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Abstract

Fresh produce outbreaks due to Shiga toxin-producing Escherichia coli (STEC) continue to

occur in the United States (US). Manure-amended soils can pose a public health risk when

used for growing raw agricultural commodities. Knowing the prevalence and concentration

of STEC in untreated biological soil amendments of animal origin (BSAAO) is important to

help guide the most appropriate pre-harvest interval(s) following application to limit risks

from these soil amendments. Bovine manure samples were collected from 12 farms in Flor-

ida, including samples from piles, lagoons, barns, and screened solids. Two methods were

used to detect stx1/2 and rfbE genes in samples. A prevalence rate of 9% for stx1 and/or

stx2 and 19% for rfbE was observed from the 518 bovine manure samples evaluated. A

most probable number (MPN) assay was performed on stx+ samples when applicable. The

geometric mean for stx+ samples (n = 20) was 3.37 MPN g-1 (0.53 log MPN g-1) with a maxi-

mum value of 6,800 MPN g-1 (3.83 log MPN g-1). This research was part of a larger nation-

wide geographical study on the prevalence and concentration of STEC in bovine manure to

help guide regulations on feasible pre-harvest intervals for the application of untreated

BSAAO.

Introduction

Outbreaks due to Shiga toxin-producing Escherichia coli (STEC) are costly to the economy

and can affect both the public sector as well as growers/shippers in the produce industry. It has

been estimated that over 265,000 illnesses occur annually in the United States (US) due to

STEC, with over 3,600 hospitalizations and 30 deaths [1]. In 2018, it was reported that con-

firmed and suspected foodborne incidences of STEC accounted for 203 (5%) outbreaks, 2,465

(3%) illnesses, 693 (13%) hospitalizations, and 13 (9%) deaths from 2009 to 2015 in the US (2).
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These figures include all food types, though produce-related outbreaks represent a substantial

portion of the STEC foodborne outbreaks in the US [2, 3]. From 2010 to 2015, STEC caused

48 known produce-related outbreaks and 942 known cases in the US, with a median of 15

cases per produce-related outbreak during this period [4]. A STEC outbreak linked to spinach

in 2006 resulted in 199 illnesses, 102 hospitalizations, and three deaths [5]. In 2018, a STEC

outbreak linked to romaine lettuce exceeded the case count of 2006, resulting in 210 illnesses,

96 hospitalizations, and five deaths [6].

There are many potential routes of produce contamination that may lead to foodborne ill-

ness, one of which is contamination through the application of untreated manure to soils.

Application of bovine manure to soil can benefit both livestock/dairy and produce farmers.

Manure is a commonly added organic soil amendment used to prevent soil erosion, replenish

nutrients within the soil, and maintain soil quality each growing season following the repeated

use of agricultural lands [7]. However, soils amended with untreated BSAAO present a micro-

bial food safety risk [8, 9], especially if these amendments are not handled, transported, stored,

and applied properly [10].

In the US Food Safety Modernization Act (FSMA), the Produce Safety Rule (PSR) has been

set forth to regulate the growing of fresh produce [11]. Subpart F of the PSR focuses on the use

of biological soil amendments of animal origin (BSAAO), which is defined as “a biological soil

amendment which consists, in whole or in part, of materials of animal origin, such as manure

or non-fecal animal byproducts including animal mortalities, or table waste, alone or in com-

bination” [12]. In 2013, it was proposed that farmers would be required to wait nine months

after application of untreated BSAAO to harvest produce [10]. This resulted in negative feed-

back from farmers [10], and consequently the minimum harvest interval for untreated

BSAAO is reserved until a feasible and data-driven harvest interval can be set [12]. Previous

research on STEC prevalence in bovine manure is available, but few studies assessing STEC

concentrations in manure are available [13]. In this study, stx (stx1 and stx2) and rfbE (specific

for E. coli O157) were targeted to obtain prevalence data in manure samples. Most probable

number (MPN) g-1 values were determined for stx+ samples. Samples which were presumptive

positive for stx were further screened for eae to determine the prevalence for atypical entero-

pathogenic E. coli (aEPEC).

The stx genes are major virulence factors of STEC and thus are the primary genes targeted

for molecular STEC detection assays [14]. The eae gene, which codes for the intestinal adher-

ence factor intimin, is also commonly used to screen for STEC [15]. The rfbE gene specific for

O157 lipopolysaccharide has also been established as a molecular marker to detect E. coli O157

[15, 16]. E. coli O157 is the major STEC serogroup known to cause illness and has been associ-

ated with numerous produce-related foodborne outbreaks and is commonly associated with

severe complications in illness [17–20].

The prevalence of STEC in bovine manure has been assessed in previous studies, with a

wide range of prevalence rates documented in beef and dairy production systems [17, 21–22].

Despite previous research, an assessment of multiple farms in several geographical regions for

stx and rfbE presence in bovine manure was warranted. The objectives of this research project

were to determine the prevalence and concentration of STEC, and the prevalence of E. coli
O157 in bovine manure on Florida livestock and dairy farms.

Materials and methods

Sample collection and non-selective enrichment

Manure samples were collected from a total of 74 bovine manure storage locations at 12 farms

(10 dairy farms, one beef feedlot, and one livestock market). Each farm was sampled twice
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from August 2017 to May 2018. Farm visits were made based on the willingness and availabil-

ity of the farmers participating in the study. Three to four storage locations were sampled per

farm; storage locations include piles (aggregated, stacked manure), lagoon (liquid manure

storage basin), barn (unmoved, unstacked manure), and/or screened solid (dewatered

manure) samples. Seven samples were collected from each storage location. Surface or subsur-

face samples were obtained for all pile and screened solid samples, and for barn samples when

applicable. The following information was collected from each farm: farm type (beef, dairy,

livestock market), sample temperature, sample depth, storage location, storage age, time of

manure pile sitting undisturbed, pile size, degree of protection from birds, equipment cleaning

frequency, and any potential external influences on the pile when applicable. Relative humid-

ity, wind speed, and precipitation (past 24 h) were obtained from the Florida Automated

Weather Network (FAWN) (http://fawn.ifas.ufl.edu).

A total of 518 bovine manure samples were evaluated. Thirty grams of sample were added

to 270 mL of tryptic soy broth (TSB; Becton, Dickinson and Company, Sparks, MD) in 24 oz.

Whirl-Pak sterile filter (0.33 mm) bags (Teel Plastics, Inc., Baraboo, WI) to keep liquid sepa-

rate from solids. Each sample bag was rubbed by hand for 1 min to obtain a mixed manure-

TSB slurry. Bags with the manure-TSB slurry were incubated in a GYROMAX 747 orbital

shaking incubator (Amerex Instruments, Inc., Lafayette, CA) for 2 h at 25˚C, 100 rpm followed

by 8 h at 42˚C, 100 rpm.

Selective enrichment for STEC (mEHEC method)

Once sample bags (30 g + 270 mL of TSB) were incubated, 1 mL of manure-TSB slurry was

added to 9 mL of mEHEC (Biocontrol, Bellevue, WA) broth and incubated for 12 h at 42˚C

[23, 24]. Enrichments in mEHEC broth were streaked for isolation on CHROMagar STEC

(CHROMagar Microbiology, Paris, France) and incubated for 24 h at 37˚C (Fig 1). Up to 12

presumptive positive colonies on CHROMagar STEC were re-streaked until pure colonies

were obtained.

DNA extraction

A loopful of presumptive positive colonies were added to a sterile 1.5 mL centrifuge tube con-

taining 100 μL of DNA grade water (Thermo Fisher Scientific, Fair Lawn, NJ), and vortexed

for 10 s. Tubes were heated at 100˚C for 20 min, and centrifuged for 10 min at 12,000 x g. Fol-

lowing centrifugation, supernatant with DNA was obtained and stored at -20˚C until further

analysis.

Detection of stx1 and stx2 by quantitative PCR

DNA from presumptive positive colonies was screened for stx1 and stx2. Quantitative PCR

(qPCR) was performed on a Bio-Rad iCycler Optical Model (Bio-Rad, Hercules, CA) in a

20 μL reaction with 2 μL of DNA, 10 μL iTaq universal probes supermix (Bio-Rad), 0.3 μM of

each primer and 0.25 μM of each probe, and 7.6 μL of sterile DNA grade water. The qPCR

reaction was performed under the following conditions: 95˚C for 20 s, 40 cycles of 95˚C for 3

s, 60˚C for 30 s, followed by a 4˚C hold. The stx1 and stx2 primer and probe sequences

(Table 1) used in this analysis were obtained from Cooley et al. [25] and synthesized by IDT

(Integrated DNA Technologies, Inc., Skokie, IL). If a sample was positive for stx1 and/or stx2,

the respective mEHEC reservoirs were evaluated for stx1 and stx2 by qPCR to determine the

MPN g-1 for the stx1 and/or stx2 positive manure sample.
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Sample preparation for potential positive samples and MPN g-1 analysis

Prior to the initial incubation of the sample bags (30 g + 270 mL of TSB), 5.5 mL of the slurry

was transferred to each of the first four rows (four replicates) of the first column of a reservoir

(4 X 6 wells). The first column thus only received the slurry, while columns 2–6 were filled

with 4.5 mL of TSB for serial dilution. Once samples were added to the first column of the

respective reservoirs, 10-fold serial dilutions were performed in columns 2–6 by transferring

0.5 mL from the previous column to the adjacent columns with a multi-channel pipette. After

reservoirs were incubated simultaneously with the sample bags, 0.5 mL of incubated TSB

broth from each well was transferred to respective wells in separate reservoirs containing 4.5

mL of mEHEC broth in each well. The mEHEC reservoirs were incubated simultaneously with

the mEHEC tubes for 12 h at 42˚C and held at 6˚C until stx presence was determined following

mEHEC tube analysis. This scheme provided a 4 X 6 dilution MPN reservoir to enumerate

any positive samples.

Fig 1. Flow diagram of mEHEC and IMS-O157 methods. The corresponding mEHEC reservoirs for stx+ samples

were screened for stx to obtain an MPN g-1 value.

https://doi.org/10.1371/journal.pone.0217445.g001
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Determination of the MPN g-1 of stx1 and/or stx2+ samples

Once a stx1 and/or stx2+ sample was confirmed by qPCR, the corresponding mEHEC

reservoirs from stx1/stx2+ samples were further evaluated to determine the MPN g-1

value. An aliquot was drawn from each of the 24 wells with a multi-channel pipette and

streaked onto CHROMagar STEC, and plates were incubated as previously described.

Colonies were isolated, and DNA was extracted and evaluated for stx1/stx2 via qPCR as

previously described. Once stx presence was determined for each well, MPN calculations

were performed using an MPN calculator [26] to determine the MPN g-1 value. For

MPNs with all 24 wells negative, the single positive from the 30 g sample was used to cal-

culate the MPN g-1, which resulted in a limit of detection (LOD) of 0.089 MPN g-1 (-1.05

log MPN g-1).

Immunomagnetic separation (IMS) and isolation of E. coli O157

(IMS-O157 method)

Following the incubation of TSB bags as previously described, 1 mL of enrichment was

added to a 1.5 mL tube containing 20 μL of DynabeadsMAX anti E. coli O157 (Invitrogen,

Frederick, MD) and vortexed for 10 s. Tubes were placed in an MPC-S rack, inverted sev-

eral times, and incubated at room temperature for 10 min with gentle agitation. Following

incubation, a magnetic plate was inserted into the MPC-S rack, inverted several times,

and incubated for 3 min. Sample supernatant was aspirated, and the magnetic plate was

removed from the MPC-S rack. One mL of 1x wash buffer (Invitrogen, Frederick, MD)

was added to each tube, inverted several times, and incubated for 3 min with the magnetic

plate. The wash step was repeated twice, and after the third wash the beads were re-sus-

pended in 100 μL of wash buffer. Re-suspended cells were streaked on BBLMacConkey II

Agar with Sorbitol (Becton, Dickinson and Company, Sparks, MD) supplemented with

cefixime (0.05 μg/mL) (US Pharmacopeia, Rockville, MD) and potassium tellurite (2.5 μg/

mL) (Chem-Impex International, Inc., Wood Dale, IL) (CT-SMAC) and Rainbow Agar

O157 (BIOLOG, Inc., Hayward, CA). Plates were incubated for 24 h at 37˚C, and pre-

sumptive positive E. coli O157 colonies on CT-SMAC and Rainbow Agar O157 [27] were

re-streaked on respective plates and incubated for 24 h at 37˚C.

Table 1. Primers and probes for the detection of stx1, stx2, rfbE and eae genes.

Primer Sequence Reference

stx1-f CAT-CGC-GAG-TTG-CCA-GAA-T [26]

stx1-r TCC-CAC-GGA-CTC-TTC-CAT-CT [26]

stx1-p /56-FAM/ATC TGA TGA/ZEN/TTT CCT TCT ATG TGT CCG/3IABkFQ/ [26]

stx2-f GGA-CCA-CAT-CGG-TGT-CTG-TTA-TT [26]

stx2-r CCC-TCG-TAT-ATC-CAC-AGC-AAA-AT [26]

stx2-p /56-JOEN/CCA CAC CCC/ZEN/ACC GGC AGT 3IABkFQ/ [26]

rfbE-f CTG-TCC-ACA-CGA-TGC-CAA-TG [59]

rfbE-r CGA-TAG-GCT-GGG-GAA-ACT-AGG [59]

rfbE-p /56-FAM/TTA-ATT-CCA-CGC-CAA-CCA-AGA-TCC-TCA/3IABkFQ/ [59]

eae-f AAA-GCG-GGA-GTC-AAT-GTA-ACG [15]

eae-r GGC-GAT-TAC-GCG-AAA-GAT-AC ([15]

eae-p� /5HEX/CTC-TGC-AGA-TTA-ACC-TCT-GCC-G/3BHQ_1/ [15]

�Probe fluorophore and quencher modified from Noll et al. [15].

https://doi.org/10.1371/journal.pone.0217445.t001
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Quantitative PCR on E. coli O157 and additional analyses

DNA extraction was performed as previously described from isolated presumptive positive

colonies and stored at -20˚C until further analysis. Quantitative PCR was performed following

the methods described in Jacob et al. [28] on a Bio-Rad iCycler Optical Model (Bio-Rad). The

20 μL PCR reaction consisted of 2 μL of DNA, 10 μL iTaq universal probes supermix (Bio-

Rad), 0.5 μM of primers and probes, and 5 μL of sterile DNA grade water and was performed

under the following conditions: 95˚C for 10 min, 45 cycles of 95˚C for 15 s, 56˚C for 20 s, 72˚C

for 40 s, followed by a 4˚C hold. The primers and probe targeting the rfbE gene were obtained

from Jacob et al. [28] and are available in Table 1. Sample DNA that was positive for E. coli
O157 was screened for stx1 and stx2 via qPCR to determine if positive E. coli O157 isolates also

contained stx1 and/or stx2. Sample DNA from the mEHEC and IMS-O157 methods was

screened for eae presence via qPCR, and primers and probes were obtained from Noll et al.

[15] and are listed in Table 1.

Statistical analysis

Prevalence was determined as the number of positive samples for each gene divided by the

total number of samples evaluated. A two-sided Wilcoxon test was performed to compare the

effect of sample temperature and sample depth on the presence of stx and rfbE. Nonparametric

correlation tests (Spearman) were used to compare log transformed MPN g-1 values with sam-

ple temperature and depth. Fisher’s exact tests adjusted with Hommel’s modification of the

Bonferroni procedure were performed for stx, stx1, stx2, and rfbE presence based on storage

location, pile age, and for surface versus subsurface samples. A significance level (α) of 0.05

was used for all analyses. All statistical analyses were performed using R version 3.4.3 (http://

www.R-project.org).

Results

Prevalence of stx1/stx2 and rfbE in manure samples

Of the 518 samples evaluated, 20 (4%) stx1 and/or stx2 positive samples were identified in the

mEHEC method alone. There were 97 (19%) rfbE+ samples identified with the IMS-O157

method. Sample DNA that was rfbE+ was further analyzed for the presence of stx1 and stx2,

and 26 additional stx+ samples were identified. Including the mEHEC and IMS-O157 meth-

ods, stx1 and/or stx2 was detected in 46 samples (9% prevalence) (12 stx1+/stx2+; eight stx1
+/stx2-; and 26 stx1-/stx2+). This resulted in a prevalence of 4% (20/518) for stx1 and 7% (38/

518) for stx2. The prevalence for stx1/2 in samples increased by a factor of 2.3 when combining

both methods, and all data analyses included stx+ samples from both methods.

Of the 74 storage locations tested, 26 (35%) were stx1 and/or stx2 positive, and 43 (58%)

were rfbE+. Of the 12 farms and 24 farm visits, 11 farms (92%) and 15 farm visits (63%)

resulted in a stx+ sample, and stx was found during both visits for four farms (33%). Only one

of the 12 farms (8%) was stx- on both visits. Twelve farms (100%) and 23 of 24 farm visits

(96%) resulted in at least one rfbE+ sample.

Prevalence of eae in bovine manure samples

There were seven eae+ samples detected among the 20 stx1/2+ samples originally identified in

the mEHEC method, and 26 additional eae+ samples detected among the 27 stx+ samples

identified following the IMS-O157 method. This resulted in a total of 10 stx1+/stx2+/eae+ sam-

ples; four stx1+/stx2-/eae+ samples; 19 stx1-/stx2+/eae+ samples; two stx1+/stx2+/eae- sam-

ples; six stx1+/stx2-/eae- samples; and nine stx1-/stx2+/eae- samples. Samples negative for stx
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were evaluated for eae, which resulted in a total of 28 stx1-/stx2-/eae+ samples, 14 (50%) of

which were from a single farm visit, and 13 (46%) were from a single farm found during the

two visits. Of the 97 rfbE+ samples, there were 27 stx+/eae+, two stx+/eae-, 12 stx-/eae+, and

56 stx-/eae- samples.

Most probable number stx+ values in bovine manure samples

Of the 20 stx+ samples evaluated by the MPN assay, the geometric mean was 3.37 MPN g-1

(0.53 log MPN g-1) with a maximum value of 6,800 MPN g-1 (3.83 log MPN g-1) (Table 2). Fif-

teen of the 20 MPN values (75%) were below 23 MPN g-1 (<1.36 log MPN g-1). Of the 20

MPN values, four were rfbE+ (Table 2).

Presence of stx, rfbE based on sample temperatures and depth

Pile, screened solids, and barn samples were aggregated to determine the influence of tempera-

ture on stx and rfbE presence in solid-base samples (pile, screened solids, barn). There was a

significant difference in rfbE presence based on subsurface sample temperatures (P = 0.0075),

with rfbE+ and rfbE- samples occurring at an average of 26.5˚C and 31.1˚C, respectively.

There was no significant difference in stx presence based on subsurface sample temperatures

(P = 0.77). There was a significant difference in rfbE presence based on lagoon sample temper-

atures (P = 0.047), with rfbE+ and rfbE- samples averaging 24.9˚C and 25.9˚C, respectively.

There was no significant difference in stx presence based on subsurface sample temperatures

(P = 0.91).

Table 2. MPN g-1 values for stx+ bovine manure samples with 95% confidence intervals.

Manure Type Storage Location stx1 stx2 rfbE eae MPN g-1� LL�� UL��

Feedlot Lagoon + - - - 220 (2.34) 71 710

Livestock Market Pile + + - - 6800 (3.83) N/A N/A

Livestock Market Pile + + + + 110 (2.04) 31 390

Livestock Market Pile + - - - 1.2 (0.08) 0.3 4.8

Livestock Market Pile - + - - 0.91 (-0.04) 0.2 4.2

Dairy Lagoon - + - - 1.6 (0.20) 0.45 5.6

Dairy Lagoon - + - - 0.089 (-1.05) 0.009 0.89

Dairy Pile + - + + 0.089 (-1.05) 0.009 0.89

Dairy Pile + + - - 23 (1.36) 7.4 72

Dairy Screened solids - + - - 47 (1.67) 16 140

Dairy Screened solids - + - - 9.6 (0.98) 2.8 33

Dairy Screened solids - + - - 5.5 (0.74) 1.8 17

Dairy Screened solids - + - - 3.3 (0.52) 1.1 9.7

Dairy Screened solids - + + + 0.45 (-0.35) 0.057 3.5

Dairy Barn - + - - 9.4 (0.97) 2.7 32

Dairy Barn + - - - 3.2 (0.51) 1.1 9.5

Dairy Barn + - - - 0.9 (-0.05) 0.19 4.2

Dairy Barn - + - - 0.9 (-0.05) 0.19 4.2

Dairy Barn + - - - 0.089 (-1.05) 0.009 0.89

Dairy Barn + - + - 0.089 (-1.05) 0.009 0.89

geometric mean 3.37 (0.53)

�MPN g-1 (log MPN g-1)

��LL-lower limit; ��UL-upper limit, 95% confidence interval for MPN g-1 values

https://doi.org/10.1371/journal.pone.0217445.t002

Prevalence of STEC in bovine manure on Florida farms

PLOS ONE | https://doi.org/10.1371/journal.pone.0217445 May 24, 2019 7 / 15

https://doi.org/10.1371/journal.pone.0217445.t002
https://doi.org/10.1371/journal.pone.0217445


There was a significant difference in stx presence based on solid-base sample depth

(P = 0.027), with stx+ and stx- samples occurring at an average depth of 6.5 and 17.7 cm,

respectively. There was no significant difference in rfbE presence based on solid-base sample

depth (P = 0.37). In lagoon samples, there was no significant difference in stx (P = 0.38), or

rfbE (P = 0.65) presence based on lagoon sample depth.

Manure storage locations and stx and rfbE+ samples

Manure storage locations were grouped into four categories–pile (n = 196), lagoon (n = 126),

barn (n = 112) and screened solids (n = 84). There was a significant difference in stx and rfbE pres-

ence based on storage location. Pile samples (6%) had significantly lower stx presence versus

lagoon (13%) and barn (11%) samples. Pile (21%) and lagoon (27%) samples were significantly

higher in rfbE presence in comparison to barn (9%) and screened solid (8%) samples. No signifi-

cant difference in stx1 or stx2 presence based on storage location was observed (Table 3).

Screened solid (25 surface, 59 subsurface) and pile (56 surface, 140 subsurface) storage loca-

tions were used to compare 81 surface (depth = 0 cm) and 199 subsurface (depth> 0 cm) sam-

ples. Lagoon (liquid manure storage basin) and barn samples (unmoved, unstacked manure)

were not classified as surface or subsurface samples and are not included in this comparison.

Of the 81 surface samples, five (6%) were stx+ and 16 (20%) were rfbE+. Of the 199 subsurface

samples, 13 (6.5%) were stx+ and 37 (19%) were rfbE+. No significant differences were

observed between surface and subsurface samples based on stx, stx1, stx2, or rfbE presence. Of

the 518 total samples analyzed, 371 had information available on storage age. Samples were

divided into age categories of 0–1 (n = 170) 2–5 (n = 53), 10–20 (n = 32) and >20 days old

(n = 42). The highest stx, stx1 and stx2 percentages were seen at the 10–20 day storage age. The

highest percentage for rfbE was seen at the 6–9 day storage age. While minor variations in sig-

nificance were seen in stx and stx2 percentages, no significant difference were noted for stx1 or

rfbE percentage based on storage age (Table 4).

Table 3. Percentage of stx, stx1, stx2 and rfbE+ samples based on manure storage location.

Target gene Positives by Manure Storage Location (%)

Pile Lagoon Barn Screened Solids

(n = 196) (n = 126) (n = 112) (n = 84)

stx 6a� 11b 13b 8ab

stx1 4a 4a 5a 1a

stx2 4a 10a 9a 8a

rfbE 21a 27a 9b 8b

�Samples with the same letter are not statistically significant across rows (P > 0.05).

https://doi.org/10.1371/journal.pone.0217445.t003

Table 4. Percentage of stx, stx1, stx2 and rfbE+ samples based on storage age.

Positives by Storage Age (Days) (%)

Target gene 0–1

(n = 170)

2–5

(n = 53)

6–9

(n = 74)

10–20

(n = 32)

over 20

(n = 42)

stx 10ab� 2ab 11ab 19a 0b

stx1 2a 0a 7a 9a 0a

stx2 9ab 2bc 10ab 16a 0c

rfbE 15a 15a 25a 13a 5a

�Samples with the same letter are not statistically significant across rows (P> 0.05).

https://doi.org/10.1371/journal.pone.0217445.t004
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Discussion

This study was performed to determine the prevalence and concentration of STEC in bovine

manure in the Southeastern region of the US. There was at least one stx+ sample detected at 11

out of the 12 (92%) farms evaluated. All 12 farms were rfbE+ at least once during the two farm

visits. Among positive farms, a prevalence rate of 9% (46/518) for stx1/stx2 and 19% (97/518)

for E. coli O157 was observed in bovine manure samples. Previous studies have observed a

wide range of prevalence rates of STEC in bovine manure [29–38]. Factors such as high levels

of pathogens per gram of feces, [38], persistent shedders [39], seasonality [29], and other fac-

tors may influence STEC prevalence and concentrations, although discerning the extent of

these factors on an individual basis is difficult. The prevalence of E. coli O157 in feces is likely

underestimated, especially if STEC concentrations are below the LOD [40] as the detection

methods utilized have different levels of sensitivity and specificity [41].

Many manure surveys do not evaluate the concentration of STEC in manure samples, and

studies that do quantify STEC are often limited by the low prevalence of positive samples that

can be further evaluated. In this study, low MPN g-1 values [geometric mean of 3.37 MPN g-1

(0.53 log MPN g-1); (n = 20)] from STEC in bovine manure were observed. Omisakin et al.

[40] surveyed an abattoir in the UK and found that 7.5% of cattle feces samples (n = 586) were

positive for E. coli O157, and 27 of the 44 samples (61%) had an E. coli O157 concentration

below the LOD (2 log CFU g-1), with 4 of 44 at a concentration above 4 log CFU g-1. Fegan

et al. [42] observed geometric means of 130 MPN g-1 and 13 of MPN g-1 of E. coli O157 in 12

grain-fed and 10 pasture-fed cattle feces samples in Australian, respectively. Fegan et al. [33]

compared E. coli O157 levels between lot-fed and grass-fed cattle in Australia and observed

that 67% of the total fecal samples contained below 10 MPN g-1, with a maximum value of 1.1

x 105 MPN g-1. Hutchison et al. [43] found a prevalence rate of 13.2 and 9.1% E. coli O157 in

fresh (n = 810) and stored (n = 429) bovine manure samples in the UK, respectively, and con-

centrations of 2.9 x 106 and 8.6 x 103 CFU g-1 for fresh (n = 107) and stored (n = 39) samples,

respectively. Brichta-Harhay et al. [31] observed E. coli O157:H7 in feedlot cattle feces at a

median of 1.6 x 103 CFU g-1. Matthews et al. [44] postulated that fewer cattle shedding high

levels of STEC may be riskier than a large number of cattle shedding lower levels. As additional

MPN g-1 data from other studies becomes available, more insights into STEC levels in bovine

manure can help predict the risks of untreated BSAAO.

The two detection techniques used in this study were the mEHEC method for recovery of

stx+ samples, and the IMS-O157 method for E. coli O157 screening. Twenty-six additional

samples were determined positive for stx1 and/or stx2 when E. coli O157+ samples were later

evaluated for stx. The discrepancy seen between prevalence data from mEHEC and IMS-O157

methods could be due to several reasons. Immunomagnetic separation was used for the

IMS-O157 method to recover cells from the non-selective TSB enrichment, which helped

remove debris and other cells from the suspension prior to streaking beads for isolation, which

was not implemented for the mEHEC method. For both methods, it was assumed that if STEC

was present in the initial sample, it would remain viable and grow in the presence of other nat-

ural microflora. Additionally, it was assumed that only STEC grows in the mEHEC broth,

though a high number of false presumptive positive isolates grew on CHROMagarSTEC

throughout the present study. However, it is possible that STEC lost the lambdoid-encoded stx
gene(s) on their chromosome during the isolation process [45, 46].

Karch et al. [45] observed the loss of stx during the transfer of stx+ colonies to both broth

and agar media, regardless of the agar type used for transfer. Among the 45 isolates with Stx

+ titers and confirmation of stx+ DNA prior to subcultivation, 15 were negative for cytotoxic-

ity and stx following cultivation [45]. Similarly, Joris et al. [47] evaluated 40 stx+ fecal samples
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for stx integrity and observed that 12 of the 40 isolates exhibited a loss of either stx1 or stx2 fol-

lowing a single subcultivation step. The loss of stx during the isolation process may result in

lower prevalence level estimates for STEC and should be considered. Of the 97 E. coli O157

+ samples in this study, 68 (70%) were negative for stx1 and stx2. Wetzel and LeJeune [46]

observed 17 of 81 (21%) stx- E. coli O157:H7 isolates from bovine manure samples. Isolates

that were rfbE+/stx- could be due to stx loss in the environment or during the culturing

process.

Samples positive for stx2 are an important risk factor due to their association with more

severe human illness versus with stx1 [48]. Stx2 toxin has been shown to be 1,000 times more

potent than Stx1 against human renal microvascular endothelial cells [49], and are more likely

to result in HUS [50]. Samples negative for stx1 or stx2 were further evaluated for eae presence

which revealed several stx-/eae+ samples. Not all samples had presumptive positive colonies

on each agar type, therefore not all samples could be evaluated for eae presence. Jay-Russell

et al. [51] obtained 278 isolates from dog and coyote feces collected near the Southwestern US/

Mexico border as presumptive O26, O103, O145, O157, all of which were negative for stx1 and

stx2. Upon further analysis, 18 isolates were identified as atypical enteropathogenic E. coli
(aEPEC) that were stx1-/stx2-/eaeA+ [51]. A high number of aEPEC strains may lead to false

positives and are still a risk factor with the potential to obtain stx genes [52].

Researchers implement different protocols for sample collection, preparation, isolation,

and detection assays to determine STEC prevalence in manure [53]. Previous research has

shown that utilizing more than one media type can improve the recovery rate of STEC [31,

54]. The genetic mechanisms that lead to certain phenotypes on selective agar is not yet eluci-

dated, and it is well recognized that the phenotype of STEC colonies varies greatly among dif-

ferent types of selective agar. Cooley et al. [31] found that only 9.3% (56/599) of non-O157

STEC+ samples were identified as positive on all three agar media types evaluated (Rainbow

Agar O157, CHROMagar O157, and modified sheep blood agar). The thorough sampling

scheme performed by Cooley et al. [31] exemplifies the need for multiple media types to more

accurately isolate and identify STEC in environmental samples. In the present study, CHRO-

Magarwas utilized for recovery of STEC following enrichment in mEHEC broth, and numer-

ous presumptive positive colonies were not positive for stx1 or stx2.

Several researchers have reported that 81.6 to 90% of the STEC isolates evaluated in their

analysis could be identified on CHROMagar STEC in pure culture [55–57], which may be

lower for environmental samples due to inhibition by background microbiota. For example,

inoculation studies revealed the efficacy of CHROMagarSTEC for recovery ranged from 30 to

98% depending on the stool type and isolate [58]. Considering the previous evaluations of

CHROMagarSTEC, modifications and/or alternatives to all media used for environmental

sampling may be necessary to further optimize manure sampling protocols.

The sample temperature and depth were recorded for each sample collected in this study.

There was a significant difference in rfbE presence based on solid-base sample temperatures as

well as lagoon sample temperatures, but no significant difference in stx presence based on sub-

surface or lagoon sample temperatures. It should be noted that although significant, a minor

difference in temperature in lagoon samples based on rfbE presence. There was a significance

in stx presence based on sample depth for solid-base samples. Additional data is needed to

determine how storage methods can influence STEC survival. Significant differences in both

stx and rfbE presence were observed based on manure storage method. Farm practices can

vary widely among collection sites, which makes it even more difficult to generalize and deter-

mine a baseline prevalence in bovine manure due to differences in manure storage, treatment,

and time of manure sitting undisturbed. Statistical analysis was not performed on equipment

cleaning practices, as only four of 12 farmers provided information on the frequency of
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cleaning manure-handling equipment. Of these four farms, two cleaned equipment daily, one

cleaned equipment weekly, and one cleaned equipment bi-monthly. None of the farms visited

had a means of manure pile protection from birds, rodents or other pests. Equipment cleaning

and segregation is an important step to limit cross contamination on the farm between the

manure storage/treatment areas and the rest of the farm [59], especially if grown in close prox-

imity to produce farms or if equipment is used near the time of harvest.

Foodborne outbreaks continue to be problematic for growers, processors, and consumers

in the produce industry [2]. This research provides data on STEC prevalence and concentra-

tion in bovine manure collected from farms in Florida. Conclusions based on prevalence of stx
and rfbE in bovine manure samples should also consider the available selective media that was

used in an attempt to recover STEC from these environmental samples as well as the potential

for stx loss during the isolation process. Additional data from different geographical regions

will help determine STEC levels in bovine manure across the US. Ultimately, this data will be

used to determine the risk associated with the application of untreated BSAAO in the PSR. In

addition to following future regulations on harvest intervals, growers should be aware of the

handling practices and manure management strategies and adjust harvest intervals as neces-

sary to limit contamination of produce from untreated BSAAO.
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