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Disease trajectory browser for exploring temporal,
population-wide disease progression patterns in
7.2 million Danish patients
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Søren Brunak 1✉

We present the Danish Disease Trajectory Browser (DTB), a tool for exploring almost 25

years of data from the Danish National Patient Register. In the dataset comprising 7.2 million

patients and 122 million admissions, users can identify diagnosis pairs with statistically sig-

nificant directionality and combine them to linear disease trajectories. Users can search for

one or more disease codes (ICD-10 classification) and explore disease progression patterns

via an array of functionalities. For example, a set of linear trajectories can be merged into a

disease trajectory network displaying the entire multimorbidity spectrum of a disease in a

single connected graph. Using data from the Danish Register for Causes of Death mortality is

also included. The tool is disease-agnostic across both rare and common diseases and is

showcased by exploring multimorbidity in Down syndrome (ICD-10 code Q90) and hyper-

tension (ICD-10 code I10). Finally, we show how search results can be customized and

exported from the browser in a format of choice (i.e. JSON, PNG, JPEG and CSV).
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Large-scale, population-wide studies of health and disease are
increasingly gaining attention, as they complement con-
ventional clinical studies focusing on a limited set of

hypothesised disease associations to predefined outcomes1–4.
However, most population-wide disease registries are made
available for research as large databases that require custom-made
software to be analysed5–7. While some disease registries provide
interfaces that can extract summary statistics for patients with a
given diagnosis, more advanced queries on disease progression
patterns are generally not supported8. Multimorbidity—instances
where one patient is diagnosed with more than one chronic
morbidity—is, as life expectancy generally goes up, an increasing
problem9. Therefore, the need to understand at the molecular
level how etiological factors impact co-occurring and interacting
diseases is also growing, where strategies typically benefit from
the application of network biology concepts1,10,11. However, these
efforts should ultimately match disease progression observations
made in large-scale, population-wide health data as already
demonstrated in uncovering associations between complex dis-
ease and Mendelian loci2 and estimates of heritability in the
absence of genetic data4.

In clinical trials, the complexity of multimorbidity is being
addressed by master protocols defined as an overarching model
designed to answer multiple questions, for example, by studying
multiple interventions in multiple diseases12. Correspondingly,
adaptive platform trials (APTs) facilitate the study of multiple
interventions in a condition in a perpetual manner. In these trials,
interventions may enter and leave an ongoing trial based on a
predefined decision algorithm, e.g., response-adaptive randomi-
sation (RAR)13. The shift towards more complex trial designs
again emphasises the demand to monitor and study phenotypes
as longitudinal disease progression patterns irrespective of pre-
defined outcomes3,14. At the molecular level, techniques like
whole-genome sequencing and clinical proteomics produce data
in a disease spectrum-wide manner enabling analysis of global
interactions between disease pathways for subsequent linkage to
actionable mechanisms15–17. Finally, another contributing factor
is the health economic incentive to study multimorbidity as
medical management is complex and costly18.

The aim in numerous ongoing precision medicine efforts is to
stratify seemingly similar patients into subgroups by identifica-
tion of underlying differences in disease etiology1,19. Ultimately,
this will reduce the gap between geno- and phenotypes for
optimised diagnostics and enhanced therapeutic responses20. In
line with the precision medicine discourse, disease trajectories,
derived from population-wide registry data, were recently pro-
posed as a novel robust way of studying disease progression over
time; thereby creating a foundation for the discovery of causal
relationships and the temporal modelling of
multimorbidity3,21,22. Trajectories illustrating frequent and
recurrent patterns of disease progression can be constructed by
identifying pairs of co-occurring sequential diseases with a sta-
tistically significant direction23. Such work is likely to lead to
revisions in the disease nomenclature; for example by redefining
diseases based on disease history data and genetic risk profiles as
opposed to the present paradigm where conclusions are derived
from single encounters with the health care system24,25.

In this context, we have constructed The Danish Disease
Trajectory Browser (DTB) that lets users, e.g. researchers, trialists
and clinicians explore longitudinal population-wide disease pro-
gression patterns from the entire population of Denmark. The
browser is based on data spanning the period January 1994 to
April 2018 and comprises electronic health data on 7.2 million
Danes representing a total of 122 million admissions during the
almost 25-year long period. Denmark implemented its unique
person identification number in 1968 making it possible to track

disease development continuously across all hospitals at the level
of individuals26,27. DTB enables users to search, filter, analyse,
and visualise disease trajectories derived from, statistically sig-
nificant directional diagnosis pairs calculated from population-
wide electronic health data3,21. As the underlying data stem from
a government-funded universal health care system, the data are
likely less biased than many other large data sets that either focus
on selected diseases, age groups, hospitals, or professions6,27. DTB
is made available at http://dtb.cpr.ku.dk and presents data as
summary statistics. Therefore, it does not provide access to any
person-sensitive data.

Results
Data foundation and disease trajectory approach. The data
foundation for DTB is the Danish National Patient Register
(NPR) covering 7.2 million patients from the 1994–2018 period.
All entries in NPR are time stamped and linked to the national
identification number that uniquely indexes every resident in
Denmark. The sex is indexed in the final digit (i.e. unequal, male)
27. Events are therefore linked over time unproblematically, which
this study benefitted from in computing mortality by linkage of
patients from NPR to The Danish Register of Causes of Death28.
DTB uses a general approach to create disease trajectories that
was originally developed to discover sequential disease progres-
sion patterns in a data-driven manner3,14. Following a pre-
filtering step and a matching procedure that corrects for age, sex,
and period of year, all 1777 unique disease codes (International
Statistical Classification of Diseases and Related Health Problems
(ICD) version 10, level 3 indexed) resulted in 77,294 significant
diagnosis pairs (Fig. 1). For subsequent analyses of disease pro-
gression patterns, the method requires that the direction of
diagnoses D1 -> D2, is statistically significant compared to the
reverse order D2 -> D1 with relative risk (RR) > 1 and P-value <
0.05 (Fig. 1). Disease trajectories must be followed by minimum
20 patients. The directional progression strength D1 -> D2 can
then be quantified by the RR and the associated P-value for any
significant directional disease pair that results from a search
query21 (see Methods). Furthermore, the DTB offers the option to
analyse sex-specific disease trajectories, which are built from
significant directional diagnosis pairs computed from male or
female populations only. In effect, DTB users can also explore
differences in disease progression patterns between men and
women.

Disease progression patterns and disease heterogeneity. From
the complete data set a total of 9608 statistically significant
directional diagnosis pairs were identified (Table 1 and Fig. 1).
These diagnosis pairs form the basis for the trajectory browser
functionalities as they can be combined into linear trajectories
and disease trajectory networks as shown in previous studies3,14.
The disease trajectory D1 -> D3 cannot necessarily be deduced
from the combination of D1 -> D2 -> D3. This highlights the
complexity of disease heterogeneity and disease progression
patterns. DTB queries for one or more ICD-10 codes return a
number of trajectories with length ranging from 2 to 6 depending
on the search base entry (ICD-10 codes) and search filter
selection.

Below we exemplify the browser functionalities and potential
for exploring population-wide disease progression patterns by
characterising search results for patients diagnosed with Down
syndrome (DS) and patients diagnosed with essential (primary)
hypertension (HT; ICD-10 codes Q90 and I10, respectively),
which represent two very different cohorts. We also exemplify
how the combination of length 2 trajectories into longer
trajectories further elucidates disease heterogeneity. The browser
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displays search results either as linear disease trajectories or as a
disease trajectory network (e.g. Figs. 2 and 3). For quick queries
and overview, it is recommended that users turn on the network
view, which will be fastest and also appropriate for subsequent
adjustment of search filters. In DS (n= 3714 patients) and HT (n

= 807,234 patients), the number of resulting linear trajectories
ranges from 117 to 8359 (Table 1). These disease codes relate to a
chromosomal disorder and multifactorial disease, respectively,
and hence, the two cohorts have vastly different frequencies and
only limited shared etiology. Consequently, the number of

3,155,952 possible diagnosis pairs
(D1 -> D2)

Remove 1,023,160 diagnosis pairs that do not appear together within a
5-year time wndow
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Remove 1,091,438 diagnosis pairs from five ICD-10 chapters:

Remove 823,346 diagnosis pairs in prefiltering step observed in less than 10
encounters and with a p value > 1.21 x10e-9 (Bonferroni-corrected)

Remove 134,714 diagnosis pairs with a p value >1.21 x10e-8 (Bonferroni corrected)

Remove 36,583 diagnosis pairs without a significant direction

Remove 31,103 diagnosis pairs with a relative risk <1

•    Certain conditions originating in the perinatal period (chapter XVI)
•    Symptoms, signs and abnormal clinical and laboratory findings (chapter XVIII)
•    Injury, poisoning and certain other consequences of external causes (chapter XIX)
•    External causes of morbidity and mortality (chapter XX)
•    Factors influencing health status and contact with health services (chapter XXI)

2,132,792 diagnosis pairs within a
5-year time-window

1,040,354 diagnosis pairs not part of
the excluded chapters

212,008 diagnosis pairs pass the pre-
filtering step

77,294 unique diagnosis pairs with a
significant p value

40,711 diagnosis pairs with a significant
direction

9608 diagnosis pairs with a
relative risk >1

Fig. 1 Register data processing. Disease trajectory algorithm flowchart (a) and schematic representation of the disease trajectory algorithm that is the
foundation for Danish Disease Trajectory Browser functionality (b). a Pre-filtering and computation of statistically significant diagnosis pairs in The Danish
National Patient Registry (NPR), containing data on 7,186,865 patients. b (1) Users select a ICD-10 indexed patient population by typing ICD-10 code(s) or
disease(s) of interest (ICD-10 code, level 3). (2/3) The first step where the algorithm identifies statistically significant directional diagnosis pairs. (4/5)
The second step where the algorithm builds linear trajectories by concatenating statistically significant diagnosis pairs, that can then be merged into a
disease trajectory network, consequent to the fact that one disease may appear in more than one linear disease trajectory. ICD-10 International
Classification of Diseases, 10th Revision. Colours indicate disease category.

Table 1 The Danish Disease Trajectory Browser data foundation and examples.

The Danish National Patient Registry
Years of data 24 Total number of hospital admissions 121,884,394
Total number of patients 7,186,865 Number of unique ICD-10 codes givena 1777
The Danish Disease Trajectory Browser
Total number of directional diagnosis pairs 9608 Number of ICD codes included in the browser in directional pairsa 928
Down syndrome (ICD-10 code: Q90)
Number of patients 3714
Number of linear disease trajectories 117
Essential (primary) hypertension (ICD-10 code: I10)
Number of patients 807,234
Number of linear disease trajectories 8359

ICD International Statistical Classification of Diseases and Related Health Problems.
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resulting trajectories and degree of diversity may hint DTB users
towards the underlying complexity of the true multimorbidity
spectrum that necessitates protocols and strategies for studying
multiple diseases and multiple therapies jointly (e.g. by master
protocols as mentioned above)12.

Exploring disease trajectories of chromosomal diseases. As
expected, the linear disease trajectories for DS shown in Fig. 2
contain multiple diagnoses from chapter X (Diseases of the
respiratory system) and chapter XVII (Congenital malformations,
deformations, and chromosomal abnormalities), whereas the
disease trajectories contain no diagnosis from chapter II (Neo-
plasms)29,30. These findings may very well relate to the pheno-
typic effect of gene copy-number, which is rather profound in a
trisomy like DS31. Moreover, the disease trajectory network
topology shown in Fig. 3 reflects the fact that DS is diagnosed
early in life (i.e. pre- or perinatally), as Q90 is the first code in all
trajectories. It also demonstrates the complexity of disease pro-
gression patterns, as there is only a significant directional asso-
ciation among DS patients who are diagnosed with H65
(Nonsuppurative otitis media) and then F79 (Unspecified mental
retardation) and no direct edge (i.e. length 2 trajectory) from Q90
to F79 (Fig. 3). Importantly, there is a considerable overlap
between diagnoses that people with DS have a high risk for
developing, e.g., Alzheimer’s disease (ICD-10 code G30)32 and
also diagnoses likely to be listed in the death certificate of people
with DS, and the ICD-10 codes present in the trajectory network.
These include Other hypothyroidism (ICD-10 code E03) and
Congenital malformations of aortic and mitral valves (ICD-10

code Q23)33,34 (Fig. 2). Further, note the statistical significant pair
from Dementia in Alzheimer’s disease (ICD-10 code F00) to
Death (introduced with code Y99, see Methods section).

Exploring disease trajectories of multifactorial diseases. Due to
the marked demographic differences between phenotypes and
degree of disease heterogeneity, appropriate search filters vary
across DTB queries. For instance, proper use of the search filter
functionalities is essential in collapsing the 8359 linear disease
trajectories originating from an I10 search to a disease trajectory
network. For demonstration purposes, we applied search filters
for HT resulting in 2672 linear trajectories that were then col-
lapsed into a disease trajectory network (Figs. 4 and 5).

In contrast to the network for DS, the network for HT mainly
includes other, multifactorial, chronic diseases, e.g. heart failure
(ICD-10 code I50), and other anaemias (ICD-10 code D64);
chronic and unspecified kidney failure (ICD-10 codes N18 and
N19; Fig. 6). The network topology also reflects this observation
as I10 has both incoming and outgoing neighbourhood edges,
collectively termed transition edges (Fig. 5). This finding is
evidence that HT inherently is a heterogeneous phenotype that is
associated with heterogenous progression patterns35–37 agreeing
with the fact that target pressure depends on comorbidities and
that comorbidities may even be the treatment indication,
per se38,39. In addition, the relatively large proportion of linear
trajectories length >3, indicates that the average age in this
population is rather old and multimorbid. This is further
evidence that the I10 population represents a health economic
burden as there is a directional, statistically significant association

Fig. 2 Linear disease trajectories for Down syndrome (Q90). Upper bar with search field and switch to turn on Network view. Below the upper bar search
results are displayed in the visualisation interface. Users can see the total number of linear trajectories (in this case 117). When a node is selected, search
results are linked to the WHO ICD-10 browser in the side panel. The content of the link depends on the selected node (circles). When an edge is selected,
search results also link to Google Scholar and Statistics Denmark. Width and shade of edges co-vary with the number of patients that follow the particular
trajectory or as here the relative risk (depending on Settings selection, located in the side panel, Search tab). Users can navigate the search results, select
the content of the links and change location of trajectories by clicking and dragging in the search result field. Search filter setting: no settings applied. WHO
ICD-10 World Health Organization, International Classification of Diseases, 10th Revision. Colours of nodes represent ICD-10 chapters.
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between e.g. hypertension and heart failure, a rapidly growing
public health issue18,40 (Fig. 6). Interestingly, no malignant
disease (indexed in ICD-10 chapter II, Neoplasms) appear in the
search on hypertension. This seems to agree with the conflicting
literature on the association between cancer risk and hyperten-
sion41 but might as well relate back to a rather pragmatic index
structure of the ICD-10 system42, as opposed to a network-based
approach to human disease11.

Browser search functionality and trajectory manipulation. DTB
is disease-agnostic in the sense that any level 3 ICD-10 code or
combination of ICD-10 codes (for details, see Methods section)
can be selected as a search query and then interrogated for
involvement in statistically significant disease trajectories.

DTB search results can be visualised in two formats depending
on the Network view status (e.g. Figs. 2 and 3). When Network
view is off, the browser will list the search result as linear disease
trajectories and also report the total number of linear disease
trajectories that matches the query (Figs. 2 and 4). When Network
view is on, the search result will be displayed in a summarised,
collapsed format. Every disease trajectory can be explored further
by clicking on nodes (circles) or edges (arrows) that link to the
WHO ICD-10 browser, Google Scholar and the Danish National
Statistics Bureau in the browser side panel (Fig. 3). When a single
node is selected the number of unique patients who are assigned
the code within the registry period as well as the 5-year mortality
are shown (Fig. 2). When an edge is selected, two different sets of
summary statistics appear in the Information tab, depending on
the network view selection (Figs. 3 and 4). If network view is on
(e.g. Fig. 3), summary statistics for the length 2 disease
trajectories, i.e., mean age at diagnosis of D1, time between

diagnoses and 5-year mortality are presented in the side panel. If
network view is off users can also view summary statistics for
length 2 disease trajectories and the entire disease trajectory of
length up to 6 (Fig. 4).

Search-dependent data filtering and exploration. To focus
search results, an array of search filters can be applied. Users can
decide to search for disease trajectories that occur in the entire
population or one of the two sexes, only. This can be selected in
the side-panel drop-down menu, when the Information tab is
selected. A more detailed search filtering is further obtained by
adjusting three different parameters which are trajectory length,
RR and number of patients. All search filters can be adjusted
independently (Fig. 5). As mentioned above, DS (ICD-10 code
Q90) is a rare condition typically diagnosed at birth. Conse-
quently, the node for Q90 only has outgoing edges and relatively
few people follow each trajectory (Fig. 3). Oppositely, a search for
HT (ICD-10 code I10) that is often diagnosed in older, multi-
morbid patients results in disease history reaching statistical
significance (incoming edges) and many subsequent comorbid-
ities (outgoing edges; Fig. 5).

Users can navigate the visualisation interface by applying tools
from the toolbar to a specified part of the network or navigate
manually with the curser over the visualisation interface. Tools
include selecting incoming or outgoing edges to a node of choice,
Neighbourhood button (selecting all incoming and outgoing
edges to a node of choice) and Select inverse button (selecting
anything which is not selected at that moment). Users can also
move and delete nodes as well as edges manually by clicking and
dragging in the interface. Nodes and edges can be deleted either
individually or grouped (Figs. 5 and 6). Multiple selection is

Fig. 3 Network view representation of the linear disease trajectories for Down Syndrome (Q90). Nodes represent ICD-10 codes and each colour
corresponds to one of the 21 chapters in the ICD-10 index. Five chapters are excluded (for details, see Methods section). Arrows represent a statistically
significant directionality between two diagnosis codes. Numbers describe how many patients follow the trajectories. If an edge is selected manually by
clicking (red highlight) the statistical specifications will be displayed in the side panel. In the visualisation interface, selected nodes and edges may also be
deleted (grouped or individually) by clicking on the icon “Delete edge”. A description of each variable can be retrieved by placing the curser over the
question marks. Search filter settings: all patients, length 3–5, relative risk (RR) 1.5–361, number of patients 21–114,099. ICD-10 International Classification
of Diseases, 10th Revision. Colours of nodes represent ICD-10 chapters.
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obtained by dragging with the mouse cursor while holding down
the control-key (Windows/Linux) or command-key (Mac). Undo
and redo buttons are available in the toolbar for simple
corrections. Users can zoom in and out; either via the toolbar
zoom buttons or directly by scrolling with the mouse wheel or
trackpad.

Disease trajectory analysis and data export. In addition to
interactive data analyses and visualisations, DTB allows data
exports and downloads via options in the side panel, Information
tab (Fig. 3). If the Search tab is selected in the side panel, options
for annotation of disease nodes and transition edges are available
via the drop-down menus. Node annotation offers four options
(ICD-10 code and description, ICD-10 code, Diagnosis code
description and None), and Edge annotation offers three options
(Number of patients, Relative risk, and No annotation; Fig. 5).
Nodes remain constant irrespective of selection, whereas the edge
will change thickness and shade of grey once an annotation is
selected. The higher the annotation value (number of patients or
relative risk) the thicker and darker the edge will be. Further
exploration of disease trajectories is achieved by clicking on each
transition edge in the network and selecting the Information tab
in the browser side panel. The user will find the relative risk, P-
values, number of patients, time between diagnoses, mean age at
the trajectory inception, and 5-year mortality count at trajectory
end. Moreover, users can also search for diagnosis pairs at Google
Scholar via a direct link and choose to delete edges or nodes
(Fig. 3).

To create an overview of the raw summary statistics data, data
can be summarised in a tabular format by clicking View data table

in the side panel in the Information tab. All trajectories made
with DTB can be downloaded in several formats for further data
processing, analyses, and presentation of search results. Cytoscape
JSON format exports are available for downloading43. The
Cytoscape files can be opened locally in the Cytoscape desktop
application for rearranging or modifying the visualisation further.
Export of search results as linear disease trajectories and disease
trajectory networks is also possible in PNG format (with
transparent background) or JPEG with white background. The
raw comma-separated data values (CSV) are available for
download for easy data import into Excel or data science
programming applications.

Discussion
In a modern healthcare system, the value of examining disease
associations at the population-level, in both chronic conditions
(exemplified above) and acute, clinical conditions can only be
underscored44,45. Particularly, the development of computational
methods for harmonising, analysing and visualising large, het-
erogeneous electronic health data sets is an integral part of
modern medicine that is increasingly being shaped by precision
medicine initiatives19,46–48. To date the only large disease cohort
visualisation tool made publicly available is the Comorbidity-
viewer from Stockholm Electronic Patient Records (SEPR) ori-
ginating from ~605,000 patients49. However, the Comorbidity-
viewer does only report disease co-occurrences, not progression
patterns, and no disease trajectories or disease networks can be
created. Researchers who have their own large patient registry
cohorts can use existing software tools for computing comor-
bidity scores and analysing their own data. In contrast, DTB

Fig. 4 Linear disease trajectories for essential (primary) hypertension (I10). When an edge is selected, users can explore characteristics for the entire
trajectory and the individual trajectory edges separately. In this case, there are 56,251 patients who follow the trajectory I10 -> I50, 24,729 patients that
follow the trajectory I10 -> N18 and 4241 patients who follow the trajectory I10 -> I50 -> N18 (visualisation interface). In the Information tab users can find
information on the selected length 2 trajectory as well as the entire trajectory (side panel). If users select a different edge or search for I50 or N18, the
browser allows to compare e.g. mean age at assignment of first trajectory across all statistically significant trajectories with RR > 1 in the entire population.
Search filter settings: all patients, length 4–5, RR 1.15–361, number of patients 4000–114,099. I10: ICD-10 code for essential (primary) hypertension. I50:
ICD-10 code for heart failure. N18: ICD-10 code for chronic kidney disease. ICD-10 International Classification of Diseases, 10th Revision. Colours of nodes
represent ICD-10 chapters.
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provides useful clinical, temporal comorbidity analyses without
requiring user-provided clinical data.

DTB aims to deliver easy access to a comprehensive
population-wide data set of disease trajectories and comorbidities
and is intended as a framework for studying disease progression
patterns, where analyses with additional datatypes (e.g. socio-
economic and molecular level data) can be incorporated. The
browser can help researchers obtain an overview of the disease
progression in a homogeneous, mostly Northern European
population. Therefore, search results for diseases with a relatively
low or high prevalence in Scandinavia will not necessarily repli-
cate in other populations. Malaria represents one such example in
effect of an endemic nature. Malaria is indeed included in the
NPR registry, however with low incidence in Denmark. Our cut-
offs have excluded malaria from the list of significant directional
diagnosis pairs but DTB offers the possibility of inspecting the full
list of pairs where malaria is included. The overview is sum-
marised in statistical metrics, such as mean age at which the
different trajectories started for the patients, the overall relative
risk of getting one disease after the other and the 5-year mortality
count for patients following specific trajectories. Such data can
then be compared to statistics in other populations with akin
gross domestic product (GDP), health care model, and geography
or be used to characterise the degree of similarity between
countries with different demographics50. Importantly, search
results from DTB can complement existing epidemiological
methods by identifying sequential trends in disease progression
patterns of up to six diseases.

It is evident, that diseases tend to display heterogeneity and
manifest in different phenotypic contexts1. The results from this
study provide a framework for studying cases where the diagnosis
pairs D1 -> D2 and D2 -> D3 are both statistically significant in
terms of direction, even if quite few patients will follow both

pairs, but still share D2. A case like this highlights the hetero-
geneity within disease conditions, and points at D2 and its
involvement in different disease courses. The browser function-
ality will allow users to identify such cases as counts are displayed
for how many patients will follow D1 -> D2 -> D3, but also how
many of the patients following D1 -> D2 would not follow D2 ->
D3, in a longer trajectory (Fig. 4). This makes it possible to dis-
cover cases of intrinsic heterogeneity of diseases.

Many more generalised systems biology tools exist for visua-
lising networks of biological data51,52; however, these tools have a
molecular focus and are not suited for large-scale disease trajec-
tory analysis1. Eventually, our tool can motivate data integration
at the molecular and disease systems biology levels enabling
researchers to further understand the underlying relationships
between diseases53. Researchers can use the browser to compare
or verify trends in their own settings, make new discoveries and
hypotheses on factors driving diseases, comorbidities, and their
functional relationships.

The browser’s disease database is coded in the ICD-10 system
which is used by WHO and many healthcare systems world-wide.
It therefore facilitates entry into the system for clinicians. In a
clinical setting, disease trajectories may hint at a specific treat-
ment strategy when a doctor cares for a patient, prescribes
medicine or informs patients of possible future complications and
diseases. DTB will allow anyone to do disease trajectory analyses
in a real-world setting, without direct access to person-sensitive
registry data and without requiring access to high performance
computers.

Methods
Underlying comprehensive population-wide registry data. NPR contains data
from all encounters at Danish hospitals, that be inpatient wards, outpatient clinics,
and emergency room visits. As it has been mandatory for hospitals to report any

Fig. 5 Disease trajectory network for essential (primary) hypertension (I10). When the search tab is selected in the side panel, users can perform
advanced DTB queries by application of DTB functionality, comprised of a the drop-down menu (All patients, female patients only or male patients only),
notches (trajectory length, relative risk and number of patients) or fields for typing the boundary values (relative risk and number of patients). Users can
customise the layout of the search results by selecting annotation (type and font) and perform a local search by typing an ICD-10 code or a disease
(bottom, left corner). Search filter setting: all patients, length 4–5, RR 1.15–361, number of patients 4000–114,099. DTB Danish Disease Trajectory Browser,
ICD-10 International Classification of Diseases, 10th Revision. Colours of nodes represent ICD-10 chapters.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18682-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4952 | https://doi.org/10.1038/s41467-020-18682-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


type of contact (inpatient, outpatient, and emergency room visits) to the NPR for
reimbursement purposes since 1994, the register is complete in nature and does not
suffer from population bias27, i.e., bias in terms of demography and areas of
specialty is limited. NPR also holds data on place of residence (municipality), a
patients’ sex, hospital and ward, hospitalisation duration, date of death, etc.26,27.
The registry thus contains information at the level of individual patients that in
relation to accuracy has been benchmarked extensively27,54. For disease classifi-
cation, NPR uses the WHO scheme ICD-10. The ICD-10 system has been used in
Denmark since 1994, where it replaced the ICD-8 system (used in Denmark from
1977 to 1994). To incorporate death in the disease trajectory analysis we added the
code, Y99, defined as death within 5 years of assignment of diagnosis D1 in the
trajectory D1 -> Y99. Data from The Danish Register of Causes of Death registry
was used to compute the pairs needed to include mortality as a functionality in the
browser28. The temporal disease trajectories were then calculated from this data
foundation following a two-step process.

Ethical approval. The study was approved by the Danish Data Protection Agency
(ref: 2015-54-0939 and SUND-2017-57) and Danish Health Authority (ref: FSEID-
00001627 and FSEID-00003092).

First step of the disease trajectory programme. The first step operates in a
sequential manner by first identifying statistically significant diagnosis pairs (i.e.
diseases that co-occur temporarily) and then selecting the diagnosis pairs with a
significant directionality, which is defined as disease trajectories of length 2. The
second step concatenates these pairs together to build disease trajectories of length
>2 (Fig. 1). Computing all 3,155,952 possible disease pair permutations is too
computationally demanding. Therefore, a pre-filtering step is applied. The pre-
filtering step estimates the P-values for all possible diagnosis pairs within a 5-year
time-window exploiting a single Bernoulli trial, that considers each sampling of a
comparison discharge a Bernoulli trial. Using the probability distributions from
these Bernoulli trials, 212,008 diagnosis pairs passed the pre-filtering step at level of
significance P < 1.21 × 10−9 (Bonferroni corrected for multiple testing) ensuring
model robustness3 (Fig. 1). For the diagnosis pairs (i.e. comprising diagnoses D1
and D2) that pass the pre-filtering step, patients are assigned diagnosis D1 are
matched with N= 10,000 randomly selected individuals controlling for sex, age,
discharge type and discharge week to limit any bias regarding seasonal disease
trends. The RR is calculated as the ratio of D2 occurrences between the exposed
population (Cexposed), patients who have been assigned diagnosis D1, and control

populations (C1…CN) 10,000 random controls matched to each patient with
diagnosis D1.

RR ¼ Cexposed
1
N

P
i Ci

ð1Þ

P-values are estimated using a binominal distribution that models each single
comparison of a disease pair with the cut-off threshold of 1.21 × 10−8 (Bonferroni
corrected for multiple testing). For the diagnosis pairs that are statistically
significant the directionality is computed. This procedure identifies the pairs, D1 -
> D2, where D1 occurs significantly more before D2 compared to the opposite
direction using a binomial distribution. Only the diagnosis pairs with a significant
directionality are retained for visualisation purposes (P-value < 0.05), whereas all
significant diagnosis pairs with RR < 1 can be downloaded from the browser (Fig. 2
and Supplementary Data 1). To compute sex-specific disease trajectories,
directional diagnosis pairs are also computed separately for male and female
populations. Results from this analysis appears as a DTB functionality in the form
of a search filter (Fig. 5).

Second step of the disease trajectory programme. In the second step, the
algorithm builds the linear trajectories by concatenating statistically significant
directional diagnosis pairs. For example, if D1 -> D2 and D2 -> D3 are significant
directional diagnosis pairs, the pairs are fused into a disease trajectory of length
three, i.e. D1 -> D2 -> D3. This principle can be re-applied to obtain longer tra-
jectories. If the disease pair D3 -> D4 also exists, the algorithm generates the tra-
jectory D1 -> D2 -> D3 -> D4. Patients follow the trajectories if the first occurrence
of each of the diseases follows the specified trajectory. For example, one patient
could be diagnosed with D1 -> X -> D2 -> Y -> D3 -> Z and thereby follow the
trajectory as all three diseases (D1, D2 and D3) are present in the specified order. A
trajectory is included if a minimum of 20 patients follow D1 -> D2 -> D3 without
skipping any of the diseases. This can be adjusted by application of the corre-
sponding search filter.

Database creation. The DTB web application contains the resource of sum-
marised trajectory data and is queried on the fly for making linear disease tra-
jectories and disease trajectory networks. As of now, the database content is limited
for use within the web application, but portions of the database can be exported for
use locally in several different formats. Formats include CSV format, JSON either
for importing visualisations into Cytoscape Desktop43 or for use in scripts or

Fig. 6 Details relating to Fig. 5 where the Neighbourhood tool has been selected. When network view is on, users can customise the network display by
applying different tools, e.g. Neighbourhood where all edges that link directly to a node are highlighted (red outline). In this case, I10 was selected and
highlighted edges link to neighbour nodes. Other tools include Incoming edges, Outcoming edges and Select inverse. If the Select inverse functionality is
activated after Neighbourhood, nodes and edges which are not neighbours will be highlighted. This is especially useful for deleting a section of the network,
that users do not wish to export. Users can export the network that is displayed in the visualisation interface and may select parts manually by clicking on
nodes and edges while holding down shift or dragging while holding down control (Windows/Linux) or command (Mac). I10 ICD-10 code for essential
(primary) hypertension, ICD-10 International Classification of Diseases, 10th Revision. Colours of nodes represent ICD-10 chapters.
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images files with white or transparent background (i.e. PNG or JPEG formats).
Supplementary Data not used in the browser, with diagnosis pairs where RR < 1
can be downloaded from the side panel Information tab (Fig. 2).

The tool was developed with the use of the graph theory Javascript library called
Cytoscape.js and implemented using the web development framework Angular v6
by Google, running on a Node.js backend server (see below).

DTB has information on all ICD-10 chapters but Certain conditions originating
in the perinatal period (chapter XVI), Symptoms, signs & abnormal clinical &
laboratory findings (chapter XVIII), Injury, poisoning & certain other
consequences of external causes (chapter XIX), External causes of morbidity and
mortality (chapter XX), and Factors influencing health status & contact with health
services (chapter XXI). In the Information tab in the browser side panel, excluded
chapters are grey (Fig. 6). The tool is released as a web application on the URL:
http://dtb.cpr.ku.dk and gives access to a an interactive interface for exploring,
analysing and visualising the Danish National Patient Register cohort of 7.2 million
patients recorded over almost 25 years.

Software: frameworks and libraries used. Cytoscape.js – graph frontend Java-
script library.

Dagre.js – directed graph Javascript library.
Angular (frontend Javascript framework).
Node.js (Sails.js) – backend Javascript framework.
MongoDB (database software).

Data availability
Permission to access and analyse the underlying person-sensitive data can be obtained
following approval from the Danish Data Protection Agency and the Danish Health
Authority. A statistical summary for this article is available as a Supplementary Data 1.
Due to privacy concerns, the browser and the provided Supplementary Data 1 only
contain diagnosis and co-occurrence information when it has been assigned to at least
five patients. All data made available are non-person-sensitive summary level data.

Code availability
To analyse the data the following software tools were used: R v. 3.4.0, Python v. 2.7, C++
v. 11 and Cytoscape Desktop v. 3.6.0. The key algorithm has been described in published
literature (see refs. 3,14).
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