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Background: Despite the early development of Google 
Flu Trends in 2009, standards for digital epidemiology 
methods have not been established and research from 
European countries is scarce. Aim: In this article, we 
study the use of web search queries to monitor influ-
enza-like illness (ILI) rates in the Netherlands in real 
time. Methods: In this retrospective analysis, we simu-
lated the weekly use of a prediction model for estimat-
ing the then-current ILI incidence across the 2017/18 
influenza season solely based on Google search 
query data. We used weekly ILI data as reported to 
The European Surveillance System (TESSY)   each 
week, and we removed the then-last 4 weeks from our 
dataset. We then fitted a prediction model based on 
the then-most-recent search query data from Google 
Trends to fill the 4-week gap (‘Nowcasting’). Lasso 
regression, in combination with cross-validation, was 
applied to select predictors and to fit the 52 models, 
one for each week of the season. Results: The models 
provided accurate predictions with a mean and maxi-
mum absolute error of 1.40 (95% confidence interval: 
1.09–1.75) and 6.36 per 10,000 population. The onset, 
peak and end of the epidemic were predicted with an 
error of 1, 3 and 2 weeks, respectively. The number 
of search terms retained as predictors ranged from 
three to five, with one keyword, ‘griep’ (‘flu’), having 
the most weight in all models. Discussion: This study 
demonstrates the feasibility of accurate, real-time ILI 
incidence predictions in the Netherlands using Google 
search query data.

Introduction
Previous studies suggest that traditional disease sur-
veillance systems could be complemented with infor-
mation from online data sources [1-3]. The underlying 
premise is that nowadays, people, often turn to the 
Internet when they face health problems [4]. With 

influenza-like illness (ILI), individuals might search 
for information about symptoms, look for remedies or 
share messages on social media. All of these interac-
tions leave digital footprints, which, when aggregated, 
could be harnessed to monitor disease activity [1]. In 
this way, online data streams could be used to support 
the timely detection of infectious disease outbreaks.

This hypothesis is not new, and in 2009, researchers at 
Google reported that their Flu Trends model was able 
to predict ILI activity in the United States (US) in real 
time, by monitoring millions of queries on their search 
engine [5]. The aim of Google Flu Trends was to bridge 
a 2-week lag in the reporting of ILI cases in the official 
surveillance statistics. Initially, the project appeared 
to provide accurate predictions and was expanded to 
cover 29 countries around the world. In 2012, how-
ever, the model’s performance deteriorated, and in 
early 2013, it overestimated the peak of the epidemic 
by more than 140%. The failure, and subsequent ter-
mination of Google Flu Trends, received a lot of media 
attention and sparked an intense debate about the lim-
itations of big data in epidemiological research [3,6].

Since then, the number of scholarly articles published 
in the field of digital epidemiology has grown con-
siderably [2,7]. The discipline is, nevertheless, in an 
early stage and should still be considered as being 
experimental.

Outside of the US, there has been little effort to inves-
tigate the value of online data sources for epidemio-
logical purposes. Building on previous work [8], our 
study assessed whether online search queries could 
be used to predict the seasonal influenza epidemic in 
the Netherlands during the 2017/18 winter in real time.
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Methods

Influenza-like illness data
Weekly data on consultations for ILI were collected 
through sentinel practices participating in the Nivel 
Primary Care Database [9]. The practices constitute 
a nationally representative group of 40 general prac-
tices in the Netherlands. The methodology is further 
described by Donker [10]. The data were available in 
real time and the ILI data for the last 4 weeks were only 
removed/assumed to be missing for the purpose of 
our study. For this study, we used preliminary ILI inci-
dence data as reported to The European Surveillance 
System  (TESSY) operated by the European Centre for 
Disease Prevention and Control [11]. Final ILI estimates 
can be retrieved from Nivel [9].

Web search queries
Data on Google search queries were retrieved from 
Google Trends [12]. This online service provides 
information on how often a particular keyword was 
searched relative to the total search volume across 

various regions of the world. The granularity ranges 
from hourly to monthly time series data.

Potentially relevant search keywords were determined 
automatically, i.e. without being influenced by our 
judgment or expectations, using another Google Trends 
service, ‘find related searches’. Our starting point was 
the search term ‘griep’, the Dutch word for ‘flu’. We 
then retrieved the 25 most related search queries, i.e. 
keywords that Google users also searched for during 
the same session in which they searched ‘griep’. All 
keywords that contained a year were excluded because 
they were expected to be poor predictors of ILI rates 
in other years. For the remaining search terms, we 
used the R package gtrendsR [13] to download 5 years 
of weekly Google search query statistics, from week 
33/2013 to week 31/2018, for the Netherlands.

Modelling
We simulated the weekly use of a statistical model, 
based on Google search query data, for predicting the 
then current ILI incidence across the 2017/18 influenza 
season in the Netherlands. For this purpose, official ILI 
estimates for the then-latest 4 weeks, which included 
the then-current week, were removed from the dataset. 
Subsequently, a prediction model, solely based on the 
then most recent Google Trends data was used to pre-
dict the 4 weeks of missing data (‘Nowcasting’).

Based on visual inspection of the bivariate associa-
tions between Google searches and the ILI incidence, 
we decided to include square terms (n = 20) to account 
for nonlinearities. The set of predictors was fur-
ther expanded by multiplying each predictor with all 
other predictors to account for one-level interactions 
(n = 190). Together with the original keywords (n = 20), 
a total of 230 variables were considered. Time dummy 
variables, seasonal effects or autoregressive terms 
were not considered. To identify and select the vari-
ables that are the best predictors of the ILI incidence, 
and to remove all other variables from the model, we 
used least absolute shrinkage and selection operator 
(lasso) regression [14] in combination with cross vali-
dation (CV).

To validate our modelling approach, we simulated 
the repetitive use of the prediction model during the 
2017/18 influenza season. To do this, each week, the 
model was updated with the then-most recently avail-
able information: Google search query data up until 
the then-current week (week  w) and the ILI incidence 
data up until 3 weeks earlier (w−1 to w−3). The updated 
model was repetitively used to predict the ILI inci-
dence for the then-current and the previous 3 weeks 
(w to w−3). Finally, predictions were compared with the 
observed values to assess the model’s performance.

Automated analysis loop
The first 4 years of data (weeks 33/2013 to 30/2017) 
were used as training data only, while the analysis loop 
was run on the 52 weeks of the 2017/18 analysis period 

Table
Dutch search terms retrieved from Google Trends and 
their English translation, Netherlands, 17 August 2013–4 
August 2018 (n = 26 search terms)

Dutch search term English translation
Griep Flu
Symptomen Symptoms
Symptomen griep Symptoms flu
De griep The flu
Griep 2018a Flu 2018a

Griep koorts Flu fever
Griep 2016a Flu 2016a
Koorts Fever
Tegen griep Against flu
Griep hoe lang Flu how long
Griep 2015a Flu 2015a

Griep 2017a Flu 2017a

Griep heerst Flu going around
Symptomen griep 2018a Symptoms flu 2018a

Verkoudheid Common cold
Hoe lang duurt griep? How long does flu last?
Ziek Ill
Griep 2014a Flu 2014a

Griep hoofdpijn Flu headache
Griep wat te doen Flu what to do
Heerst er griep Is there flu going around
Griep zwanger Flu pregnant
Verschijnselen griep Symptoms flu
Griep kind Flu child
Griep spierpijn Flu muscle strain
Griep hoesten Flu cough

a Terms with a year in them were removed from further analysis 
because they were unlikely to be useful predictors in any other 
year.



3www.eurosurveillance.org

(weeks 31/2017 to 31/2018). At each week, the data 
were split into two parts; first, a training set, for which 
both the ILI and Google data were made available to 
the model, and second, a 4-week validation set (w to 
w−3), for which only Google data were made available 
and for which the ILI data were removed/missing. This 
means, at the  ith  iteration of the loop, the analysis 
contained 207 + i weeks of training data (week 1 to 207 
+ i) and 4 weeks of validation data (week 207 + i + 1 to 
207 + i + 4). Each week, a new model was built to pre-
dict the ILI incidence of the then-current week and the 
previous 3 weeks.

The model building process included the following 
steps. Dependent and independent variables were nor-
malised and centred, with a mean of zero. The scaling 

for the training data was determined separately and 
then applied to the validation data to prevent infor-
mation leaking from the validation to the training set. 
Variables with near zero variance were removed. Lasso 
regression in combination with CV was used to deter-
mine the optimal set of predictors and their regularised 
coefficients.

Lasso regression performs simultaneous variable 
selection and coefficient estimation. It imposes a pen-
alty on the absolute values of the coefficients in the 
least squares estimation. In effect, less important 
parameters are shrunk towards zero and are excluded 
from the model, if their coefficients become zero. The 
model’s complexity is controlled by the penalty param-
eter λ.

Figure 1
Bivariate associations between Google search terms and influenza-like illness incidence in the training dataset, Netherlands, 
weeks 33/2013–30/2017 (n = 20 search terms)
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ILI: influenza-like illness; SD: standard deviation.

Provided are the Pearson correlation coefficients (r) and locally-estimated scatterplot smoothing (LOESS) curves fitted to data points of the 
initial training period (weeks 33/2013 to 30/2017). Search terms in Dutch can be found in the Table.
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In order to find the optimal value for λ, we used roll-
ing forecast CV for time series, with fixed origin and 
expanding window. CV for time series is a variation of 
leave-k-out CV, which can be used to avoid the leakage 
of information from future to past observations. Similar 
to our automated analysis loop, CV for time series splits 
the data iteratively into a training set (the first k weeks) 
and a test or hold-out set (the subsequent 4 weeks). 
In the first CV iteration, a lasso regression model is 
fit on data from week 1 to  k = 52 and its predictions 
are tested on hold-out data from week 53 to 56. The 
process then rolls forward, week-by-week, keeping 

the origin at week 1, and using an expanding number 
of weeks as training data with k = 52 + 1,  + 2,..., + m, 
whereby m  increases with each iteration  i of the outer 
analysis loop, with  m = 207 − 52 + i  . The prediction 
error over all  m  4-week hold-out sets is then aggre-
gated to assess how well the statistical model can 
predict new data points. At each iteration of the outer 
analysis loop, the inner CV loop is run for 100 values 
of the penalty parameter λ (ranging from 10-8 to 101/4).

The λ  i  of the model with the lowest maximum abso-
lute error in the CV hold-out sets was selected to 

Figure 2
Time series plot showing observed influenza-like illness incidence against predictions of 52 final lasso regression models, 
weeks 31/2017–31/2018 (A) and overview of training and validation, weeks 33/2013–31/2018 (B), Netherlands
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B. Training and validation period overview 

ILI: influenza-like illness.

For the validation period (top), each model provides estimates for the week in which it was run (week 4) and the previous 3 weeks (week 3 to 
1). The red shaded area shows the empirical 95% prediction interval for week 4 predictions. In addition, predicted values within the training 
set are provided for the first lasso regression model (bottom).
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fit the  ith  final model on 207 +  i  weeks of training 
data and to predict the ILI incidence for weeks 1 
to 4 of the  ith  validation set ( i.e. weeks  w  to  w−3). 
We used the lowest maximum, instead of the more 
common mean,  absolute error as the criterion as it 
was considered more relevant in the context of ILI 
surveillance; models were selected as to minimise the 
worst-case scenario, i.e. a considerable over prediction, 
which could be falsely interpreted as the beginning of 
an epidemic.

For further information on variable selection, lasso 
regression and CV for time series, we suggest Heinze 
et al. [15], Kuhn [16] and Tashman [17].

Model evaluation
We analysed the predictions of 52 lasso regression 
models, one for each week of the year. Each model 
provided four predicted values, corresponding to the 
4 weeks of the validation sets (except the first/last 
three models which had shorter horizons). We refer to 
the prediction of the then-current week as week 4 pre-
diction (i.e. 4 weeks since the last update with official 
ILI data), and to the predicted values for the previous 
three weeks as week 3 to 1 predictions.

We plotted the observed against the predicted ILI inci-
dence values and assessed the performance of the sta-
tistical models over the validation period in terms of 
the mean absolute error (MAE). All values were back-
transformed to their original scale and the accuracy of 
the week 1 to 4 predictions were evaluated separately. 
The 95% confidence intervals (CI) around mean esti-
mates were bootstrapped using 10,000 resampling 
iterations. Prediction intervals were computed using 
the empirical non-parametric approach described by 
Lee and Scholtes [18], as the 2.5th and 97.5th quantile 
of the out-of-sample prediction errors. These inter-
vals do not only capture the random variation in the 
data-generating process, but also the uncertainty in 
the model selection and potential misspecifications. 
They therefore provide robust estimates of the model 
fit. However, it is important to note that the prediction 
interval can only be computed retrospectively, after 
the models’ performances have been evaluated on the 
validation set; in other words, it cannot be known dur-
ing the influenza season. We also reported the Pearson 
and Spearman correlation coefficients (r).

In addition, we assessed how accurately the models 
predicted the onset and peak of the season, and inves-
tigated which search query terms were retained as pre-
dictors in the 52 models. CIs around lasso regression 
coefficients were estimated conditional on the chosen 
final values of the tuning parameter λ [19].

Source code and data availability
The R code for this study is provided under open, crea-
tive commons (CC) BY license and all data that were 
used for this study can be accessed online [20].

Figure 3
Observed vs predicted influenza-like illness incidence 
at five time points (A–E), Netherlands, influenza season 
2017/18
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ILI: influenza-like illness.

The plots illustrate what information the prediction models would 
have provided at these five particular points in time (indicated by 
the red dot and vertical line), if they had been used. The week for 
which the last official ILI incidence data were made available is 
marked by the vertical cyan line.
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Ethical statement
This study is based on publicly available secondary 
data and no personal identifiable information were 
used. Ethical approval was not required.

Results 

Google search queries
We retrieved information on 26 search terms, ‘griep’ 
and the 25 most related keywords, from Google Trends 
(Table). Six terms were excluded from the analysis 
as they contained a year. For all other terms (n = 20), 
weekly search query statistics from 17 August 2013 
(week 33/2013) to 4 August 2018 (week 31/2018) were 
downloaded.

Overall, there was a high correlation between the 
search query statistics and the ILI incidence in the ini-
tial training dataset (week 33/2013 to week 30/2017), 

with a mean correlation coefficient of 0.69 (Figure 
1). The lowest correlation was observed for the term 
‘symptomen’ (r: 0.38), and the highest for the term 
‘griep’ (r: 0.87). Between search terms, the degree of 
collinearity was also high, with an average correlation 
coefficient of 0.70 (minimum: 0.24; maximum: 0.97).

Real-time influenza-like illness incidence 
prediction models
We simulated the weekly use of a real-time prediction 
model during the 52 weeks of the analysis period. At 
each week, a new prediction model was built to esti-
mate the ILI incidence of the current week (week 4) and 
the previous three weeks (weeks 3 to 1). Figure 2 shows 
the values of these week 1 to 4 predictions separately 
against the observed ILI incidence, alongside the 95% 
prediction interval for week 4 predictions.

Figure 4
Predictors retained in the final lasso regression models throughout the 52 iterations, Netherlands, weeks 31/2017–31/2018
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The MAE for ILI incidence predictions of weeks 1, 2, 3 
and 4 across the 52 final lasso regression models were 
1.31 (95% CI: 1.03–1.62), 1.35 (95% CI: 1.07–1.68), 1.38 
(95% CI: 1.07–1.73) and 1.40 (95% CI: 1.09–1.75). The 
corresponding non-parametric 95% prediction inter-
vals ranged from −2.98 to 2.78 for week 1; from −3.02 
to 3.00 for week 2; from −3.07 to 3.59 for week 3; and 
from −3.01 to 3.65 for week 4 (Figure 2). Pearson cor-
relation between observed and predicted values var-
ied between 0.95 and 0.94, and Spearman correlation 
coefficients were 0.90 for all 4 weeks.

The error was generally low before the start of the sea-
sonal epidemic in the Netherlands in week 50/2017 
[21], but it increased during the onset, and especially 
during the epidemic peak, when the highest prediction 
error (6.36) was registered (week 10/2018). After weeks 
9/ and 10/2018, the incidence was underpredicted by 
the models.

The model’s MAE in the validation period was slightly 
lower than the MAE observed in the CV hold-out sets 
(CV MAE for 1,2,3 and 4 predictions were 1.49, 1.55, 
1.63 and 1.68). The maximum absolute error was mark-
edly lower in the CV hold out sets (1.72).

The bottom plot in  Figure 2  provides an overview of 
the entire 5-year observation period. The vertical blue 
line separates the training (left) from the validation 
period (right). For comparative purposes, the predicted 
values for the training period of the first prediction 
model (run in week 31/2017) are provided (first model 
training MAE: 1.32; maximum error: 7.18). The figure 
also illustrates the seasonality of influenza epidemics 
(black line). The seasonal epidemic in 2017/18 had a 
slightly higher intensity and lasted longer than average, 
but was otherwise not exceptional.

Temporal aspects of influenza-like illness 
incidence predictions
From the visual presentation in  Figure 2, it might be 
difficult to assess what information was available at 
which week. To illustrate the temporal dynamics of the 
ILI prediction model,  Figure 3  shows model results at 
five different points in time.

The model would have indicated the onset of the sea-
son 1 week ahead of the sentinel surveillance data 
(Panel A: observed onset was week 50/2017, predicted 
onset was week 49 /2017). The peak of the season 
was predicted in week 07/2018 (Panel B), while the 
observed peak was biphasic with the highest inci-
dence (16.97/10,000 population) in week 10/2018 and 
the second highest (16.6/10,000 population) in week 
04/2018 (Panel C and D). The end of the season, i.e. 
when ILI incidence falls below 5.1 per 10,000 popula-
tion for 2 consecutive weeks, was predicted in week 
14/2018, and observed in week 16/2018 (Panel E).

Visual inspection indicates that the predictions gener-
ally appeared to be ahead of the actual ILI incidence. 

Throughout the validation period, week 4 predictions 
were forecasting the ILI incidence of the coming week 
slightly more accurately (MAE: 1.11) than predicting the 
current week (MAE: 1.40).

Model specifications
Figure 4  provides an overview of the 52 weekly sets 
of predictors and their coefficients used in the final 
prediction models. During the validation period, the 
number of variables that were retained in the models 
as predictors ranged from 3 to 5. Even though the 
validity of statistical inference after performing model 
selection is limited, it is interesting to note that one 
predictor, ‘griep’ (‘flu’) had by far the most weight in 
all models, especially after week 32 of the validation 
period, which was week 11/2018. It is also interesting 
to note that the coefficients for all other predictors had 
wide confidence intervals and were not significantly 
different from zero (see  Supplementary Figure S1 and 
Table S2).

Discussion
Our study demonstrates that a statistical model based 
on online search queries could have been used to 
monitor the ILI incidence in the Netherlands during 
the 2017/18 influenza season. Assuming a delay of 4 
weeks between the incidence and the reporting of ILI 
cases, our model predicted the epidemic in real time 
with high accuracy: the onset, peak and end of the epi-
demic would have been identified with 1 to 3 weeks 
difference.

This investigation provides an accessible but rigor-
ous case study in digital epidemiology. The modelling 
steps are tractable and computationally economical 
such that the source code can be modified and applied 
to other settings/countries and other infectious dis-
eases or health conditions with a seasonal pattern, 
e.g. hay fever, allergic asthma. The full source code 
and data are provided under open license to encourage 
the application of this method to other countries and to 
other areas of epidemiological research.

A notable feature of our study is the week-by-week 
simulation of the prediction model. We built 52 mod-
els, each of which was validated on 4 weeks of data 
(which were later used for fitting subsequent models). 
The iterative analysis loop allowed us to set a realistic 
framework for investigating our research question. Our 
results reflect how well a model would have performed 
and what information it would have provided if it was 
used during the 2017/18 influenza season. The loop 
structure also enabled us to continuously update the 
model, as suggested by previous research [6,22], to 
prevent deterioration of performance. Each week, we 
re-fitted the prediction model using the most recently 
available ILI data from 4 weeks ago. In addition, we 
also repetitively applied CV to select the momentarily 
optimal set of predictors; interestingly, most retained 
variables only changed marginally over time, and one 
predictor (‘griep’) had by far the highest weight in all 
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prediction models. However, our models were designed 
for the purpose of prediction, not explanation, and 
results with regard to individual predictors should 
thus be interpreted with caution. Our evaluation of the 
model showed that the week 1 to week 4 predictions 
were highly consistent and discrepancies were only 
observed during the peak of the influenza season.

When preparing this project, we assessed a number of 
different data sources, e.g. Google Trends and Wikipedia 
page visits [8], and chose Google Trends [12] to be the 
most advantageous for our project. This is because the 
Google Trends service is publicly available, easy to use 
and is understood to cover the online search behaviour 
of the majority of people in the Netherlands. However, 
its use comes with certain limitations that should be 
considered when interpreting findings or applying this 
methodology. Using the public application program-
ming interface (API), weekly data can only be retrieved 
for periods of less than 5 years, which sets a bound-
ary on the observation period. There is also a quota 
for the number of search requests for an individual per 
session that limits the amount of predictor data that 
can be downloaded. Moreover, we cannot rule out that 
data was leaked from future to past observations since 
we retrieved all data after the end of the season. If 
the data were retrieved each week during the season, 
results could have been different [23].

We provide an accurate and computationally efficient 
approach to model the use of web search queries to 
monitor ILI rates over time. To further improve pre-
dictive performance, future studies should consider 
the following strategies that have been successfully 
applied in previous disease prediction models: (i) 
using other online data sources, e.g. Wikipedia page 
views, Twitter activity [20,22], (ii) conducting, more 
extensive data pre-processing, e.g. principal compo-
nent analysis [24,25], (iii) applying alternative statisti-
cal models, e.g. smoothing splines, ensemble methods 
[7,25], or (iv) considering different combinations and 
interaction terms between predictors and (v) additional 
predictors besides online data, including seasonal and 
autoregressive terms [26]. In this study, seasonal and 
autoregressive terms were not considered, not only 
because it would have been computationally expensive 
to include those in the CV loop, but also because deter-
mining the added value of including Google search 
queries as variables in the prediction model would 
then have been more difficult.

Our results are comparable to previous studies from 
European countries. Valdivia et al. [27] used historic 
data from the now terminated Google Flu Trends pro-
ject and compared the predicted ILI rates against sen-
tinel surveillance estimates across the 13 European 
countries during the 2009/10 influenza A(H1N1) pan-
demic. They found high correlations between predicted 
and observed ILI rates, with Spearman coefficients 
ranging from 0.72 in Poland to 0.94 in Germany. For 
the Netherlands, the authors reported a correlation of 

0.86, which is slightly lower than what we found in our 
study (0.90). More recently, Samaras et al. [28] studied 
the association between ILI incidence and influenza-
related Google search queries in Greece and Italy in 
2011 and 2012. They found Pearson correlation coef-
ficients between 0.83 for Greece and 0.98 for Italy. It 
should be noted, however, that these figures are based 
on a retrospective analysis of the data and, unlike in 
our study, the results were not validated on a test data-
set. Moreover, correlations are not based on the abso-
lute differences between the predicted and observed 
values and might therefore generate conflicting or even 
misleading results. Future studies should report meas-
ures of absolute differences, such as MAE, to enable 
appropriate comparison of predictive performances.

Numerous other studies, mostly from the US have 
aimed to predict ILI incidence rates from online data, 
using various data sources and applied an array of dif-
ferent methods [2,7]. Unfortunately, many of the pub-
lished studies suffer from methodological limitations, 
such as the use of inappropriate outcome measures, 
e.g. correlations; the absence of a rigorous validation 
method, e.g. using a single dataset to fit a model and 
evaluate its predictions; or insufficient reporting, which 
does not allow for replication of results. Tabataba et al. 
[29] and Generous et al. [30] have published in-depth 
discussions of these points.

In the Netherlands, there is no justification to monitor 
ILI through internet search analyses as ILI data, includ-
ing virological information, are collected from senti-
nel practices in near real time. However, during week 
52/2017 and 1/2018, we made an interesting observa-
tion: sentinel surveillance data indicated a temporary 
drop in ILI incidence, but the signal was unlikely to 
have been caused by a decrease in the actual num-
ber of ILI cases, but rather by low healthcare utilisa-
tion and/or changes in doctors’ working hours during 
the Christmas and New Year holiday period. For these 
2 weeks, it could be argued that our prediction model 
could have usefully complemented the sentinel surveil-
lance system.

Further potential applications of digital epidemiology 
methods include the provision of supportive, low-cost, 
online surveillance in countries with limited resources 
that, for example, report data more slowly than the 
Netherlands (which does so on a weekly basis) or 
that do not have disease surveillance coverage of all 
regions or an early warning system for pandemic out-
breaks [1]. However, before these novel methods can 
be applied in routine practice, they need to be thor-
oughly evaluated and their value has to be unequivo-
cally determined. More research is needed to better 
understand where, when and how online surveillance 
can complement established systems.

Prediction models need to demonstrate that they 
provide accurate and reliable estimates. It is espe-
cially important to avoid false alarms that could, for 
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example, be caused by ILI-related news reports. If a 
surveillance model cannot differentiate between news-
related and symptom-related ILI searches, any increase 
in ILI-related search activity could trigger a warning 
that might then lead to unnecessary public anxiety and 
economic costs.

It is also important to note that the prediction model 
we used in this study was designed to accurately pre-
dict ILI incidence rates, not to asses which factors best 
explain it [31]. With high multicollinearity between 
predictors and after performing parameter selection 
before coefficient estimation, the ability to make sound 
inferences about individual variables coefficients is 
very limited. Further quantitative, as well as qualitative 
studies, are required to better understand the online 
health information seeking behaviour of individuals 
with and without ILI.

Another limitation is that most, if not all of the online 
data that is relevant for building prediction models, e.g. 
online searches and social media activity, are owned 
by private companies. Those companies could change 
the methods of data collection, processing or provision 
at any point in time without any advance notice. These 
challenges must be recognised, but they should not 
discourage further studies and developments in the 
field.

Conclusions
Our study demonstrates that a prediction model based 
on online search queries could have predicted the 
2017/18 ILI epidemic in the Netherlands in real time. 
The intensity of the epidemic, as well as its onset, peak 
and end were estimated with reasonable accuracy. The 
value of using online surveillance methods to com-
plement traditional disease surveillance systems in 
Europe, and beyond, including for the current corona-
virus disease (COVID-19) pandemic, should be further 
explored.
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