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Abstract

Host-associated fecal indicator measurements can be coupled with quantitative microbial risk 

assessment to develop risk-based thresholds for recreational use of potential sewage-contaminated 

waters. These assessments require information on the relative concentrations of indicators and 

pathogens in discharged sewage, typically based on data collected from wastewater treatment 

plant influent samples. However, most untreated sewage releases occur from within the collection 

system itself (i.e. compromised sewer laterals, compromised gravity and force mains, sanitary 

sewer overflows), where these relationships may differ. This study therefore analyzed the 

concentrations of a selected reference pathogen (norovirus) and fecal indicator (HF183) in 

sewage samples from upper and lower segments of gravity sewage collection systems, wastewater 

pumpstations, and the influent and effluent of treatment plants, to characterize variability in 

their relative concentrations. Norovirus detection rates were lower and more variable in upper 

collection system samples due to the smaller population represented; whereas, HF183 was 

routinely detected at all sites with higher concentrations in the collection system compared to 

treatment plant influent, resulting in variable comparative relationships across sample locations 

(types). Mean HF183:NoV ratios ranged from 1.0 × 105 for sewer lateral samples to 7 × 10° 

for force main samples. Results were used to develop risk-based thresholds for HF183 based 

on estimated recreational exposure to norovirus following a release from each potential sewage 

source, with higher thresholds for treatment facility influent compared to forced mains, or effluent. 

Consequently, this approach can allow for the rapid application of potential risk-based thresholds 

for recreational water quality applications based on different types of sewage discharge events.
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1. Introduction

Sewage discharged into environmental waters used for recreation impose a public health 

burden due to enteric pathogens including viruses, bacteria, and protozoa. Microbial water 

quality has been traditionally evaluated using fecal indicator bacteria (FIB), such E. coli and 

enterococci, as proxies for the presence of human pathogens. Recognized limitations of FIB, 

including lack of host specificity and differing persistence in secondary environments, have 

driven interest in the use of alternative indicators. HF183 and crAssphage are examples of 

alternative indicators that are highly abundant in and more associated with human feces, 

making them a more reliable indicator of sewage contamination (Bernhard and Field, 2000; 

Stachler et al., 2017). Still, assessing the extent and duration of human health risk following 

sewage discharge remains challenging due to complex pathogen die off kinetics (Boehm et 

al., 2018; Dean and Mitchell, 2022), mixing patterns of sewage in environmental waters, and 

pathogen and indicator organism persistence/survival variability (Ferguson and Signoretto, 

2011).

The quantitative microbial risk assessment (QMRA) framework offers a numerical approach 

for estimating public health risk by integrating empirical data into a comprehensive risk 

model. QMRA has been widely applied to investigate the likelihood of gastrointestinal 

illness after exposure to sewage-contaminated waters (Federigi et al., 2019). A strength 

of QMRA is that the model can be built to accommodate a range of sewage-borne 

pathogens and fecal indicators to generate a risk estimation. Work by Boehm et al. 

(2015) used literature sewage concentrations of Salmonella spp., Campylobacter, E. coli 
0157:H7, Cryptosporidium, Giardia, and norovirus to estimate the probability of illness 

given exposure to water contaminated with various concentrations of sewage. From this they 

were able to estimate health risk using the concentration of two microbial source tracking 

genetic indicators, HF183 and HumM2, providing a practical means of assessing swimming 

risk without the need to conduct analyses of multiple fecal pathogens. QMRA is a useful 

tool for translating pathogen or indicator data into actionable estimates of health risk but, 

like all models, its efficacy hinges on the quality and accuracy of input data.

Most risk-based thresholds for recreational water quality management applications use 

pathogen and indicator distributions found in untreated influent entering a treatment facility. 

Influent concentrations are often used as model inputs as these data are more readily 

available than sewer collection system data. However, using influent distributions to estimate 

risk-based thresholds has two limitations; distributions of pathogens and indicators are 

heterogeneous across sewage collection systems, and treatment facility influent is rarely the 

proximate source of sewage released into the environment. The United States Environmental 

Protection Agency (EPA) estimates that there are at least 23,000 - 75,000 sanitary sewer 

overflow (SSO) events per year being primarily driven by severe weather, system blockages, 

breaks in sewer lines, and improper system operation and maintenance (US EPA, 2004). In 
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each of these cases, the sewage source discharged into the environment is from the sewer 

collection system, not from the influent of a treatment facility. Sewage discharges from 

the upper reaches of the collection system could occur due to a blockage or compromised 

lateral while downstream releases could be the result of sewer pipe failure or an extreme 

precipitation event causing SSO discharges. It is also likely that treated effluent discharges 

affect recreational waters. Estimation of health risk due to exposure to sewage contaminated 

waters could be improved by considering these different sewage sources and their associated 

distribution of pathogens and fecal indicators.

The goal of this study is to describe the variability of human norovirus (NoV) and 

the human-associated HF183 genetic marker across sewage collection and treatment. 

Distributions of NoV and HF183 are then used to simulate four of the most common causes 

of sewage discharge into the environment (SSO, unknown gravity pipe break, compromised 

sewer lateral, force main break) and compared with treatment plant influent and effluent. 

Risk estimations based on NoV are then correlated with HF183 concentrations in the 

corresponding sewage source and used to calculate risk-based thresholds for each sewage 

pathway scenario. HF183 measurements coupled with pathogen distributions specific to the 

type of sewage spill can be used to yield a more robust risk-based threshold estimation for 

recreational water quality applications. The result is a more accurate framework for risk 

estimation after a sewage spill.

2. Methods

Data generated for this study has been assimilated from multiple projects conducted 

between March 2016 and August 2018 in the Hampton Roads metropolitan area in 

Virginia. Analytical methods remained consistent between projects, allowing for pooling 

and generation of a more robust dataset.

2.1. Wastewater collection system and treatment facility samples

Grab samples were collected from upper and lower segments of gravity sewage collection 

systems and from wastewater pumpstations to characterize HF183 and NoV concentrations 

prior to reaching a wastewater treatment facility (n = 7 sites per collection system segment). 

Upper system, lower system, and pumpstation samples were collected in each of the seven 

cities comprising the Hampton Roads region of southeastern Virginia (Fig. 2) during three 

dry weather and three wet weather events (n = 21 per site for dry and 21 per site for wet 

weather samples). Wet weather was defined as a storm generating least 0.64 cm rainfall 

accumulation in the antecedent twenty-four hours. Mean rainfall accumulations for the 

three wet weather events were 9.17, 3.78, and 1.85 cm. The respective duration for each 

of these events was 12.5, 3.2, and 7.5 h. Samples were collected during morning hours 

(approximately 0800 – 1100) to increase the likelihood that upper system sites serving 

a smaller population would have sampleable flow. For this study, the upper segments 

of a sewershed were defined as those servicing approximately 25 (SD=12.5) homes or 

businesses, comprising a mean sewershed area of 0.45 km2 (SD=0.36 km2). Similarly, lower 

segments of a sewershed were downstream of upper system sites and serviced on average 

218 (SD = 108) homes or businesses and comprised a mean sewershed area of 3 km2 (SD 
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= 1.2km2). A visual example of upper and lower collection systems is provided in Fig. 

1. Pumpstations sites were further downstream in the sewer collection systems, receiving 

wastewater from a broader area and pumping towards wastewater treatment facilities.

Wastewater treatment plant influent and sodium hypochlorite-disinfected effluent data were 

collected from monthly grab sampling over a year (n = 12 for 3 of 4 facilities) as previously 

described in Worley-Morse et al. (2019). For an overview of treatment train and sewershed 

characteristics for each facility see Worley-Morse et al. (2019). In addition to the three 

facilities from the Hampton Roads region (facilities G, H, and I) six months of data 

(December – June) from a fourth facility was included in the dataset (n = 6). The fourth 

facility was collected concurrently with the second half of the Worley-Morse et al. (2019) 

study. Wastewater treatment plant samples were collected during dry conditions having no 

measurable rainfall in the antecedent 72 h.

2.2. Microbiological analyses

One liter grab samples were transported to the laboratory on ice within 6 h. 

Immediately upon arrival, samples were concentrated using mixed cellulose ester HA filters 

(HAWP04700; Millipore, Billerica, MA, USA) as described by Worley-Morse et al. (2019) 

and stored in a −80 °C freezer. Samples were analyzed within one month of collection.

Prior to extraction, 107 copies of hepatitis G Armored RNA (Asuragen, Austin, TX, USA) 

and 0.1 μg of salmon sperm DNA (Sigma-Aldrich, St. Louis, MO, USA) were added to the 

lysis buffer for all samples and controls to quantify matrix inhibition. Total nucleic acid was 

extracted using the NucliSENS easyMag (bioMerieux, Inc., Durham, NC, USA) following 

a modified protocol documented by Worley-Morse et al. (2019). NoV GI, NoV GII, and 

HF183 were quantified on a QX200 droplet digital PCR system (Bio-Rad, Hercules, CA, 

USA) according to protocols in Worley-Morse et al. (2019) and Gonzalez et al. (2020).

Each run included two no-temple controls (NTC), two negative extraction controls (NEC), 

a filter blank, and a positive control. Positive genomic RNA standards for NoV GI 

(VR-3234SD) and NoV GII (VR-3235SD) were obtained from the American Type Culture 

Collection (ATCC, Manassas, VA, USA). The HF183 Taqman OSTD1 genomic DNA 

reference standard (Layton et al., 2013) is from Integrated DNA Technology (IDT, 

Coralville, IA, USA).

All negative controls (NEC, NTC, filter blanks) yielded non-detectable results, and any run 

with detectable signals was re-run until a negative result was achieved. Positive controls 

were required to produce positive results from the initial run or were re-run to confirm 

positivity. All samples were run in duplicate, and reactions were considered positive if at 

least three droplets (out of more than 10,000) were identified as positive. If a well contained 

fewer than 10,000 droplets, the sample was re-run to confirm the original concentrations. 

The threshold was manually set at the lower third of the space between the negative and 

positive droplets.

Inhibition was determined by calculating the hepatitis G and salmon sperm DNA recovery 

in the samples compared to the NEC. For inhibited samples (less than 10% recovery), the 
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samples were diluted and re-run until they exceeded the 10% recovery threshold. Limit of 

Detection (LOD) for the NoV GI, NoV GII, and HF183 assays are 1.31, 3.23, and 1.66 

copies per reaction, respectively. Any sample with results below the detection limit was 

reported using the LOD values in place of concentrations.

2.3. Data analysis

Lognormal distributions were fitted to NoV concentrations for each collection system and 

treatment plant location, for dry and wet weather conditions, using a Shapiro-Wilk test 

to assess model fit and plotted using the ggridges package (Wilke, 2022) in R Statistical 

Software Version 4.0.4 (R Core Team, 2021); distribution goodness of fit statistics are 

provided in Table S1. Sewage sources for which the Shapiro-Wilk test indicated that 

the data were not well-approximated by the lognormal distribution have been reported 

(Table 2, Fig. 3) but excluded from the risk-based threshold analysis. NoV GI and GII 

concentrations were summed, yielding a single NoV value. Hypothetical sewage sources 

were categorized to describe a range of spill scenarios (i.e., broken sewage force main or 

precipitation-driven sewer overflow) and resulting distributions were created. Kruskal-Wallis 

and Dunn’s pairwise comparison tests have been run for all combinations of sewage sources 

to test for significant differences in HF183 or NoV concentration (Table S3). For data below 

the analytical limit of detection, the limit of detection value has been used for analyses and 

plotting.

2.4. Norovirus-based risk estimates

The probability of illness given NoV exposure and infection was estimated using fitted NoV 

concentration distributions for each sewage source scenario. NoV concentrations (copies 

mL−1) for each sewage source were approximated using 105 random draws from the 

lognormal distributions. Exposure was modeled assuming a lognormal distribution (mean 

= −2.78 L, standard deviation = 0.93 L) following the most recent EPA recreational water 

criteria study (USEPA, 2019) and modeled via 105 iterations. The NoV dose (copies) 

was calculated as NoV concentration (copies mL−1) times the ingested volume of water 

(L-day). Hypergeometric dose-response models were used to estimate the probability of 

illness following the models of Teunis et al. (2020) as described by Schoen et al. (2023). 

Probabilities of illness given exposure to water contaminated by various levels of each 

sewage source were modeled based on simulated NoV dilutions into receiving waters 

(undiluted to 9x serial dilution). Model inputs are summarized in Table 1. All calculations 

were performed in R. Model code is available upon request.

2.5. Deriving an HF183 risk-based threshold

The median values for risk estimates resulting from the hypothetical dilutions of sewage-

derived NoV were regressed against the median HF183 concentration for the same sewage 

source which was similarly scaled to range from undiluted to the equivalent of a 9x serial 

dilution. A linear regression was fitted to these data to assess the relationship between 

NoV-derived risk and HF183 concentration. Regression lines were fit using base R and 

assessed based on multiple R2 values; see Supplementary Table 2 for regression fit statistics. 

For all cases the equation describing the association was solved to determine the median 
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HF183 concentration that corresponds to the EPA Recreational Water Quality benchmark 

(USEPA, 2012) of 32 illnesses per 1000 recreators.

3. Results/discussion

3.1. Norovirus and HF183 distribution across collection and treatment

Fig. 3 shows the distributions of HF183, NoV GI, and NoV GII across the collection 

system (upper system [US], lower [LS], pumpstation [PS]) and treatment (raw influent, final 

effluent) with fitted lognormal models presented in Table 2. Within the collection system, 

average dry weather HF183 concentrations were within the same order of magnitude across 

all sites (US mean = 1.04E+08, SD = 1.57E+08, LS mean = 1.03E+08, SD = 1.01E+08, 

PS mean = 1.07E+08, SD = 1.05E+08, all units copies 100mL−1). Upper system samples 

had a higher standard deviation and larger range (2.19E+05 – 6.50E+08 copies 100mL−1) 

compared with the lower system (5.75E+06 – 3.13E+08 copies 100mL−1) and pumpstation 

samples (1.86E+06 – 2.97E+08). This is likely due to the heterogenous nature of sewage 

and a reduced dilution effect at these small sub-sewershed catchments, resulting in greater 

variability. HF183 wet weather collection system data (US mean = 2.26E+07, SD = 

2.20E+07, LS mean = 2.31E+07, SD = 1.44E+07, PS mean = 2.20E+07, SD = 1.98E+07, all 

units copies 100mL−1) were similar to dry weather distributions in their relative variability 

but with the central tendency shifted approximately an order of magnitude lower. Average 

NoV GI and GII concentrations increased (one-tailed Wilcoxon signed rank test, W = 15, p 
< 0.001) moving from the upper system to pumpstations. This was driven by an increased 

detection rate moving from upper to lower system samples (US GI and GII detection rates 

= 25%, 25%, LS GI and GII detection rates = 60%, 60%, PS GI and GII detection rates 

= 75%, 75%). Finding greater NoV detection as population served increases was expected 

as a larger population yields a greater chance of NoV infections and therefore occurrence 

of the target in each grab sample. For a given collection system site, NoV distributions 

did not appear to significantly change during wet weather. In general, NoV has a greater 

range than HF183 as the human-associated genetic marker is likely consistently shed by 

collection system users and thus is ubiquitous in wastewater while NoV is only shed by 

those experiencing infection, therefore concentrations are driven by the infection rate within 

sewershed population.

Dry weather raw influent HF183 (mean = 1.31E+07, SD = 9.50E+06) and NoV 

concentrations (mean = 4.16E+04, SD = 6.77E+04 copies 100mL−1) were lower in 

concentration and less variable than the upstream collection systems. While the majority 

of the raw influent data fell within the range of collection system concentrations the raw 

influent central tendency of the data is shifted left. This is likely due to dilution and the 

increased age of sewage (US mean 3.3hr, maximum 36hr) once it has reached the headworks 

of a treatment facility (Nielsen et al., 1992; Kapo et al., 2017). Final effluent concentrations 

were significantly lower than influent concentrations (NoV GI χ2 = −0.50, p < 0.001; NoV 

GII χ2 = −0.64, p < 0.001; HF183 χ2 = −5.73, p < 0.001), with HF183 showing a larger 

difference than NoV. This is likely due to the differing susceptibility of the targeted bacteria 

and viruses to treatment (Worley-Morse et al., 2019). Influent HF183 concentrations were 

more variable than final effluent concentrations potentially due to the homogenizing effect 
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of wastewater treatment during long retention times. Raw influent NoV concentrations for 

this study were generally higher than literature values (Pouillot et al., 2015; Eftim et al., 

2017) likely due to differences in NoV quantification methodology such as the use of more 

appropriate processing volumes (1 L compared to 50 mL), improved nucleic acid extraction 

methods, and utilization of digital PCR instead of qPCR (Jahne et al., 2020).

3.2. HF183 risk-based thresholds

The HF183 and NoV distributions used for each sewage source are summarized in Table 

2 and visualized in Supplemental Fig. 1. For each sewage source the relationship between 

NoV-derived risk and HF183 concentration were well-approximated by a linear relationship 

with R2 values ranging 0.73–0.97 (Table S2). Given the varying distributions of NoV 

and HF183, the resulting HF183 risk-based thresholds range two orders of magnitude 

(Table 4). Upper collection system sites had highly variable NoV concentrations which 

included many non-detect observations. This was expected given that NoV concentrations 

are driven by infections rates and the population served by upper system sites is relatively 

small. As a result, NoV data for these sites were poorly modeled by the lognormal 

distribution, which was used to approximate NoV data for other sewage sources. Further, 

generating appropriately protective risk-based thresholds for upper system sites would 

require significant sampling to understand the influence of rare but impactful outbreak 

events on sewage pathogen concentrations. Given these limitations, risk-based thresholds 

have not been estimated for sewer lateral, gravity main, and sanitary sewer overflow 

datasets.

As sewage ages, the relative concentration of NoV increases and becomes less variable 

compared to HF183 concentrations (Kapo et al., 2017). Data presented here support 

this finding with less variable NoV concentrations in pumpstations resulting in a lower 

HF183:NoV ratio (Table 3). A lower indicator:pathogen relationship indicates that greater 

concentrations of HF183 likely mean greater concentrations of NoV, requiring a stringent 

risk-based threshold (Table 4, Fig. 4). For a force main impacted site, the resulting HF183 

risk-based threshold is 68 copies 100 mL−1 as NoV concentrations for this sewage source 

are high and the HF183:NoV ratio is low; thus, a more stringent HF183 threshold is required 

to achieve the risk threshold of 32/1000. The HF183 threshold for a force main spill scenario 

is 2 orders of magnitude more stringent than the threshold derived using treatment facility 

influent data (2630 copies 100 mL−1), representing an important discrepancy in public health 

protection hinging on which sewage source data are used. The authors hypothesize that 

the location of force mains within the sewage collection system may be driving this result. 

Force mains and pumpstations receive flow from a large enough population that there are 

sufficient NoV infections to create concentrations higher than upstream sites (gravity pipes 

and sewer laterals) which may not always include shedding users in their smaller service 

areas. However, concentrations observed in treatment plant influent are slightly decreased 

due to degradation and dilution associated with the remaining travel time to get from 

pumpstations/force mains to the treatment plant. This finding emphasizes the importance of 

using the appropriate sewage source data to model public health risk due to a sewage release.
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Fig. 4 demonstrates the differences in probability of illness for each sewage source in 

terms of required dilution, as sites with higher risk of illness due to NoV require more 

dilution to reach the EPA acceptable illness rate for recreational waters. Previous work by 

Ahmed et. al (2018) and Schoen et al. (2020) supports the use of risk-based thresholds, 

finding that public health risk varies as the volume and age of sewage discharged into 

recreational waters changes. Their work also found that the age of sewage influenced the 

efficacy of genetic markers as indicators of elevated health risk. This trend differs for final 

effluent however, where both NoV and HF183 concentrations are lower relative to untreated 

sewage sources. Despite lower overall concentrations in final effluent, finding a lower ratio 

of HF183:NoV results in a lower, i.e. more protective, risk-based threshold for treatment 

plant effluent (301 copies 100mL−1) than influent (2630 copies 100 mL−1). Conversely, 

final effluent risk-based thresholds are less stringent than those for force main (68 copies 

100mL−1) impacted sites. These findings are driven by the indicator:pathogen ratios for each 

sewage source. Rather than relying on pathogen concentrations, understanding these ratios 

and their effect on estimated risk allows for the assessment of impact to a site, regardless 

of dilution. Since it is unlikely that raw influent is making its way into recreational waters, 

the use of appropriate HF183 thresholds specific to the contamination source of interest is an 

important consideration when assessing potential impacts. Sewage releases originate from a 

variety of sources (e.g., unknown compromised laterals and sewer gravity mains, combined 

or sanitary sewer overflows, force main breaks) however in practice upstream sites have 

populations that are too small and pathogen concentrations that are too variable for use in 

this framework. Using force main pathogen and indicator concentrations and ratios, rather 

than treatment plant influent, provides an appropriately conservative estimate of risk-based 

thresholds for determining extent of impact. An extension of this approach could incorporate 

an assessment of fecal age for samples taken across collection systems (Boehm et al., 2018; 

Boehm and Soller, 2020; Schoen et al., 2020).

4. Conclusions

HF183 has been supported by the EPA as a validated method (USEPA Method 1696.1) 

for assessing microbial water quality (USEPA, 2019). Establishing a risk-based threshold 

for HF183 should consider collection system or treated effluent samples rather than raw 

influent alone, as these are more likely to impact receiving recreational waters. Further 

characterization of pathogens and indicator genetic markers across collections systems is 

needed to better understand the distribution of these targets across differing populations and 

geographic regions.
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Fig. 1. 
Map of example upper system (US), lower system (US), and pumpstation (PS) service areas.
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Fig. 2. 
Map of all sampling sites in Hampton Roads metropolitan area, southeastern Virginia. 

Abbreviations: US, upper system; LS, lower system; PS, pump station, WTP, wastewater 

treatment plant. Colors denote distinct treatment facility sewersheds.
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Fig. 3. 
NoV and HF183 concentrations by collection system location. Collection system samples 

are broken out by wet and dry weather conditions.
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Fig. 4. 
Probability of illness across 9x serial dilutions of sewage from each source type. The 

dashed line denotes the EPA Recreational Water Quality acceptable illness rate of 32/1000 

recreators.
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Table 1

QMRA model inputs.

Model Parameter Description References

NoV Concentration Lognormal (mean and SD vary by sewage source) Data generated in-house

Ingested Water Volume (L/
Day)

Lognormal (−0.278, 0.929) Dufour et al. (2006), and US EPA (2011) Exposure 
Factors Handbook

NoV Dose (copies) NoV Concentration (copies/mL) * Ingested Water 
Vol (mL)

Calculated

P(Infection) Hypergeometric Dose-Response Modela Teunis et al. (2020), Schoen et al. (2023)

P(Illness) Hypergeometric Dose-Response Modela Teunis et al. (2020), Schoen et al. (2023)

a
Refer to Schoen et al. (2023) for the selected model and its transformed parameters.

Microb Risk Anal. Author manuscript; available in PMC 2024 December 12.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript
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Table 2

Fitted HF183 and norovirus distributions for each sewage source type and which locations were used to 

generate the distributions.

Sewage
Source

Description Log10 HF183
Mean, Standard
Deviation (copies /
100 m L)

Log10 NoV Mean,
Standard Deviation
(copies / 100 mL)

Raw Influent Untreated sewage from the head of the treatment facility 7.1, 7.0 5.2, 5.3

Final Effluent Treatment facility effluent post-chlorination 4.7, 4.7 3.5, 3.8

Force Main Pumpstation influent/effluent 7.8, 7.9 7.7, 8.1

Gravity Sewer Pipe Lower collection system samples 7.8, 8.0 4.6, 5.1

Sanitary Sewer Overflow Wet weather collection system samples 7.4, 7.3 4.7, 5.2

Sewer Lateral Upper collection system samples 7.8, 8.1 3.4, 3.8

All Data Pooled All data sources Pooled 7.6, 7.9 6.9, 7.7
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Table 3

HF183:NoV ratios across sewage sources. Values indicate the mean and standard deviation HF183:NoV in 

samples collected from each source.

Sewage Source Mean HF:NoV Ratio SD

Lateral 1.26 × 105 2.46 × 105

Gravity 8.24 × 104 1.91 × 105

SSO 4.18 × 104 7.44 × 104

FM 7.42 × 10° 1.67 × 101

RWI 2.22 × 102 3.13 × 102

Final 5.88 × 101 1.09 × 102
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Curtis et al. Page 18

Table 4

HF183 risk-based thresholds for force main (FM), treatment plant effluent (FNE), treatment plant influent 

(RWI), sanitary sewer overflows (SSO), gravity pipe sewage (Gravity), sewer lateral sewage (Lateral) and all 

sources combined.

Log10 HF183 (copies 100mL−1) Risk-Based Threshold

FM 1.83

FNE 2.48

RWI 3.42

Microb Risk Anal. Author manuscript; available in PMC 2024 December 12.


	Abstract
	Introduction
	Methods
	Wastewater collection system and treatment facility samples
	Microbiological analyses
	Data analysis
	Norovirus-based risk estimates
	Deriving an HF183 risk-based threshold

	Results/discussion
	Norovirus and HF183 distribution across collection and treatment
	HF183 risk-based thresholds

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1
	Table 2
	Table 3
	Table 4

