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Abstract: Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main
origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and
inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes,
obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance,
has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic
pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing
plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an
approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors
involved in the control of many physiological processes. Among them, Rev-erbs and RORs control
metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss
the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock
components in a (chrono-)therapeutic approach in order to treat CVD.

Keywords: atherosclerosis; cardiovascular diseases; circadian rhythm; chronobiology; nuclear recep-
tors; Rev-erb; ROR; inflammation

1. Introduction

In 2016, 17.9 million people died from CVD, which is 31% of deaths worldwide, with
more than three out of four occurring in low- and mid-income countries. Despite a huge
effort to prevent and treat CVDs, they are still the first cause of death worldwide (WHO
and [1]). Strikingly, because 85% of these deaths are due to ischemic heart diseases and
stroke, according to the WHO, atherosclerosis may be seen as the primary cause of CVDs,
even if some strokes may result from events independent of plaque rupture.

Atherosclerosis is now commonly defined as a chronic inflammatory disease of the
vascular wall consisting in the internalization of lipids, mainly small dense LDL and
VLDL-remnants [1], that trigger the recruitment of leucocytes, including neutrophils, mono-
cytes/macrophages, dendritic cells, T cells, B cells and mastocytes [2,3] (Figure 1). Lipids
usually accumulate in the vasculature in areas where the blood flow is disturbed [4,5], thus
facilitating endothelium damage and promoting endothelial dysfunction [6,7]. Endothelial
cell impairment promotes LDL internalization, leucocyte recruitment and the oxidation
of LDL [8], which are preferentially taken up by recruited macrophages, becoming foam
cells (Figure 1). Foam cells then die by apoptosis and necrosis, releasing their lipid and
cellular content, thereby contributing to the formation of the necrotic core [9]. In addition,
macrophages produce both cytokines that activate T cells and subsequent interferon γ,
which induces the proliferation and migration of smooth muscle cells toward the suben-
dothelial area in order to form a fibrous cap that stabilizes the necrotic core (Figure 1).
However, as macrophages produce matrix metalloproteases, this fibrous cap becomes
thinner, thus destabilizing the plaque, which becomes prone to rupture [10]. In addition,
processes involved in plaque complexification, including intimal calcification and neovas-
cularization, are also important events that promote plaque rupture, thrombus formation
and acute vascular events [11,12] (Figure 1).
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Figure 1. The clock and atherogenesis. Atherosclerosis is triggered by small dense low-density lipoproteins (LDL) and 
ApoC-III-rich remnant particles that accumulate in regions where the blow flow is disturbed. Low shear stress usually 
induces a mechanic stress, promoting endothelial dysfunction characterized by an increase in reactive oxygen species 
(ROS) production, secretion of cytokines, including monocyte chemoattractant protein 1 (MCP1), production of adhesion 
molecules, including vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), and 
increased permeability to LDL and immune cells. Immune cells, such as neutrophils, monocyte-derived macrophages, T 
cells, etc., are then recruited to the subendothelial space. Infiltrated LDL are oxidized by reactive oxygen species (ROS) 
produced by endothelial cells (ECs) and macrophages. Oxidized LDL (oxLDL) are preferentially taken up by macrophages 
through the scavenger receptor CD36 for cholesterol recycling through the reverse cholesterol transport (RCT). In this 
pathway, ATP-binding cassette ABCA1 and ABCG1 mediate the efflux of cholesterol from the macrophage to ApoA1 and 
preβ-high-density lipoprotein (HDL). Cholesterol is transported back to the liver by HDL, where it is recycled in other 
lipoproteins or used as substrate in the biliary acid biosynthetic pathway. When RCT is insufficient and macrophages 
overwhelmed by massive cholesterol uptake, macrophages eventually become foam cells, where the accumulation of li-
pids leads to necrosis and apoptosis, thus forming the necrotic core. In addition to cholesterol metabolism, macrophages 
also produce cytokines, such as NLRP3 inflammasome-processed IL-18 and IL-1β interleukins, which, together with IL-
12, activate the T cell-dependent production of interferon (IFN) γ, among others. IFNγ stimulates the proliferation and the 
migration of smooth muscle cells (SMC) toward the necrotic core in order to stabilize it by secreting fibers, including 
collagen, thus forming the fibrous cap. Each process or molecule that is regulated by one or several clock components is 
represented by a clock. Green arrow: induction. 

Although atherogenesis is a natural process of vascular aging, many environmental 
and genetic factors, such as diabetes, familial hypercholesterolemia, hypertension, smok-
ing, a sedentary lifestyle and obesity, were identified as important risk factors that accel-
erate this pathogenic process. Interestingly, physiological parameters of the cardiovascu-
lar system, including blood pressure and heart rate, display circadian patterns [13]. If the 
maintenance of a day–night difference in blood pressure is a feature of a healthy cardio-
vascular system, clinical studies demonstrated diurnal variations in cardiovascular 
events. For instance, the thromboembolic event frequency peaks during the morning to 
noon period in humans [14], explaining the higher rate of non-fatal myocardial infarction, 

Figure 1. The clock and atherogenesis. Atherosclerosis is triggered by small dense low-density lipoproteins (LDL) and
ApoC-III-rich remnant particles that accumulate in regions where the blow flow is disturbed. Low shear stress usually
induces a mechanic stress, promoting endothelial dysfunction characterized by an increase in reactive oxygen species
(ROS) production, secretion of cytokines, including monocyte chemoattractant protein 1 (MCP1), production of adhesion
molecules, including vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), and
increased permeability to LDL and immune cells. Immune cells, such as neutrophils, monocyte-derived macrophages, T
cells, etc., are then recruited to the subendothelial space. Infiltrated LDL are oxidized by reactive oxygen species (ROS)
produced by endothelial cells (ECs) and macrophages. Oxidized LDL (oxLDL) are preferentially taken up by macrophages
through the scavenger receptor CD36 for cholesterol recycling through the reverse cholesterol transport (RCT). In this
pathway, ATP-binding cassette ABCA1 and ABCG1 mediate the efflux of cholesterol from the macrophage to ApoA1 and
preβ-high-density lipoprotein (HDL). Cholesterol is transported back to the liver by HDL, where it is recycled in other
lipoproteins or used as substrate in the biliary acid biosynthetic pathway. When RCT is insufficient and macrophages
overwhelmed by massive cholesterol uptake, macrophages eventually become foam cells, where the accumulation of lipids
leads to necrosis and apoptosis, thus forming the necrotic core. In addition to cholesterol metabolism, macrophages also
produce cytokines, such as NLRP3 inflammasome-processed IL-18 and IL-1β interleukins, which, together with IL-12,
activate the T cell-dependent production of interferon (IFN) γ, among others. IFNγ stimulates the proliferation and the
migration of smooth muscle cells (SMC) toward the necrotic core in order to stabilize it by secreting fibers, including
collagen, thus forming the fibrous cap. Each process or molecule that is regulated by one or several clock components is
represented by a clock. Green arrow: induction.

Although atherogenesis is a natural process of vascular aging, many environmental
and genetic factors, such as diabetes, familial hypercholesterolemia, hypertension, smoking,
a sedentary lifestyle and obesity, were identified as important risk factors that accelerate
this pathogenic process. Interestingly, physiological parameters of the cardiovascular
system, including blood pressure and heart rate, display circadian patterns [13]. If the
maintenance of a day–night difference in blood pressure is a feature of a healthy cardiovas-
cular system, clinical studies demonstrated diurnal variations in cardiovascular events. For
instance, the thromboembolic event frequency peaks during the morning to noon period
in humans [14], explaining the higher rate of non-fatal myocardial infarction, infarct size
increase and sudden cardiac death during this period [15–17]. Numerous studies have also
reported that clock disruption in shift workers increases cardiovascular risk factors, in-
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cluding hypertension, diabetes and dyslipidemia. Accordingly, numerous pro-atherogenic
factors, including plasma lipid levels and endothelial function, display diurnal variations
independently of food intake. Additionally, levels of circulating and infiltrated leucocytes,
as well as the activity of the immune system (cytokine secretion, pathogen response and
phagocytosis [18]), exhibit diurnal oscillations. Although these studies did not show a
direct relationship between clock disruption and atherogenesis, it was later shown that shift
work and acute circadian misalignment were associated with subclinical atherosclerosis,
measured as higher intima-media thickness and an elevated systemic inflammation, even
after adjusting for age and common risk factors [19–22]. Finally, a lower sleep duration
and fragmented sleep are independently associated with an increased risk of subclinical
coronary and non-coronary atherosclerosis [23]. The alteration of circadian rhythms is
then recognized as a new risk factor facilitating the development of atherosclerotic plaque
and acute coronary syndrome. At the molecular level, circadian oscillations in clock gene
expression are attenuated in human and mouse atherosclerotic plaque, thus suggesting a
mechanistic link between altered clock function and vascular pathologies [24,25]. Here, we
will review our current knowledge on the relationship between cardiovascular diseases
and the circadian clock. We will emphasize the impact of nuclear receptors (NRs) in this
particular interaction. NRs are transcription factors that can be bound and activated by
natural lipophilic ligands and by synthetic ligands, thus representing interesting both
pharmacological targets to modulate the clock and common atherosclerosis risk factors.

2. The Molecular Clock and the Nuclear Receptor Superfamily
2.1. The Nuclear Receptor Superfamily

The structurally conserved NRs class belongs to the transcription factor superfam-
ily [26–28]. Interestingly, in addition to the DNA binding domain commonly present
in the transcription factor structure, nuclear receptors also exhibit a ligand-binding do-
main (LBD) at their carboxy terminal extremity (Figure 2). NRs usually work as homo-
or heterodimers, which bind to a specific response element composed of two AGGTCA
half-sites separated by one to four nucleotides in the promoter of target genes (Figure 2).
These consensus half-sites are organized either as a palindromic sequence or a direct
repeat (Figure 2). The NR superfamily is sub-divided into four classes based on both
their ligand- and DNA-binding properties and on the nature of their partner [29]. The
heme receptors Rev-erb (Rev-erbα and Rev-erbβ) belong to the third NR class of adopted
receptors. The NRs from this class act as monomers or homodimers bound on direct
repeat response elements. Retinoic acid receptor-related orphan receptors (RORα, RORβ
and RORγ) belong to the fourth class of orphan nuclear receptors. The LBD mediates
ligand-dependent interactions with transcriptional co-activators, such as p300/CBP, or
co-repressors, such as NCoR or SMRT. These interactions are controlled, at the structural
level, by ligand-dependent conformational changes in the last α-helix 12 (αH12) of the
LBD, known as AF2 [30]. In absence of a ligand, co-repressors are preferentially bound to
NRs, especially those of the class II, including fatty-acid-activated peroxisome proliferator-
activated receptors (PPARs), oxysterol-activated liver X receptors (LXR), 9-cis-retinoic acid-
and all-trans-retinoic-acid-activated retinoic acid receptors (RAR), whereas ligand binding
induces a conformational change in the αH12 helix, which then triggers the release of
co-repressors, allowing co-activators to bind. If several NRs, especially those of the class II,
are then able to bind target genes in absence of a ligand and recruit co-repressors to actively
repress gene expression, class I steroid hormone receptors are usually sequestered into the
cytoplasm in absence of a ligand, and translocate into the nucleus to bind their target genes
in the presence of a ligand. Rev-erbα and Rev-erbβ lack the αH12 helix, which prevents
the recruitment of co-activators [31,32]. Instead, Rev-erbs are able to recruit co-repressors
and actively repress gene expression in absence of a ligand, and ligand binding enhances
co-repressor recruitment and the transcriptional repressive activity of Rev-erbs to further
inhibit the expression of their target genes [31,32]. Their transcriptional activity might be
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regulated by post-translational modifications, including phosphorylation, ubiquitination
and SUMOylation [33–42].
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including endothelial cells, smooth muscle cells and immune cells [43–47]. The central 
pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, where 
it receives light information from the retina via the retino-hypothalamic tract [48]. The 
SCN pacemaker synchronizes peripheral clocks using humoral and neural outputs, nota-
bly through the hypothalamic–pituitary–adrenal axis. The release of the adrenocortico-
tropic hormone (ACTH) likely cooperates with the sympathetic and parasympathetic 
nervous system to regulate the oscillatory release of clock-resetting hormones (glucocor-
ticoids, adrenaline and noradrenaline) from the adrenal gland. In addition to hormones, 
the sympathetic nervous system also directly innervates peripheral tissues and can di-

Figure 2. The structure of the nuclear receptors. (A) NRs consist of modular domains, including
a variable amino N-terminal activation domain (AF-1), a highly conserved DNA-binding domain
(DBD) and a conserved hinge region linking the DBD with the conserved ligand-binding domain
(LBD). The DBD mediates the specific recruitment of NRs monomers, homodimers and heterodimers
to their DNA response element and is involved in the dimerization of NRs with their partner, together
with the hinge region and the LBD. (B) NRs usually work as homo- or heterodimers, which bind to a
specific response element composed of two AGGTCA half-sites separated by one to four nucleotides
in the promoter of target genes. These half-sites are organized either as a palindromic sequence or a
direct repeat. The LBD mediates ligand-dependent interactions with effectors, namely transcriptional
co-activators or co-repressors. These interactions are controlled by ligand-dependent conformational
changes in the LBD. In absence of a ligand, co-repressors are preferentially bound to NRs, whereas
ligand binding induces a conformational, which then triggers the release of co-repressors, allowing
co-activators to bind.

2.2. The Biological Clock

Circadian rhythms are generated by a clock machinery present in most cell types,
including endothelial cells, smooth muscle cells and immune cells [43–47]. The central
pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, where
it receives light information from the retina via the retino-hypothalamic tract [48]. The
SCN pacemaker synchronizes peripheral clocks using humoral and neural outputs, notably
through the hypothalamic–pituitary–adrenal axis. The release of the adrenocorticotropic
hormone (ACTH) likely cooperates with the sympathetic and parasympathetic nervous
system to regulate the oscillatory release of clock-resetting hormones (glucocorticoids,
adrenaline and noradrenaline) from the adrenal gland. In addition to hormones, the
sympathetic nervous system also directly innervates peripheral tissues and can directly
modulate the activity of local clocks by controlling the rhythmic release of noradrenaline
from nerve synapses [49]. Peripheral clocks are also synchronized by other time cues, such
as food intake and exercise [49].
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2.3. The Molecular Clock

At the molecular level, the mammalian clock consists of a complex network of tran-
scription factors and interconnected transcriptional feedback loops that generate rhythms
with a period of around 24 h [50]. The positive limb is driven by the heterodimer Bmal1
(brain and muscle ARNT-like 1) and Clock (circadian locomotor output cycles kaput),
which bind to E-boxes in the promoter of its target genes, including Per and Cry clock
genes, in order to induce their transcription. Period (Per) 1/2/3 and Cryptochrome (Cry)
1/2 form the negative limb (Figure 3). Once they reach a sufficient threshold, Per and
Cry heterodimerize and translocate to the nucleus, where they quench the Bmal1–Clock
heterodimer in order to inhibit its transcriptional activity (Figure 3). In addition, the
ligand-activated nuclear receptors Rev-erbs and RORs also finely tune this circuitry at
the transcriptional level, as detailed below [46]. The clock components not only control
each other’s transcription, but also modulate the expression of numerous genes, thereby
generating rhythmic transcriptional oscillation in transcriptional programs and specific
tissue functions, including in vascular cells.
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Figure 3. The molecular clock and the nuclear receptor superfamily. The molecular clockwork is composed of transcription–
translation feedback loops. The transcription complex Bmal1/Clock induces the expression of E-box-containing genes,
including the negative regulators period (Per) and cryptochrome (Cry) (A). In turn, the Per/Cry heterodimer inhibits
the transcriptional activity of Bmal1/Clock. Once Per and Cry levels are sufficiently low, a new cycle may start. The
Clock/Bmal1 heterodimer induces the expression of the nuclear receptors Rev-erbα/β and retinoic-acid-related orphan
receptor α, β and γ (RORα/β/γ). Rev-erbs and RORs compete for the binding of RevRE/RORE elements in common target
genes to repress or activate, respectively, their transcription. The overall effect of these loops is the rhythmic expression of
these factors (as shown on (B)), thus generating a circadian expression pattern. Other nuclear receptors, which do not belong
to the core clock, are, however, able to activate (green arrow) or inhibit (red arrow) the expression and/or the activity of core
clock components. This includes the glucocorticoid receptor (GR) activated by cortisol, the peroxisome proliferator-activated
receptors (PPARs) alpha and gamma, whose natural ligands are fatty acids and derivatives, the estrogen receptor (ER) alpha,
whose natural ligands are estrogenic compounds, such as estradiol, estrone and estriol, the 9-cis-retinoic retinoid X receptor
(RXR), the all-trans-retinoic receptor and 9-cis-retinoid retinoid activated receptor (RAR) and the estrogen-related receptor
(ERR) alpha.

The rhythmicity observed in gene transcription is also due to the circadian variation
of epigenetic marks, namely histone modifications, and the subsequent chromatin orga-
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nization at regulatory regions [50,51]. Besides, dynamic spatial and temporal chromatin
architecture variation is an additional regulatory level of circadian genome function [52]. Fi-
nally, post-translational modifications, including phosphorylation [53], ubiquitination [54],
SUMOylation [55], acetylation [56] and O-Glc-NAcylation, ensure diurnal fluctuations of
the clock component stability and activity by controlling their degradation, localization
and interaction with partners. Post-translational modifications thereby tune the pace and
robustness of the clockwork [57].

2.4. Nuclear Receptors in the Heart of the Clockwork
2.4.1. Nuclear Receptors as Core Clock Components

Rev-erbs act as transcriptional repressors whereas RORs are thought to compete with
Rev-erbs for the same response element in order to induce the transcription of common
target genes, including the Bmal1-encoding gene Arntl (Figure 3A) [58]. Importantly, Rev-
erbs also repress Cry1 transcription, thus controlling both limbs of the clock in a coordinated
manner [59]. Intriguingly, because the ROR and Rev-erb NRs are not temporally co-
expressed (Figure 3B), the yin and yang of their regulatory ballet may likely originate from
a finely tuned regulation of the threshold level reached by each NR in order to supplant the
other and to occupy their common response elements. Indeed, Rev-erb isotypes harbor a
strong circadian rhythmicity in their abundance, leading to a rhythmic competition for the
binding to the Arntl promoter that contributes to Bmal1 oscillations. Further investigations
are needed to fully elucidate these underlying temporal mechanisms.

2.4.2. Nuclear Hormone Receptors as Extrinsic Clock Modulators

In addition to Rev-erbs and RORs, other NRs, including the glucocorticoid receptor
GR, are also able to control the clock [60,61] (Figure 3). The GR is activated by glucocorti-
coids, such as the human cortisone or the mouse corticosterone. Its production is located in
the adrenal gland and is under the clock-dependent regulation of the adrenocorticotropic
hormone, indicating that the glucocorticoid levels are a clock-regulated process [62]. In-
deed, the circulating levels of the human cortisone or the mouse corticosterone display
circadian rhythmicity, with peak levels during the onset of the activity period, indicating
that the activation of the GR is circadian. Apart from its anti-inflammatory properties, a
pivotal role of the GR in the clock machinery regulation has been uncovered in peripheral
tissues. Indeed, the elevation of the glucocorticoid during the beginning of the activity
period acts as a resetting cue for peripheral clocks and non-SCN hypothalamic nuclei [63].
At the molecular level, glucocorticoid response elements (GRE) have been identified in
the promoter of several clock genes, including Rev-erbα, Per1 and Per2, suggesting an
important role of the GR in the regulation of the clock machinery [64,65] (Figure 3). In
addition, Cry directly interacts with the GR and regulates its activity, as demonstrated by
the increased response to dexamethasone, a GR ligand, in Cry1/Cry2 double knockout
mice [66]. Clock has also been shown to control GR activity by regulating GR acetylation,
thus modulating GR recruitment to DNA [67]. In addition to the GR, the estrogen receptor
ERα induces Per2 gene expression in mammary glands and the uterus, also through a
direct mechanism [68,69] (Figure 3). The class IV estrogen-related receptor ERRα is also
involved in the control of the metabolic clock outputs by genetically interacting with Bmal1
in a PROX1-dependent manner [70] (Figure 3). Reciprocally, ERRα expression is affected
by the clock machinery, highlighting the complex interplay between the ERRα and the
clock machinery [71]. Interestingly, the expression of Rev-erbα is directly modulated by
the binding of PPARα and PPARγ to a PPRE present in the promoter of Rev-erbα in the
liver and in the adipose tissue, respectively [72,73] (Figure 3). In addition to Rev-erbα,
PPARα also positively regulates the expression of Arntl/Bmal1 in rodent liver [74], whereas
PPARγ controls blood pressure and heart rate circadian pressure in the vasculature by
regulating Bmal1 expression as well [75]. Due to the fact that PPARα and PPARγ activity is
controlled by fatty acids and derivatives [76], such mechanisms also reveal the intricate
relationship between metabolic homeostasis and the circadian clock. In the same manner,
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all-trans retinoic acid was shown to reset the clock in the vasculature by inhibiting the
Clock/Bmal1 complex activity in a RARα and retinoid X receptor (RXR)-α-dependent
manner [77] (Figure 3).

3. Clock and Atherosclerosis

Many physiological processes, such as the management of energy intake or mobiliza-
tion of energy storage, need to be gated at the most appropriate time window, and are
then regulated in a circadian manner [46]. As mentioned above, a plethora of physiological
processes are regulated in a circadian manner [46]. This includes pathways involved in
the pathogenesis of atherosclerosis, such as endothelial cell function, hemostasis and lipid
metabolism, as well as immune function, in a process known as circadian immunity [46].
Indeed, circadian rhythms not only influence systemic mediators, including immune cells
and lipids, but also locally control cells within the vessel wall. For instance, gene profiling
found that 5% to 10% of the transcriptome displays circadian expression patterns in mouse
aortas [78]. In addition, several studies demonstrated the existence of a functional circadian
clock in the vasculature [77,79,80].

3.1. Clock Disruption and Atherosclerosis: Clinical Evidences

Over the past hundred years of global industrialization, mankind underwent some
important changes in its lifestyle, including its food habits, the ease of travel, the increase in
shift work and social demands and erratic artificial light exposure from luminescent screens,
which have dramatically altered circadian rhythms. In addition, elderly people display
an altered circadian rhythm robustness, suggesting that aging may also be considered as
an alteration factor of the circadian rhythm [81–84]. Disruption of the intrinsic molecular
clock is now well recognized to have severe repercussions on health. Many pathogenic
processes involved during atherogenesis are indeed worsened when the clock is altered
(Figure 1). This will be discussed at the epidemiological, clinical and pre-clinical levels.

3.1.1. Epidemiological Studies

Numerous clinical studies have reported that the alteration of circadian rhythms
in humans represents an additional risk factor for metabolic and chronic inflammatory
disorders, such as atherosclerosis [22,85]. For instance, the intimal-media thickness has
been found to be increased in shift workers compared to day workers. Interestingly,
this was associated with a 2.2-fold increase in the odds of carotid plaques, even after
adjusting for age and risk factors, including socio-economic position, job strain, smoking,
diet, family history, metabolic status and alcohol consumption [19] (Table 1). Strikingly,
these observations were made in men aged under 40 years but not in women from the
same age category. Similarly, social jet lag, i.e., a social behavior leading to differences
between mid-sleep time on workdays and days off, may be associated with an increased
cardiovascular risk, as indicated by a decreased high density lipoprotein cholesterol level,
higher triglyceride levels and decreased insulin sensitivity [86,87] (Table 1). Social jet
lag was also associated with a disturbed heart rate in men [88] (Table 1). Unexpectedly,
however, shift work was not associated with any alteration in the heart rate [88]. The
same observation was recently reported in a Japanese cohort, suggesting that shift work
was not associated with an increased risk of atherosclerosis. Instead, lifestyle behavior,
such as reduced physical exercise, was unsurprisingly associated with an increase in
visceral fat, whereas habitual smoking was consistently associated with the presence
of atherosclerosis in middle-aged male Japanese workers [89]. However, more recently,
Peñalvo et al. compared the effect of different shift work patterns in the Aragon Worker’s
Heath Study (AHWS) cohort of shift and day workers in middle-aged male subjects [90]
(Table 1). They demonstrated that workers with the most intense rotating shift work
(morning-evening-night) presented higher odds of subclinical atherosclerosis compared
to other shift workers, independently of lifestyle and of the presence of metabolic risk
factors [90]. Altogether, these studies emphasize the importance of the pattern of shift
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work on atherosclerosis, but they also highlight the difficulty in forming conclusions from
the real-life cohort, as many parameters may influence the results, even after statistical
adjustments. Such discrepancies highlighted here emphasize the difficulty to dissect the
effects of circadian alteration and environmental factors, and this is particularly underlined
by the variety and duration of shift work patterns of the different studies. In addition,
although epidemiological studies have reported a morning peak in adverse cardiovascular
events [15,16,91], such data were collected during regular sleep/wake cycles, which also
prevent determining whether this is caused by the circadian system or by behavioral and
environmental factors.

Table 1. Clock alteration on atherogenesis in epidemiological and controlled clinical studies.

Clock Alteration
Conditions Group Specificities Effect on Atherogenic

Parameters References

Epidemiological
Studies

Shift workers
Male, over

40-year-old, no
women

Increased intimal-media
thickness [19]

Social jet lag Male

Decreased HDL and
insulin sensitivity,

increased triglyceride and
disturbed heart rate

[86–88]

Shift workers Mid-aged male
Intense work shift induces
higher odds of subclinical

atherosclerosis
[90]

Controlled Clinical
Studies

Forced desynchrony
Acute and chronic

circadian
misalignment

Increased cardiovascular
risk factors, including

pro-inflammatory markers
[22,92]

3.1.2. Controlled Clinical Studies

In order to assess the role of the circadian machinery in vascular function and the
cardiovascular risk, controlled acute and chronic circadian misalignment experiments
were conducted in healthy human volunteers. In such protocols, volunteers are kept in
stringently controlled light and energy intake conditions in order to create a constant
routine or a forced desynchrony. Constant routine protocols usually consist of participants
being kept awake under dim light, under semi-recumbent posture and with evenly spaced
isocaloric meals, all for more than 24 h [93], whereas the forced desynchrony protocols are
designed to uncouple the circadian machinery from the daily behavioral/environmental
rhythms. As for the constant routine, the forced desynchrony allows us to then assess the
circadian effect on physiological parameters, but also investigates the interaction of the
clock with behaviors [93]. Forced desynchrony protocols usually consist of maintaining
volunteers on a non-24 h sleep–wake cycle (either 20 h or 28 h) under dim light (below 5
lux to minimize the light effect on the biological clock). Using these controlled conditions,
a circadian cycle has been observed in blood pressure, heart rate, platelet aggregability and
immune response [93]. Interestingly, chronic and acute circadian misalignment obtained in
forced desynchrony protocols increases cardiovascular disease risk factors [22,92]. Finally,
it is noteworthy that circadian misalignment causes disrupted sleep, which is known to be
associated with an increased risk of cardiovascular diseases, including atherosclerosis [94].
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3.2. Contribution of Pre-Clinical Models in Our Understanding of the Clock Role in
Atherosclerosis

From the clinical studies, it is then assumed that clock alteration promotes plaque
development and atherosclerosis. Moreover, the rhythmic expression of clock genes is
attenuated in human plaque-derived vascular smooth muscle cells [24], thus suggesting
that pathological conditions, including atherosclerosis, alter the clock machinery in a
reciprocal manner, making it more complicated to unravel the causal and the subsequent
mechanisms involved in the crosstalk between the clock and the plaque. Pre-clinical studies
using either environmental and genetic clock disruption models have been instrumental in
this regard in identifying the underlying mechanisms.

3.2.1. Contributions of Environmental Factors to Clock Alteration in Atherosclerosis

The jet-lag-induced disruption of the clock accelerates atherosclerosis and promotes
the onset of a vulnerable plaque in LDLr−/− mice, a model prone to atherosclerosis [95]
(Table 2). Interestingly, although the energetic balance, namely glucose and cholesterol
levels, was not affected in mice with jet lag compared to controls, the molecular clock
was disrupted in lesional macrophages, which was associated with an increase in ER
stress and apoptosis [95]. In addition, the circadian disruption in pro-atherogenic ApoE−/−

mice exposed to constant light exacerbates the lesion size in male mice, but not in female
mice [96] (Table 2). Interestingly, this effect may be explained by an increase in circulat-
ing pro-atherogenic lipoproteins rather than by an impaired immune function [96]. As
mentioned above, the estrogen receptor ERα is not only an important regulator of the
clock machinery but also a critical atheroprotective factor [97–102], which may account
for this gender-specific defense against circadian desynchronization-mediated atherogene-
sis. Furthermore, an increase in serum cholesterol levels was observed in ApoE−/− mice
exposed to constant light, demonstrating here the impact of a severe clock disruption
on cholesterol homeostasis [96]. Interestingly, such an observation was corroborated in
a mild jet-lag-induced clock alteration model, where ApoE−/− mice were exposed to a
12-h phase shift every 2 weeks. These mice also exhibited larger lesions, together with
an increase in plasma triglycerides and total cholesterol levels [103]. Contrasting results
have however been reported, i.e., no effect of constant light on atherosclerosis development
in APOE*3-Leiden.CETP mice [104] (Table 2). Nonetheless, the phase-shift (advance and
delay) in the light—dark cycle promoted atherosclerosis development in this mouse model,
the most deleterious impact having been obtained in weekly alternating light—dark cycles
(12 h shifts) [105].
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Table 2. Pre-clinical models of global clock alteration.

Global Pre-Clinical Models

Clock Alteration
Models Atherogenic Models Cell-Specific Models Effect on

Atherogenesis
Molecular and

Cellular Mechanisms References

Environmental Models

Jet lag LDLr-/- n/a Induction Alteration of clock in lesional macrophages, but no effect
on energy homeostasis. [95]

Mild jet lag ApoE-/- n/a Induction Increase in plasma TG and cholesterol. [103]

Constant light ApoE-/- n/a Induction
Increased lipoprotein circulation and serum cholesterol

level, but no effect on immune system. Gender specificity
(male).

[96]

Constant light ApoE*3-Leiden n/a No effect n/a [104]

Phase shift in LD cycle ApoE*3-Leiden n/a Induction n/a [105]

Genetic Models

Common carotid artery
transplant from Bmal1−/− or

Per1−/− to WT mice
WT Transplant of artery portion Induction Increased recruitment of macrophages and lymphocytes

into the neointima. [106]

Bmal1−/− ApoE−/− and LDLr−/− Global knock-out Induction

Increased ApoB-containing lipoprotein circulation by
reducing the SHP transcription factor expression, which
then induces the Mtp expression. Decreased cholesterol
excretion by inhibiting the GATA4 transcription factor

expression and thereby Abcg5/Abcg8 expression.

[107]

Bmal1 over-expression ApoE−/− and LDLr−/− Adenovirus-mediated
liver-specific overexpression Reduction n/a [107]

Clock∆19/∆19 ApoE−/− Global impaired Clock protein
function Induction

Increased plasma cholesterol and increased macrophage,
SMC and collagen content in atherosclerotic lesions.

Impaired reverse cholesterol transport.
[108]

Cry1 over-expression ApoE−/− Global adenovirus-mediated
overexpression Reduction

Reduced pro-inflammatory markers. Lowered total
cholesterol, triglycerides and LDL cholesterol.

TLR/NF-κB-dependent mechanism.
[109]

sg/sg mutant mouse None Global impaired RORα protein
function Induction Increased intestinal ApoA-I and ApoA-II expression and

reduced HDL cholesterol. [110]

Rev-erb activation LDLr−/− SR9009 ligand Reduction Skewed from pro-inflammatory to anti-inflammatory
macrophages. [111]

ROR inhibition LDLr−/− SR1001 inverse agonist Reduction Decreased LDL levels and Th17 cell levels, and increased
Treg and Th2 cell levels. [112]
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3.2.2. Global Genetic Alteration of Clock Components in Atherosclerosis

The genetic alteration of the molecular clock contributes to increased pathological
remodeling and vascular injury in Bmal1−/− and in the Clock∆19/∆19 mutant [113] (Table 2).
For instance, the transplantation of arteries from Bmal1−/− mice or from Per1/2−/− mice
into wild-type mice triggers the development of atherosclerosis in the transplanted graft,
emphasizing a critical role for peripheral circadian clocks in the development of atheroscle-
rotic lesions [106]. Importantly, the disruption of the molecular clock impairs lipid home-
ostasis and results in inflammation, which both promote atherogenesis [114–116]. For
instance, Bmal1 controls lipoprotein production and biliary cholesterol secretion. As ex-
pected, its deletion then leads to hyperlipidemia and atherosclerosis [107]. Accordingly,
ApoE−/−Clock∆19/∆19 mice exhibit an increased plasma cholesterol compared to controls, and
larger atherosclerotic lesions, which are associated with an increased macrophage, smooth
muscle cell (SMC) and collagen content [108] (Table 2). Interestingly, Clock was proposed
to control cholesterol efflux in macrophages. Accordingly, Clock deficiency would impair
the reverse cholesterol transport and lead to atherogenesis in ApoE−/− [108]. Furthermore,
the global adenovirus-mediated overexpression of Cry1 in ApoE−/− mice protects against
the development of atherosclerosis through a TLR/NF-κB-dependent mechanism [109].
Cry1 overexpression in ApoE−/− mice significantly reduces the expression of proinflam-
matory markers, and these mice display lowered total cholesterol, triglycerides and LDL
cholesterol levels [109] (Table 2). Then, overexpressed Cry1 improves both inflamma-
tory and lipid profiles, thus accounting for the global protection against atherogenesis.
It is noteworthy that patients exhibiting atherosclerotic plaques display lower blood cell
Cry1 mRNA levels compared to the controls, acknowledging the protective effect of Cry1
against atherosclerosis in humans as well [109]. Accordingly, the deletion of Cry1 and
Cry2 in mice leads to elevated pro-inflammatory cytokines and an increased iNOS [117].
This inflammatory effect may be due to the loss of interaction with the glucocorticoid
receptor and the ensuing dysregulation of its downstream pathways [66]. In addition to
pro-inflammatory effects, the deletion of both Cry1 and Cry2 promotes glucose intolerance
and elevated plasma glucose levels in response to acute feeding after a 12 h overnight
fasting in mice [66].

The immune system and the homeostasis of the cardiovascular system are intricately
associated [47,114,115]. On the one hand, myeloid cells are recruited to atherosclerotic
lesions in a circadian manner, with a peak during the active-to-rest transition, through the
rhythmic deposit of CCL2 on the arterial endothelium by circulating cells (Figure 1). On
the other hand, the circadian oscillations of this cellular recruitment are shifted by 12 h
in healthy microvascular beds in order to reach a peak at the early active phase [118]. As
such, a chrono-pharmacological approach targeting monocyte recruitment via the timed
inhibition of the CCR2/CCL2 axis during the active phase dampened atherosclerotic lesion
development. Since the immune function is regulated in a circadian manner, it is therefore
not surprising that heart homeostasis and repair may be regulated in a circadian manner by
the immune system. For instance, neutrophils are the first effector cells in innate immunity,
and their blood counts oscillate in a circadian manner [119,120]. Interestingly, this feature
is under the control of Bmal1 in neutrophils and has some consequences on vascular
health if the renewal is impaired [121]. Indeed, neutrophils are also recruited to tissues
following a daily rhythm under a steady state. In a mouse heart, for instance, a peak
of migration is observed in the evening and is associated with a higher expression of
chemokines, such as CCL2/MCP1, CXCL1 and CXCL5, and adhesion molecules, including
ICAM1 and VCAM1 [122]. Interestingly, the proper recruitment of neutrophils to the
tissues depends on the matching between the expression of these chemokine ligands in the
tissue and the expression of the corresponding receptor CXCR2 in the evening, i.e., at the
beginning of the active phase [122]. If the secretion and the production of both partners is
mismatched, as in Cxcr2 KO mice, for instance, or using a CXCR2 pharmacological inhibitor,
then the recruitment is impaired [122]. Importantly, the induction of an experimental
myocardial infarct at the peak of cardiac neutrophil recruitment, in the evening, results
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in a significantly higher infarct size and compromises the cardiac healing, as well as
the heart function [122]. Intriguingly, monocytes also exhibit a circadian recruitment
pattern to the mouse heart and display an elevated expression of the CCR2 receptor in
the evening as well, which promotes a higher cardiac infiltration relative to the day [123].
In addition to Bmal1, Clock is also involved in this process. Indeed, the infarct size, as
well as the infiltration of neutrophils and monocytes, are increased in mice expressing the
Clock∆19/∆19 mutant [124]. Intriguingly, as the gut physiology affects the circadian system,
Mistry et al. have demonstrated that an intact gut physiology is important for cardiac
repair after a myocardial infarction [125]. Indeed, a disrupted microbiome impairs the
inflammatory response in infarcted myocardium and heart repair [125]. Strikingly, this
effect was controlled by Clock, as shown in Clock∆19/∆19 mice [125]. In ApoE−/− mice, the
adhesion and infiltration of neutrophils and monocytes into atherosclerotic plaques also
depends on CCR2 expression, and displays a diurnal rhythm as well; however, it peaks
at the end of the active phase and the beginning of the resting phase, i.e., in the morning
in mice [118,126]. In this context, myeloid cells, namely monocytes and neutrophils,
deposit CCL2 on large arteries in a cyclic manner, which would then account for the
cyclic recruitment of myeloid cells to atherosclerotic plaque [118]. Importantly, Winter
et al. demonstrated that this was due to the mere expression of Bmal1 in the myeloid
compartment, but not in endothelial cells, thus suggesting that the immune cells, in this
context, generate their own tools in order to cyclically infiltrate the vascular wall [118].

3.2.3. Cell-Specific Clock Gene Alteration in Atherosclerosis and Cardiovascular Diseases

Studies in experimental clock alteration or in whole-body knock-out mice highlight
an overall role of the clock during atherogenesis. The use of tissue-specific deficient mouse
models for clock components, however, brings further insights into the specific function of
the clock in vascular cells and pro-atherogenic partners.

For instance, Bmal1−/−, as well as Per2−/− mice, display impaired acetylcholine-
induced vasorelaxation, probably due to an impaired Akt/eNOS signaling pathway, which
is suggestive of an important endothelial-specific regulatory function of the vascular
tone [113,127]. Interestingly, the endothelial-specific deletion of Bmal1−/− alters blood
pressure, heart rate and heart activity, but not their diurnal variations in mice [128] (Table 3).
Furthermore, Clock overexpression directly enhances the expression of adhesion molecules,
such as VCAM1 and ICAM1, in mouse microvascular cells, whereas clock ablation inhibits
ICAM1 expression, thereby regulating monocyte adhesion to endothelial cells [129]. Finally,
Per2 is also associated with aortic endothelial dysfunction, as shown after its ablation in
mice, which exhibited a decreased nitric oxide and vasodilatory prostaglandin production,
as well as an increased release of the cyclooxygenase 1-derived vasoconstrictor [127].
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Table 3. Pre-clinical models of cell-specific clock alteration.

Cell-Specific Pre-Clinical Models

Clock Alteration Models Atherogenic Models Cell-Specific Models Effect on
Atherogenesis Molecular and Cellular Mechanisms References

Bmal1EC−/− n/a
Endothelial cell and

Haematopoietic cells TekCre

mouse model
n/a Alteration of blood pressure and heart

rate/activity. [128]

Bmal1SMC−/− n/a Smooth muscle cells
αSM22Cre mouse model n/a

Reduced amplitude in blood pressure
oscillation. Protects from abdominal aortic

aneurism.
[130,131]

Bmal1Myeloid−/− ApoE-/- Myeloid cells
LysMCre mouse model Induction Enhanced Ly6CHigh monocyte recruitment. [132]

Bmal1Myeloid−/− LDLr−/− Myeloid cells
LysMCre mouse model Reduction

Decreased pro-inflammatory pathways.
Increased recruitment of anti-inflammatory

CD206+ macrophages.
[133]

Bmal1−/− ApoE−/− and LDLr-/- Liver-specific knock-out Induction

Increased ApoB-containing lipoprotein
circulation by reducing the SHP transcription
factor expression, which then induces the Mtp
expression. Decreased cholesterol excretion by

inhibiting the GATA4 transcription factor
expression and thereby Abcg5/Abcg8

expression.

[107]

Cry1,Cry2BM−/− LDLr−/− Bone marrow transplant Reduction
Alteration of macrophage functions, including
phagocytosis, efferocytosis, MCP-1 secretion

and LDL uptake.
[134]

Rev-erbαBM−/− LDLr−/−
Transplant of

shRev-erbα-infected bone
marrow

Induction Skewing from pro-inflammatory to
anti-inflammatory macrophages. [135]
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In humans, as mention above, the circadian expression pattern of core clock genes
Bmal1, Clock, Per, Cry and Rev-erbα is dramatically attenuated in atherosclerotic plaques in
both men and women [24]. Interestingly, healthy SMC were isolated from younger donors
compared to SMC isolated from human plaque, which could have been a confounding
factor [83]. However, even when adjusting for age, the amplitude of rhythmic oscillations
in the clock components is still dampened in plaque-derived SMC compared to healthy
ones [24]. Additionally, smooth muscle-specific Bmal1−/− mice display a reduced amplitude
in blood pressure oscillations along the day when compared to control mice, and are
protected from abdominal aortic aneurysm [130,131] (Table 3). The effect of the SMC-
specific ablation of core clock genes on atherogenesis still needs to be investigated.

In the immune system, the myeloid deletion of Bmal1 enhances the recruitment
of Ly6Chi monocytes and then worsens atherosclerosis [132] (Table 3). However, in-
triguingly, it has been reported lately that Bmal1 ablation in the myeloid compartment
delays plaque formation in proatherogenic LDLr−/− mice and is associated with a de-
crease in pro-inflammatory pathways and an increased recruitment of anti-inflammatory
CD206+ macrophages that are known to stabilize lesions [133] (Table 3). Such a discrep-
ancy may originate from the different strains used as the control. Indeed, the latter used
LysMCre/+Ldlr−/− as control [133], whereas the former compared ApoE−/−Bmal1Fl/FlLysMCre/+

with ApoE−/−Bmal1Fl/Fl [132]. As the LysMCre/+ heterozygous mice may have their own
phenotype in a dyslipidaemic background, additional experiments are warranted to
definitively conclude the myeloid-specific role of Bmal1 in atherosclerosis. Furthermore,
Cry1/Cry2 deficiency in the bone marrow protects from atherogenesis in LDLr−/− mice [134]
(Table 3). Interestingly, cryptochrome deletion alters macrophage function in vitro, namely
phagocytosis and efferocytosis, MCP-1 secretion and LDL uptake, thus lowering foam
cell formation [134]. In addition, while oxidized LDLs (oxLDL) decrease the expression
of core clock genes, such as Bmal1 and Rev-erbα, in synchronized primary macrophages,
this effect was abolished in Cry1/2 knock-out macrophages, demonstrating a key effect
of cryptochromes in the response of macrophages to oxLDL stimuli [134]. This might
be due to the control of the LDL receptor by Cry. Indeed, the circadian rhythmicity of
LDLr is abolished in Cry1/2-deficient macrophages, which may explain the lack of effect
of oxLDL in macrophages [134]. Strikingly, the rescue of LDLr mRNA oscillations was
shown to enhance modified LDL internalization compared to a non-oscillatory LDLr mRNA
in macrophages, thus demonstrating the importance of a proper circadian clockwork to
optimize cellular function [134]. In this study, Cry1/2 then appear to play deleterious
effects on atherogenesis when they are both altered in myeloid cells. Interestingly, previous
studies demonstrated a global beneficial effect of Cry1/2 in global knock-out mice, thus
emphasizing the relevance of such comparative studies and the importance in targeting
the right cells/tissues in future therapeutical strategies in order to avoid adverse effects.

3.3. Post-Transcriptional Control of the Clock in Atherogenesis

Apart from a direct control of gene transcription by the clock, post-transcriptional
pathways have been involved in the impact of the clock on atherogenesis. For instance,
the upregulation of miR155 increases the atherosclerosis lesion size, cell apoptosis, total
triglyceride and cholesterol levels by inhibiting Bmal1 expression in ApoE−/− mice. Impor-
tantly, miR155 impairs aorta diastolic function, thus suggesting an important regulatory
function in endothelial cells and vasoconstriction [136]. Interestingly, the microRNA miR21
expression displays diurnal oscillations and was suggested to be regulated by the molecular
clock. Strikingly, miR21 imposes a diurnal rhythm of apoptosis in an XAF1-manner in
atherosclerotic lesions. Interestingly, such a deregulation would lead to the desynchro-
nization between apoptosis and efferocytosis, which would then lead to an increase in the
necrotic core size [137]. It may then be assumed that the clock machinery could control the
vascular wall fate by indirectly regulating the expression of atherogenic key factors as well
through miRNA-dependent mechanisms. Such events are far to be fully described and
need further investigations.
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4. Core Clock Components Rev-Erb and ROR in Atherosclerosis

Many NRs have been involved in the development of cardiovascular diseases and
atherosclerosis [76,138,139]. Due to being able to be activated by natural, as well as syn-
thetic, molecules, NRs are attractive therapeutic targets to directly modulate the expression
of genes/pathways of interest. However, since Rev-erbs and RORs are the only two NR
subfamilies belonging to the core clock components [47,140], we will focus on these NRs.

The impact of Rev-erbs and RORs has already been reported in mouse models of
atherosclerosis. For instance, the shRNA-mediated deletion of Rev-erbα, specifically in
hematopoietic cells, exacerbates the development of atherosclerotic lesions in LDLr−/−

mice [135] (Table 3). At the cellular level, the ablation of Rev-erbα in bone marrow-derived
monocytes promotes the skewing of pro-inflammatory macrophages toward an anti-
inflammatory phenotype [135]. Interestingly, the knock-down of REV-ERBα exacerbates a
pro-inflammatory phenotype in LPS-primed human monocyte-derived macrophages [141].
Accordingly, the treatment of mice with the synthetic Rev-erb agonist SR9009 reduces the
atherosclerotic lesion size and triggers the expression of macrophage anti-inflammatory
markers [111] (Table 2). In addition, treatment of mouse primary macrophages with
the Rev-erb natural ligand heme [142] induces an alternative differentiation into an anti-
inflammatory phenotype [135]. This suggests that targeting Rev-erb using pharmacological
compounds would represent an attractive strategy against atherosclerosis. However, be-
cause the SR9009 compound displays Rev-erb-independent effects [143,144], additional
compounds, such as SR10067 or GSK1362, have been developed [145,146], and should be
tested in this setting. The homozygous staggerer (sg/sg) mutant mouse harboring a deletion
in the RORα gene displays neurodegeneration and exhibits exaggerated immune activity,
such as inflammatory cytokine hyperproduction. Strikingly, sg/sg mice that are fed a west-
ern diet, but without being bred with pro-atherogenic mice, such as ApoE−/−or LDLr−/−,
develop severe atherosclerotic lesions, which is associated with a dramatic decrease in
intestinal ApoA-I and ApoA-II mRNA, lower levels of circulating ApoA-I and ApoA-II and
a substantial alteration of HDL cholesterol levels [110] (Table 2). Finally, the inhibition of
RORα and RORγ using the inverse agonist SR1001 suppresses atherosclerosis in LDLr−/−

that are fed a high cholesterol diet [112] (Table 2). Unexpectedly, ROR inhibition affects
LDL, but not HDL levels [112]. In addition, ROR inhibition reduces Th17 cell levels and
increases the quantity of Treg and Th2 cells, thereby enhancing an anti-atherogenic immune
profile [112].

Both RORs and Rev-erbs play an important regulatory role in the control of metabolic
homeostasis (see for review [147–149]. Importantly, Rev-erbα is involved in the recycling of
cholesterol by promoting biliary acid synthesis [150]. Such a feature could then indirectly
link Rev-erbα to the reverse cholesterol transport and help to reduce macrophage choles-
terol levels. Interestingly, RORα directly enhances the expression of the apolipoprotein
A1, the main component of the high-density lipoprotein, thereby suggesting a role of
RORα in the reverse cholesterol transport as well [151]. It is noteworthy that in mice and
humans, Rev-erbα controls the expression of the pro-atherogenic apolipoprotein ApoC-
III [152,153], which is currently considered to be a very potent therapeutic target to treat
adverse cardiovascular events, and is the main focus of an extensive current research [154].
Moreover, RORα appears to enhance the expression of ApoC-III, as shown in sg/sg mice,
which exhibit lower ApoC-III mRNA and circulating protein levels [155]. As shown for
Rev-erbα, RORα is directly recruited to the ApoC-III promoter in order to activate ApoC-III
transcription [155].

In addition, Rev-erbα controls the circadian expression of cytokines, including IL6,
IL-1β and CCL2/MCP1, which are key pro-atherogenic factors [156,157]. Furthermore,
RORα inhibits the expression of pro-inflammatory genes, including IL-6, IL-8 and COX-2,
in human primary SMCs. At the molecular level, RORα negatively interferes with the
NF-κB signaling by inducing the expression IκBα [158].

At the molecular level, Rev-erbα and RORγ have been shown to control the expression
and activity of the NLRP3 inflammasome [157,159]. The NLRP3 inflammasome is a master
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regulator belonging to the innate immune system, especially in macrophages, and a key
sensor involved in maintaining cellular health in response to cytolytic pathogens or stress
signals. The NLRP3 inflammasome is a cytoplasmic complex that is typically composed
of a sensor molecule, such as NOD-like receptors (NLRs), an adaptor protein, including
ASC, and an effector protein, such as caspase 1. Upon stimulation, inflammasome com-
plex components associate to promote both the cleavage of the pro-caspase 1 into active
caspase-1 and the subsequent activation of pro-inflammatory cytokines, including IL-18
and IL-1β. The deficiency or overactivation of such an important sensor leads to many
diseases, including atherosclerosis. Indeed, the ablation or inhibition of the NLRP3 in-
flammasome pathway decreases atherosclerosis progression, thus emphasizing the critical
role of NLRP3 in atherosclerosis initiation [160,161]. In fact, oxLDLs are internalized and
promote both priming and the cholesterol crystals-mediated activation of NLRP3 in a
CD36-dependent manner [162,163]. Inflammasomes are tightly controlled by a two-step
activation regulatory process consisting of a priming step, which activates the transcription
of inflammasome components, and an activation step, which leads to the inflammasome
complex formation and the subsequent cleavage of pro-IL1 cytokines. Typical activators of
the NLRP3 inflammasome are ATP-derived necrotic cells, ion fluxes, cathepsin released
after crystal-induced lysosomal damage and mitochondrial ROS formation [140]. Apart
from the NF-κB pathway, NRs have recently been proposed as additional regulators of this
pathway [140].

The control of the NLRP3 inflammasome pathway by the clock was firstly reported
in vivo and in vitro in both mouse and human primary macrophages [157]. In this con-
text, NLRP3, IL-1β and IL-18 mRNA exhibit circadian oscillations in mouse peritoneal
macrophages and in synchronized primary mouse and human macrophages, with a func-
tional consequence on the secretion of these cytokines, which display a rhythmic pattern as
well [157]. At the molecular level, oscillations in the NLRP3 inflammasome-related genes
depend on the direct binding of both Rev-erbα [157] and RORγ [159] in macrophages.
Interestingly, these two nuclear receptors are both recruited to the same site in the promoter
of Nlrp3, thereby demonstrating that Rev-erbα and RORγ directly control the priming of
NLRP3. In addition, Rev-erbα has been suggested to indirectly regulate the inflammasome
priming by interacting with the NF-κB signaling pathway [164,165]. Furthermore, Rev-
erbα would also prevent the NLRP3 activation step. Indeed, nigericin- and ATP-induced
ASC speck formation was increased in Rev-erbα-deficient mouse primary macrophages
compared to the control [157]. However, as this effect may only reflect the increase in
Nlrp3 gene expression, additional experiments are needed to uncover the underlying mech-
anisms. However, because Rev-erbα regulates mitochondrial function and autophagy
processes [166], it may be speculated that Rev-erbα-regulated NLRP3 assembly is medi-
ated by a decrease in ROS production and an improvement of the mitochondrial function.
Finally, Rev-erbα is also involved in the control of the circadian expression of the long
non-coding RNA Platr4, which serves as a circadian repressor of the NLRP3 inflammasome
as well [167]. However, because Platr4 and Nlrp3 expression displays the same circadian
expression pattern, further studies are needed to investigate the kinetics of Platr4-mediated
Nlrp3 mRNA stability. It is noteworthy that Rev-erb activation by natural or synthetic
ligands reduces the secretion of IL-1β and IL-18 by inhibiting the expression of NLRP3
inflammasome component-related genes [157].

Interestingly, the NF-κB-driven long non-coding RNA Lnc-UC has lately been shown
to be induced by the core clock component Bmal1, thereby generating the circadian expres-
sion of Lnc-UC [168]. Lnc-UC physically interacts with the Cbx1 protein to reduce its gene
silencing activity via H3K9me3, thereby enhancing Rev-erbα expression in an epigenetic
manner [168]. Then, by inducing Rev-erbα expression, Lnc-UC ablates NF-κB signaling
and NLRP3 inflammasome signaling in macrophages [168].
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5. Conclusions

Most pathogenic mechanisms, including cardiovascular and inflammatory diseases,
are intricately associated with clock alteration. As a consequence, drug delivery at a
specific time of day, i.e., chronotherapy, may prove beneficial to treat these diseases by
enhancing drug efficiency and reducing adverse effects [169]. This is already widely
used in cancer therapy, but is still struggling to impose itself in the field of cardiology
and cardiovascular diseases. Besides, directly targeting clock components represents an
attractive idea. Intuitively, it then appears that the optimal timing of drug administration
coincides with the maximum peak of the target expression. It should be mentioned,
however, that pathological tissues may exhibit shifted circadian rhythms compared to the
healthy region, offering novel opportunities to dampen the damaging pathway at specific
times of day in specific tissues/territories.
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