication [16]. A schematic
overview of the study protocol can be found in Fig. 4.

Muscle biopsies, sample preparation and microarray
analysis
Baseline (week 0) and post-intervention fasted muscle
biopsies were taken as described by Bergstrom (1974)
[33], and the procedure used can be found elsewhere
[16]. Total RNA was isolated from the skeletal muscle
tissue by using Trizol reagent (Invitrogen, Breda,
Netherlands). Thereafter, RNA was purified using the
Qiagen RNeasy Micro kit (Qiagen, Venlo, Netherlands),
and RNA quality was checked using an Agilent 2100
bioanalyzer (Agilent Technologies, Amsterdam,
Netherlands). Total RNA (100 ng) was labelled using an
Affymetrix WT plus reagent kit (Life Technologies,
Bleiswijk, Netherlands) and hybridized to human whole
genome Genechip Human Gene 2.1 ST arrays, (Life
Technologies, Bleiswijk, Netherlands). Sample labelling,
hybridization to chips, and image scanning were per-
formed according manufacturer’s instructions.

Statistics
Statistical analysis of gene expression changes was per-
formed using limma R library [34]. Contrasts were set
for endurance training effect in both groups and an
interaction term was used to determine the effect of pro-
tein supplementation (protein group versus the control
group). P-values were calculated using Intensity Based
Moderated t-tests (IBMT) [35]. Significant genes were
first selected using the False Discovery Rate Adjusted F-
statistic p-value < 0.05. Unadjusted p-values below 0.01
for the contrasts were considered statistically significant
within the genes that passed the F-test. Gene set enrich-
ment analysis was done using pre-ranked lists ranked by
the t-values from the limma contrasts [36, 37]. We used
the most recent library of canonical pathways from The
Molecular Signatures Database (MsigDb) [36]. An ad-
justed p-value (q-value) of 0.10 was considered signifi-
cant for the gene rest enrichment analysis results. Venn
diagram and Heatmaps were made using the Complex-
Heatmap library [38] and GraphPad Prism 8.01 for Win-
dows (San Diego, CA). EnrichR was used to determine
differences in GO biological processes [39, 40]. A de-
tailed description of the statistical analysis used for the
physiological data can be found in our previous publica-
tion [16].
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