
The S28 serine peptidase family is something of an 
enzymatic odd couple. While showing low sequence 
similarity to all proteins except each other, the two 
known family members appear to be at odds functionally; 
one, prolylcarboxypeptidase (PRCP), is a carboxypepti­
dase that cleaves single hydrophobic residues from the 
carboxyl termini of proteins that end with a Pro-X motif 
(where X is any hydrophobic amino acid), while the other, 
human dipeptidyl peptidase (DPP7), is an aminopepti­
dase that cleaves amino-terminal X-Pro dipeptides. The 
structural basis of this orthogonal specificity would 
undoubtedly be interesting, and a recent report in BMC 
Structural Biology from the Merck Global Structural 
Biology group (Soisson et al. [1]) has now met that 
expectation. In addition they reveal a new wrinkle to the 
iconic catalytic triad common to most serine hydrolases.

The practical pharmaceutical interest in both these 
enzymes as potential drug targets is at present specu­
lative. PRCP can inactivate a number of peptide hormones, 
such as angiotensin II, III and prekallikrein, implicating a 
role for the enzyme in hypertension, tissue proliferation 
and smooth-muscle growth. These properties suggest 
that this enzyme may well be a useful target for 
hypertension and anti-inflammatory therapy [2]. Another 

(non-S28 family) dipeptidyl dipeptidase (DPP4) is a 
major drug target in type 2 diabetes, and Merck has 
already developed a successful inhibitor of DPP4, the 
anti-hyperglycemic drug sitagliptin, for the treatment of 
type 2 diabetes. The DPP enzymes are rich in biological 
functions and other drug targets emerging from the 
group are possible [3].

A peptidase with a difference
Soisson et al. [1] have solved the crystal structure of 
human PRCP. Their refined model reveals two major 
domains - a prototypical α/β hydrolase fold derived from 
two non-contiguous stretches of the protein and a novel 
helical bundle (referred to as an SKS domain by the 
authors) that serves to cap the active site. The α/β 
hydrolase fold is a tertiary fold adopted by many proteins 
that have no obvious sequence similarity but ultimately 
diverged from a common ancestor [4]. In addition, a 
dimerization interface is observed that is consistent with 
the biochemical properties of PRCP in solution. The 
arrangement of the catalytic triad of amino acids in the 
active site (Ser179, Asp430 and His455) is a classic 
constellation seen in other serine α/β hydrolases [4]. The 
spatial arrangement of these three amino acids in the 
active site enables them to form hydrogen bonds with 
each other and with the substrate and cooperate in 
covalent catalysis by the serine.

The active site does have one surprise - an apparent 
charge-relay system that links the catalytic histidine 
(His455) with His456 and Arg460 and might even suggest 
a kind of dual catalytic triad bifurcated off Ser179, the 
ultimate nucleophile (Figure 1). The function of this 
unique system is unknown. The authors suggest that the 
charge perturbation of the His456/Arg460 diad may 
explain the acidic pH optimum of PRCP; that sounds 
reasonable enough, but some deeper involvement in the 
catalytic mechanism is a tantalizing prospect to ponder. 
A similar adjacent His-His motif, lacking the Arg relay, is 
present in serine lipases [5]. Future work on the function 
of this unique catalytic array will be worth following.
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The substrate specificity for a penultimate proline at 
the carboxyl terminus is explained by the presence of a 
hydrophobic S1 binding pocket, formed by two Met and 
two Trp residues, adjacent to the catalytic serine. This 
appears to be a variation of similar Pro-specific S1 sites 
that are found in other prolylpeptidases, such as the 
pharmaceutically important DPP4 [6].

Family comparisons
The structural comparison by Soisson et al. [1] of PRCP 
to its family partner, the DPP7 aminopeptidase, was 
made possible by the deposition by the Structural 
Genomics Consortium of the coordinates for the struc­
ture of DPP7 in October 2009 (PDB 3JYH); these findings 
have not yet been published. Essentially all of the struc­
tural features observed for PRCP and described above are 
preserved between the two enzymes. With a backbone 
root mean square deviation (r.m.s.d.) for the aligned 
structures of 1.20 Å, the structural comparison of PRCP 
and DPP7 described by Soisson et al. thus serves to 
define a unique fold architecture for the S28 family.

The orthogonality between the PRCP carboxypeptidase 
and the DPP7 aminopeptidase activities is at least partly 
explained by a single peptide insertion sequence in DPP7. 
The resulting disulfide-stabilized, short hairpin structure 
sits in the substrate-binding groove of DPP7, just beyond 

the proline S1 binding site, blocking the binding of 
substrates beyond the S2 binding pocket (Figure 2). In 
other words, the restricted binding groove can only 
accommodate an X-Pro sequence on the amino-terminal 
side of the hydrolytically sensitive peptide bond. The 

Figure 1. A new charge-relay motif for serine proteases. Part of 
the structure of the active site of PRCP as determined by Soisson et al. 
[1] is shown here. The classic catalytic triad comprises Ser179 (S179), 
His455 (H455) and Asp430 (D430), which are linked by hydrogen 
bonds (H bonds, dotted lines). In the PRCP active site, the catalytic 
H455 is also linked via S179 to H456, which is in turn H-bonded to 
Arg460 (R460). Thus, these five residues form a potential charge-relay 
system. A similar structure is present in DPP7 (PDB 3JYH).

Figure 2. The basis for the orthogonal substrate specificities 
of PRCP and DPP7. PRCP (top) and DPP7 (below), showing the 
substrate-binding groove of PRCP (blue), and the substrate-binding 
site of DPP7 (blue) that is restricted by the hairpin insert (red) [1]. The 
carboxy-terminal side of the catalytic site (see text for discussion) is to 
the left in this illustration.
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result is an enzyme that is sterically restricted to a 
dipeptidyl peptidase activity with specificity for proline at 
the S1 binding pocket. The hairpin also introduces an 
Asp residue, which may be important in binding the free 
amino-terminal amino group of the substrate in the S2 
binding site, in a manner reminiscent of other DPPs, such 
as DPP4.

For PRCP, the absence of the hairpin insert opens up 
the substrate-binding groove for longer amino-terminal 
peptides (Figure 2), thereby loosening substrate specifi­
city towards the carboxyl terminus. It does not, however, 
completely explain the shift to the specific carboxy­
peptidase activity of PRCP. The binding groove on the 
carboxy-terminal side of the catalytic site appears to be 
open, as in the DPP7 structure (Figure 2), but carboxy-
terminal specificity is restricted to a single amino acid 
beyond the S1 proline, creating an exo-carboxypeptidase. 
It is not immediately obvious why PRCP does not have a 
more pronounced endopeptidase activity. This suggests 
that there are probably other substitutions in the PRCP 
binding groove that restrict the carboxy-terminal peptide 
length. Whatever those substitutions are, they are much 
less dramatic than the amino-terminal blockade that 
creates the DPP7 aminopeptidase specificity.

The orthogonal substrate specificity noted for PRCP 
and DPP7, that is, carboxypeptidase versus aminopepti­
dase activities, suggests a functional discord between the 
pair; this is an illusion. The proline binding at the S1 site 
is essentially identical for both enzymes and both 
reactions are catalytically superimposable, with hydro­
lysis always occurring at the proline carbonyl. The 
specificity shift appears to be driven by binding forces 
and restrictions that dictate which end of a peptide each 
enzyme can accommodate; the enzyme chemistry for 
both is the same.

As noted earlier, the properties of PRCP might make it 
a potential candidate for a drug target in the treatment of 
hypertension and inflammation. The treatment of hyper­
tension is generally well served by a large variety of 
commercial drugs, many now generic, with different 
mechanisms of action. The bar for the entry of new drugs 
into that space is high; a focus on the anti-inflammatory 
and cardioprotective potentials of PCRCP may be a 
better approach. Clear evidence of differentiation from 
existing therapies and significant add-on benefit will be 
critical to capture the developmental interest of major 

pharmaceutical companies. The therapeutic potential of 
DPP7 (also known as DPP2 and QPP) is much more 
tenuous. Because DPP7 inhibition induces a novel apop­
totic pathway in quiescent lymphocytes, the potential for 
drugs targeting the enzyme in some cancers is interesting, 
albeit controversial [7]. In addition, tissue-restricted 
deletion of DPP7 leads to metabolic defects, suggesting 
that it may play a novel role in glucose regulation [8]. 
Studies with potent, specific DPP7 inhibitors have given 
mixed and, at times, conflicting results [9,10]. Regardless 
of the prospects of PRCP and DPP7 as viable drug 
targets, the new insights into serine proteases gleaned 
from the study of the S28 family will undoubtedly refine 
our molecular understanding of this classic mechanism 
of covalent catalysis.
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