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Abstract: Thermosensitive sterile lines are natural materials for exploring the effects of anther
development on male fertility. To study the possible molecular mechanisms regulating protein activity
during the induction of male sterility, proteomic and phosphoproteomic analyses with tandem mass
tags (TMTs) were used to study the binucleate anther of the thermosensitive sterile wheat line YS3038.
A total of 9072 proteins, including 5019 phosphoproteins, were identified. Enrichment analyses
of differentially abundant proteins (DAPs) and phosphoproteins (DAPPs) in metabolic pathways
showed that both were mainly related to energy metabolism. Soluble sugar and ATP content were
significantly decreased, free fatty acid content was significantly increased, and ROS was abnormally
accumulated in male sterile YS3038-A. In addition, 233 kinase–substrate pairs involved in potential
phosphorylation control networks were predicted to regulate fertility. Candidate proteins were
identified, and a quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to
validate the TMT results. TaPDCD5 is likely to be involved in fertility conversion of YS3038 by barley
stripe mosaic virus-induced gene silencing (BSMV-VIGS). Our data provide new insights into the
mechanism of TCMS, which has value for identifying potential candidate proteins associated with
the formation or abortion of pollen and promotion of wheat heterosis utilization.

Keywords: anther; pollen; proteomics; phosphoproteomics; male sterility; wheat

1. Introduction

Heterosis is an important mechanism used to increase crop yields. Owing to a lack
of sterility genes, the scarcity of available sterile lines and difficulties in their extensive
utilization, and the restricted scale and application of hybrid wheat production, the global
planting area of hybrid wheat is less than 1% of the total planting area of all wheat [1].
Increasing the production of wheat still depends on traditional breeding methods, but the
utilization of heterosis has become a critical potential means of improving wheat yield,
resistance, and adaptability [2]. The heterotic advantage of some crops, including maize
CMS-T and Chinese hybrid rice, relies mainly on cytoplasmic male sterility (CMS) [3]. CMS
plays a vital role in the production of hybrid seeds and facilitates environmental protec-
tion without requiring emasculation [4]. The development of wheat CMS lines revealed
new potential for the utilization of wheat heterosis. At present, thermo/photoperiod-
sensitive genic systems and CMS are being studied to explore their application potential in
wheat [5,6]. Thermo-sensitive CMS (TCMS) wheat can be used to maintain and propagate
male sterile lines via self-pollination, and it can produce a large number of seeds in some
areas where the average daily temperature can consistently reach the fertile environmental
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temperature. Additionally, TCMS lines can be used as seed parents when male sterility is
induced in other areas, so it has broad application prospects [7]. TCMS not only provides
important breeding conditions for utilizing hybrid advantage in crops, but also provides
researchers with natural materials for manipulating cytonuclear interactions and exploring
male sterility.

The development of anthers is a key process that directly determines the male fer-
tility of plants, and understanding the molecular mechanisms of anther development is
important for the improved use and production of new CMS lines. Wheat male sterility is a
complex developmental process that includes the differentiation of tissues and the coordi-
nated expression of genes. We performed transcriptome sequencing of tissue from YS3038
(a TCMS wheat line). As it is known that the relationship between the levels of mRNAs and
the abundance of the protein products is nonlinear [8,9], estimates of transcription levels
are insufficient for explain the final gene expression results, and most of the gene’s function
is ultimately realized in the form of protein [9]. Therefore, further study of the molecular
mechanism of male sterility in wheat is merited. Contemporary proteomic techniques
provide powerful high-throughput methods for identifying molecular mechanisms related
to CMS. Moreover, newly synthesized proteins that have undergone post-translational
modification (PTM) increase the diversity of protein functions, meaning that some proteins
without biological function could become functional proteins after PTM [10]. Protein phos-
phorylation and dephosphorylation are highly controlled biochemical processes that are
closely related to plant growth, development, and resistance to various stresses. Phospho-
rylation status modulates protein activity, influencing the structure of a protein, controlling
its subcellular distribution, and regulating its interactions with other proteins [10]. Phos-
phorylation is a dynamic process, and the quantitation of these phosphorylation events
is crucial [11]. The phosphorylation of some meiotic-related proteins, secretory proteins,
kinases, and epigenetic-related proteins has been observed and is considered to be an
important factor in anther development in rice [12]. A proteomic analysis of two CMS
lines of rice revealed that their pollen was sterile due to a lack of NAD+-dependent malic
enzymes, while the up-regulation of acetyl-CoA synthetase and isoamylase may be strongly
related to CMS and amylose content [13]. Studies on anther development in Arabidopsis
have shown that the phosphorylation of mitogen-activated protein kinases, casein kinase
II, and 14-3-3 proteins is a key regulatory mechanism involved in anther development [14].
During pollen development of CMS kenaf, a total of 3045 phosphosites were identified,
with roles in carbohydrate and energy metabolism, signal transduction, and cell cycle
control, which might in turn play key roles in pollen development [15]. Cysteine protease
was observed to promote cell death in the anthers of male sterile transgenic tobacco plants,
and the carboxylesterase17 and patatin-like protein-2 in anthers stimulated cell death, likely
through the coordination of gene silencing mechanisms and lipid metabolism [16]. These
studies elucidate the mechanisms of anther development and improve our understanding
of the molecular mechanisms of male sterility.

Few studies have been published on the total protein expression and phosphoryla-
tion level of wheat anthers [11]. The total protein expression level and PTM of wheat
temperature-sensitive male sterile anthers remain essentially unknown. Therefore, using
proteomic and phosphoproteomic tools to discover the mechanism of anther and pollen
development will enable researchers and breeders to better utilize and produce novel CMS
lines. YS3038 is a temperature-sensitive sterile line of wheat created by our research group.
Based on previous studies, we considered the binucleate stage to be a critical period for
male sterility in YS3038 [17]. The objective of the present study was to identify candidate
proteins that may contribute to wheat sterility by comparing fertile and sterile anthers,
obtaining key differentially expressed proteins and phosphoproteins, and identifying pat-
terns of protein regulation among significantly enriched pathways involving male sterility.
These results lay the foundation for exploring the genetic and molecular mechanisms of
male infertility in wheat.
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2. Results
2.1. Phenotypic Characterization and Cytological Observations

Anthers and microspores could maintain normal development from the meiotic stage
to early uninucleate stage in YS3038-A (Supplementary Materials Figure S1). After the
binucleate stage (Bns), anthers of YS3038-A were thinner, and anthers did not dehisce
at the trinucleate stage. The pollen of YS3038-A became completely sterile after panicle
differentiation. Thus, the microspore development of YS3038-A was defective. YS3038-A
pollen was found to be almost entirely aborted by I2-KI and peroxidase staining (Figure 1).
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Additionally, 5019 unique phosphoproteins with 10451 phosphosites (Supplementary 
Materials Table S2), 975 up-regulated phosphosites and 998 down-regulated phospho-
sites, were observed in the phosphoproteome (Supplementary Materials Table S3). Fur-
ther analysis showed that 2869 phosphoproteins possessed only one phosphosite. Two 
phosphoproteins (W5FM32 and A0A3B6HPU7) with unclear functions possessed 27 and 
32 phosphosites, respectively. Compared with previous studies on cereal crops, more pro-
teins and phosphosites were detected in the present experiment [8,11,18–20] (Supplemen-
tary Materials Figure S3). 

Figure 1. Phenotypic and cytological observations. (A1–A5,B1–B5) Anther structure, the morphology
of the seed status on spikelets and the seed status in YS3038. (C1–C5,D1–D5) Microspores DAPI
staining of microspores, I2-KI and peroxidase staining of mature pollen grains. (A1,B1,C1,D1),
Late uninucleate stages. (A2,B2,C2,D2), Binucleate stages. (A3,B3,C3,D3), Trinucleate stage. Scale
bars = 50 µm (C1–C3,D1–D3), 200 µm (C4,C5,D4,D5).

2.2. Proteomic and Phosphoproteomic Identification

The proteomic and phosphoproteomic identification assays were highly accurate, and
the results of tests of repeatability are summarized in Figure 2 and Supplementary Materials
Figure S2. A total of 9072 proteins, 669 up-regulated proteins and 372 down-regulated
proteins (Supplementary Materials Table S1), were identified in the proteome. Additionally,
5019 unique phosphoproteins with 10451 phosphosites (Supplementary Materials Table
S2), 975 up-regulated phosphosites and 998 down-regulated phosphosites, were observed
in the phosphoproteome (Supplementary Materials Table S3). Further analysis showed that
2869 phosphoproteins possessed only one phosphosite. Two phosphoproteins (W5FM32
and A0A3B6HPU7) with unclear functions possessed 27 and 32 phosphosites, respectively.
Compared with previous studies on cereal crops, more proteins and phosphosites were
detected in the present experiment [8,11,18–20] (Supplementary Materials Figure S3).
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Most phosphorylation events in YS3038 anthers occurred at serine residues (9493, 
90.8%) followed by threonine residues (918, 8.8%), while phosphate tyrosine residues ac-
counted for 0.4% of the identified phosphosites (Supplementary Materials Figure S4). By 
comparing the results of the proteomic and phosphoproteomic datasets, regardless of pro-
tein abundance, phosphosites were detected without bias. The identified proteins were 
divided into three subgroups; besides structural proteins, most functional proteins, 

Figure 2. Experimental strategy. (A) Sample preparation and workflow of the integrated proteomic
and phosphoproteomic analyses. (B) Scatter plot of quantitative principal component analysis
between repeated samples in the proteome and phosphoproteome data. (C) Up- and down-regulated
proteins and phosphosites that were statistically significant are represented in the scatter plots. Each
point represents a protein or a phosphosite.

Most phosphorylation events in YS3038 anthers occurred at serine residues (9493,
90.8%) followed by threonine residues (918, 8.8%), while phosphate tyrosine residues
accounted for 0.4% of the identified phosphosites (Supplementary Materials Figure S4).
By comparing the results of the proteomic and phosphoproteomic datasets, regardless
of protein abundance, phosphosites were detected without bias. The identified proteins
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were divided into three subgroups; besides structural proteins, most functional proteins,
especially regulatory proteins, were not abundant in the anthers, although they play a
crucial role in anther development. Only 43 phosphoproteins were annotated as regulatory,
meaning that the functional effects of the vast majority of phosphorylation events quantified
here or in upstream kinases have not yet been studied. At present, the ProteomeXchange
Consortium has no wheat datasets related to anthers, and our research appropriately
fills this gap. The data obtained in this study were deposited in the ProteomeXchange
Consortium through the PRIDE partner repository (PXD029487).

2.3. Subcellular Localization and Functional Classification

The subcellular distribution patterns were similar between the proteome and phos-
phoproteome datasets, with relatively high localization to the nucleus, chloroplasts, and
cytoplasm (Figure 3).
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Figure 3. Analysis of the proteome and phosphoproteome data. Subcellular localization prediction
and classification statistics of differentially expressed (A) proteins and (B) phosphosites. GO enrich-
ment analysis of differentially expressed identified enrichment among categories of BP, MF, CC in
the proteome (C) and phosphoproteome data (D). GO-BP classification was analyzed for differential
protein (E) and phosphoprotein (F) enrichment. The pathway names are shown along the vertical
axis, the horizontal axis represents the enrichment factor, the sizes of dots in the pathway represent
the number of DAPs, and the p-value is reflected by the color of each dot.
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We analyzed the differentially abundant proteins (DAPs) and phosphoproteins (DAPPs)
enriched in each of the three categories in the gene ontology (GO) classification. The en-
riched biological processes in the DAPs and DAPPs included the cellular process, metabolic
process, and response to stimulus. For cellular components, enriched terms mainly in-
cluded cells, organelles, and membranes. The enriched molecular function terms mainly
included catalytic activity, binding, and transport activity. These results may represent
the metabolic or physiological biases of anthers during the Bns under the expression of
male sterility. During the enriched biological process (BP) in the differentially expressed
proteome and phosphoproteome data, pollen exine formation and sporocyte differentiation
were the significantly down-regulated terms. The synthesis and transport of sporopollenin
and the development of pollen exine structure are crucial to wheat fertility [21,22]. Sterile
rice mutants lack sufficient sporopollenin to deposit exine, and thus pollen walls cannot be
thickened to a normal extent [23].

To broaden our analysis (Supplementary Materials Figure S5), we characterized which
KEGG pathways were most altered in YS3038 (at the levels of proteome and phosphopro-
teome) by KEGG enrichment analysis and found that lipid-metabolism-related pathways
were highlighted. Of these, starch and sucrose metabolism was down-regulated, while
oxidative phosphorylation (OxPhos) was significantly up-regulated at the proteome and
phosphoproteome levels. These results indicated that energy metabolism plays an impor-
tant role in male sterility.

2.4. Differentially Expressed Proteins Highlight Fatty-Acid-Related Metabolic Pathways

DAPs and DAPPs were enriched and significantly down-regulated in the fatty acid
biosynthesis, elongation and the cutin, suberine and wax biosynthesis pathways (Sup-
plementary Materials Table S4). The cutin, suberine, and wax biosynthesis pathways are
critical for the normal development of anthers at an early uninucleate stage in the P-type
CMS of wheat [20]. The diffusion of cutin and wax onto the surface of anther cell walls is
essential for maintaining pollen morphology [23]. In order to confirm the abnormal fatty
acid metabolism of YS3038-A, the free fatty acid contents of both YS3038-A and -B were
determined (Figure 4). The content of free fatty acids in YS3038-A anthers was significantly
higher. Wu et al. showed that the increased contents of free fatty acids in sterile anthers
are mainly comprised of C14:0 and C18:1 [24]. The present results showed that excessive
free fatty acids in YS3038-A inhibited fatty acid biosynthesis by down-regulating protein
expression through feedback regulation.
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2.5. Abnormal Carbohydrate Metabolism in YS3038-A Anthers

There were 24 DAPPs (with 61 phosphosites) and 53 DAPs enriched in the carbohy-
drate and energy metabolism pathways, most of which were significantly down-regulated
(Supplementary Materials Table S5).

The above protein expression patterns suggest that YS3038-A male sterility may be
caused by the abnormal accumulation of carbohydrates and starch synthesis. Soluble sugar
is a key osmoregulation substance, and its normal accumulation can prevent protoplast
dehydration and maintain cell resistance to environmental changes [24]. We found that
compared with YS3038-B, the total soluble sugar content in YS3038-A anthers was also
significantly reduced at the Bns (Figure 5). In addition, the Bns YS3038-A/B anthers were
stained with periodic acid-Schiff (PAS). At the Bns, weak positive staining was detected
in the tapetum and microspore of YS3038-A anthers, while strong positive staining was
detected in the tapetum and microspore of YS3038-B anther. The protein expression pattern
in the carbohydrate metabolism pathway reduced the accumulation of total sugar in
YS3038-A. Abnormal starch synthesis in pollen led to abortion, which also supported the
TMT results.
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Figure 5. Sugar composition in YS3038-A and YS3038-B anthers. (A) Soluble sugar content. PAS
staining of anther cross-sections in (B) YS3038-A plants compared with those of the (C) YS3038-B
plants. T, tapetal layer; M, microspores; bars = 200 µm. Significant differences were determined by
Student’s t-test (* p < 0.05).

2.6. DAPs and DAPPS Interfere with the Electron Transport Chain, Reactive Oxygen Species
Accumulation, and ATP Synthesis

The OxPhos metabolic pathway was enriched for DAPs and DAPPs that were up-
regulated (including 10 phosphosites) (Supplementary Materials Table S6). The mitochon-
drial respiratory chain plays a central role in energy metabolism [25]. Mild continuous
oxidative stress increases respiratory electron transport and enhances electron flow to
increase the generation of oxygen free radicals, which leads to increases in reactive oxygen
species (ROS) generation and the amplification of oxidative stress. The accumulation of hy-
drogen peroxide induces cell death processes dependent on active cell metabolism [26]. The
electron transport chain (ETC) regulates the respiratory rate mainly through the ADP:ATP
ratio, which reflects cell energy demand [27]. In order to verify the above results, we
measured the total amount of ATP in the binucleate anthers of YS3038-A/B (Figure 6).
During the Bns, the ATP level of YS3038-A was low, indicating that YS3038-A might have
an insufficient energy supply.
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Figure 6. Physiological differences in anther between YS3038-A and YS3038-B. (A) ATP contents
of anthers. The (B) H2O2 and (C) malonaldehyde (MDA) contents and activities of (D) peroxidase
(POD) and (E) catalase (CAT) in anthers. Significant differences were determined by Student’s t-test
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ROS is an important product of oxidative stress in plant cells and a key element of pro-
grammed cell death. Under normal circumstances, the ROS system is in a state of dynamic
equilibrium [28]. ROS-related indicators in anthers were analyzed to evaluate whether
YS3038-A infertility is mediated by the ROS system. The content of H2O2 produced by
YS3038-A in the Bns was higher, and the degree of lipid peroxidation in the cell membrane
was increased, which increased the MDA level. Accordingly, the cells experienced substan-
tial nutrient loss, rending them unable to meet the normal development of anthers and
resulting in anther abortion. The activities of POD and CAT were also assayed, revealing
that the protective enzyme activity in YS3038-A was low in the Bns. These results indicated
that the accumulation rate of ROS in YS3038-A was higher than the scavenging rate, and
the dynamic balance between the accumulation and scavenging of ROS was abnormal.
Studies have shown that excessive ROS accumulation can lead to abnormal development
of anther apoptosis and ultimately lead to male sterility [28–30].



Int. J. Mol. Sci. 2022, 23, 6428 9 of 22

2.7. Phosphoproteomics Reveals the Protein Kinase Regulatory Network of YS3038

Protein kinases (PKs) are found in almost all plant organs, where they enable plants
to adapt to changing environments [11], and many studies suggested that PKs affect the
male reproductive development of plants [12]. Here, we identified 267 and 369 PKs in the
proteome and phosphoproteome (Figure 7A), respectively, with 790 phosphosites identified.
Nearly half of the PKs have multiple phosphosites (Supplementary Materials Table S7).
This indicated that phosphorylation is widely present across kinases involved in anther
development in YS3038.
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PKs interact with each other by phosphorylation. Different kinases preferentially
phosphorylate specific substrates with conserved sequence motifs [12]. In total, 233 kinase–
substrates pairs were found among the phosphoproteins in our study, and the interaction
network was visualized using Cytoscape (Figure 7 and Supplementary Materials Table S8).
In order to predict the relationship between phosphosites and their corresponding kinases
and determine how these relationships mediate fertility, the identified PKs were classified
according to their phylogenetic tree into AGC/RSK, TKL/IRAK, STE/STE11, other/WNK,
CMGC/CDK, CMGC/MAPK, CK1/CK1, CAMK/CAMK1, and atypical/PIKK groups.
In these regulatory networks, a total of 40 kinases were identified, corresponding to
166 substrates of 233 phosphosites. TKL kinases were the largest kinase family identified,
with 21 kinases, accounting for 52.5% of all kinases, followed by CAMK (7, 17.5%). This
finding suggested that kinases play a key role in the regulation of fertility in YS3038. CK1
and CMGC families were represented at higher percentages than other families, implying
that these kinases may play particularly important roles in YS3038 fertility alteration.

2.8. Other Sterility Candidate Proteins Identified among DAPs and DAPPs

Some homologs of rice proteins related to male sterility were found among the identi-
fied DAPs/DAPPs by amino acid sequence alignment (Supplementary Materials Table S9).
The genes encoding the proteins identified in the proteome and phosphoproteomic studies
(listed in Supplementary Materials Table S9) were selected to validate the dynamic tran-
scriptional expression patterns of these representative genes by qRT-PCR (Figure 8). How-
ever, the expression patterns of three genes (TraesCS4D02G078800, TraesCS3B02G204200,
TraesCS7D02G190300) were the opposite of their protein expression patterns. Previous
studies indicated that the results obtained by proteomic analysis do not necessarily agree
with the results of transcriptional analyses [8]. The differences in these three proteins
might be explained by post-translational regulation [31]. Additionally, 12 genes were
down-regulated at the binucleate stage. The significant decrease in the expression of these
genes during the binucleate stage suggested that these proteins may be associated with
male sterility in YS3038. Remarkably, the significant down-regulation of the above key
proteins (TraesCS6D02G238700 and TraesCS6B02G255100) involved in lipid metabolism at
the transcription and translation levels may be the cause of abnormal pollen development
and defective anther dehiscence in YS3038. This result supports the above results regarding
the role of abnormal lipid metabolism. The low expression of carbohydrate transporters
may also contribute to YS3038-A sterility. In our results, the homologs of OsUgp1 (a
UDP-glucose pyrophosphorylase, OsUgp1 is mainly involved in callose deposition and
carbohydrate metabolism in pollen mother cells and meiosis stages) and OsMST5 (an
energy-dependent monosaccharide transporter, OsMST5 participates in pollen germination
and microspore energy supply to support pollen tube growth) were down-regulated at
both the transcriptional and translational levels. The abnormal expression of these proteins
could cause abnormal starch and wax metabolism in YS3038-A, thus aborting pollen. All of
these results elucidate and guide the continued study of male sterility in wheat.

Pollen development is a highly specific process that involves signal transduction, cell
cycle control, and programmed cell death (PCD). TaPDCD5 (TraesCS1A02G368100) expres-
sion was up-regulated, and the apoptosis inhibitor protein TaAPI5 (TraesCS6D02G180700)
was down-regulated; their regulatory patterns were consistent at both the translational and
transcriptional levels. The two proteins are homologs of OsPDCD5 (OsPDCD5 is homol-
ogous to mammalian PCD gene 5; the decreased expression of OsPDCD5 induces pollen
sterility in rice) and OsAPI5 (OsAPI5 encodes a putative homolog of antiapoptosis protein
Api5 in animals and results in the delayed degeneration of the tapetum, leading to defects
in the formation of male gametophytes), respectively. Pollen abortion in most CMS rice
lines is associated with abnormal tapetum degradation resulting from a misregulation of
the PCD pathway; pollen development was sensitive to the observed transcript abundances
of OsPDCD5 and OsAPI5 [32,33].
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2.9. Functional Verification of TaPDCD5 via BSMV-VIGS

The γ empty vector was used as the negative control, and the phytoene desaturase
(PDS) gene was used as the positive control (virus-induced PDS gene silencing results in
visible leaf photo-bleaching). The positive control group showed an obvious whitening of
leaves. The silencing of the TaPDCD5 (TraesCS1A02G368100) led to a significant decrease in
the expression level of TaPDCD5 and seed setting rate of YS3038 under fertile conditions
(Figure 9 and Supplementary Materials Table S10). In the TaPDCD5-silencing plant, the
anther showed an abnormal shape. YS3038 anther development was sensitive to the
transcript abundance of PDCD5. It was reported that PDCD5 was highly expressed in old
organs [34], The antisense expression method down-regulates the expression of PDCD5,
resulting in male sterility in photoperiod-sensitive rice varieties [32]. Furthermore, control
of the protein abundance of TaPDCD5 by natural or artificial alteration of environmental
conditions may significantly affect wheat fertility.
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Figure 9. Functional verification of TaPDCD5 via BSMV-VIGS. (A) Leaf characteristics of positive
control (PDS gene-silenced) plants. (A), Early stage of positive control plants. (B), Metaphase of
positive control plants. (C), Late stage of positive control plants. (D–F) Fertility of ears. (D), Negative
control. E, Positive control. F, TaPDCD5-silenced plants. (G–I) Anther morphology. (G), Negative
control. (H), Positive control. L, TaPDCD5-silenced plants. (J) Relative expression of gene-silenced
plants. Significant differences were determined by Student’s t-test (* p < 0.05).
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3. Discussion
3.1. A regulatory Network of Energy Metabolism a Candidate for TCMS in Wheat

To identify the biochemical pathways related to DAPs and DAPPs between male
sterile YS3038-A and male fertile YS3038-B, a proteomic analysis was conducted. Among
the many results, we found that fructokinase (scrK) and hexokinase (HK) were significantly
down-regulated in YS3038-A anthers, and 6-phosphofructokinase (PFK) had a signifi-
cantly down-regulated phosphosite (Figure 10 and Supplementary Materials Table S5).
The regulation pathway of HK and PFK is an irreversible step at an important node in
glycolysis [8]. The HK catalytic reaction initiates all hexose utilization pathways, includ-
ing leading the cleavage products of sucrose into the starch biosynthesis pathway, and
the abnormal expression of HK activity can lead to male sterility [30,35]. The expression
of fructose-bisphosphate aldolase (ALDO), phosphoglycerate kinase (PGK), and enolase
(ENO) in the glycolysis/gluconeogenesis reversible pathway was up-regulated, suggesting
that a lack of soluble sugar in YS3038-A anthers led to the activation of the gluconeoge-
nesis pathway. In addition, the protein expression levels of sucrose-phosphate synthase
(SPS), UTP-glucose-1-phosphate uridylyltransferase (UGP), glucose-1-phosphate adeny-
lyltransferase (glgC), sucrose synthase (SS), and α-amylase (AMY) in the starch synthesis
pathway were significantly down-regulated. The down-regulation of the abundance of
SPS and SS may cause abnormal starch accumulation [29]. Abnormal starch metabolism
might be an important factor in the binucleate microspore abortion [20]. UGP is mainly
involved in callose deposition and carbohydrate metabolism in pollen mother cells and
during meiosis; OsUgp2 was observed in binucleate pollen [36,37]. A reduced expression
of beta-fructofuranosidase (INV) can enhance trends in sucrose content [38]. INV had
two abnormally expressed phosphosites, SPS contained four significantly down-regulated
phosphosites, and UGP had a down-regulated phosphosite. These phosphosites may play
a role in sterility mediated by TCMS.

There is growing evidence that the pollen wall is mainly composed of sporopollenin,
and lipid metabolism is essential in the biosynthesis of sporopollenin [24,39]. Down-
regulated proteins and phosphoproteins were found to be enriched in fatty acid biosyn-
thesis, the elongation pathway and the cutin, suberine and wax biosynthesis pathways
(Supplementary Materials Table S4). CYP704B1(TaMS26) encodes a cytochrome P450 mono-
oxygenase, playing an important role in the hydroxylation of the fatty acid constituents of
the sporopollenin precursors and affecting the deposition of sporopollenin in the tapetum
and microspores [21,40]. These metabolic events affect the formation of the YS3038-A
pollen wall, resulting in sterility.

Pyruvic acid is the key node of the energy metabolism pathway network, after which
the decarboxylation of pyruvic acid by acetyl-CoA can occur [24,29]. The feedback of the
excessive accumulation of free fatty acids in YS3038-A anthers likely inhibited protein
expression in the fatty acid synthesis pathway. The up-regulated expression of pyruvate
dehydrogenase (DLAT) may increase the accumulation of acetyl-CoA. It is hypothesized
that the accumulation of acetyl-CoA in YS3038-A mainly flows to the fatty acid metabolism
pathway, and feedback regulates the down-regulation of acetyl-CoA synthetase (ACSS)
protein levels. As a substrate of gluconeogenesis, acetyl-CoA regulates the up-regulation
of a protein phosphosite in phosphoenolpyruvate carboxykinase (pckA). In addition, in-
hibition of the TCA pathway is an important cause of anther male sterility. Two TCA
cycle-related proteins, citrate synthase (ACLY) and 2-oxoglutarate dehydrogenase (DLST),
were down-regulated in YS3038-A anthers.
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Figure 10. Schematic overview of the metabolic pathways associated with the differentially expressed
proteins identified in pollen abortion of YS3038. DAB staining of (A) YS3038-A and (B) TabYS3038-B.
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experimental results on the basis Supplementary Materials Tables S4–S6 in article of Wang et al.
(2019) [29]. Protein names in gray indicate they were not observed in our proteomic dataset, P in
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a circle indicates phosphoproteins, green indicates down-regulation, red indicates up-regulation,
yellow indicates both up- and down-regulation.

NAD (P) H and ATP are necessary for the main energy consumption reactions in cells
during pollen development [41] and the down-regulation of hexokinase promotes ATP
production through the OXPHOS system [42]. The insufficient ATP content in YS3038-A
may be an important cause of dysfunction in the OxPhos pathway. The up-regulated
proteins in YS3038-A were mainly concentrated in complex II, complex IV, and the ATP
synthase complex (Supplementary Materials Table S6). Complex II directly links the
TCA and ETC, and the increased activity of complex II is accompanied by increased ROS
production [26]. In complex II, six subunits were highly expressed, and two subunits were
phosphorylated. Complex IV is also critical for ROS production [25]. Three subunits of
cytochrome oxidase were up-regulated, and ATP synthase was found to play a role in
PCD [27]. Increased ATP demand during temperature stress induces the over-expression
of specific ATP synthase subunits. The increase and decrease in the abundance of some
F-ATPase subunits may depend on species, duration, and severity of stress. For example,
the expression of ATP synthase subunits in low-temperature-sensitive sunflower varieties
can increase, and ATP synthase participates in the regulation of CMS fertility through an
unknown mechanism [43]. The abnormal expression of these ATP synthase subunits in
YS3038-A (accompanied by differential phosphorylation of phosphosites) may lead to the
dysfunction of ATP synthase, affect mitochondrial energy output, and induce changes
in mitochondrial membrane potential, thereby aggravating microspore abortion. The
oxidative stress of YS3038-A associated with electron transport in mitochondria could
result in the amplification of hydrogen peroxide production (Figure 10A,B), ATP loss, and
ultimately dysfunctional PCD.

According to these results, we suggest that the energy demand is not met during the
continuous low-temperature stimulation, disturbed carbohydrate and lipid metabolism
stimulates ETC to accumulate ROS in pollen development, thereby initiating PCD and
pollen abortion in the YS3038-A anthers (Figure 10C,D).

3.2. Protein Kinase-Related DAPs and DAPPs

Calcium-dependent protein kinases have critical functions in regulating plant growth
and development. Unexpectedly, 16 calcium-dependent protein kinases with 28 phospho-
sites are homologous to OsCPK25 in our database (Supplementary Materials Table S7).
OsCPK25 is involved in the regulation of stamen development and maintains the normal
number of stamens in rice [44]. Six casein kinase I homologs of rice EL1 were phosphory-
lated, including eight phosphosites. The enhanced response of el1 mutants to GA signal
induces the overexpression of CYP703A3 and KAR genes related to GAMYB and pollen
formation during spikelet development, resulting in defective anther development and
pollen viability [45]. These two RLKs (DRUS1 and DRUS2) inhibit protease-mediated
cell degradation. The late development of anthers affects the biosynthesis of starch in
pollen [46]. We identified a DRUS2 homolog in the phosphoproteomic analysis. In addi-
tion, the mitogen-activated protein kinase (MAPK) cascade is an evolutionary conserved
signal module, which converts environmental and developmental signals into a series of
cellular responses. Seven MAPKs containing 10 phosphosites were identified in the phos-
phorylation data set, and they were homologous to OsMPK6 and DSG1, which encodes
OsMAPK6; the anthers of dsg1 mutants became smaller, suggesting their involvement in
anther development [47]. These previously studied kinases, which are homologous to our
identified kinases, may provide evidence for future candidate wheat sterility genes.

3.3. Transcription Factors

It is well-established that transcription factors (TFs) play important roles in anther
and pollen development [48]. However, whether and how TF activity is controlled by
protein modification in TCMS wheat has not been widely examined. In our study, 253 TFs
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belonging to 36 different families were identified based on the alignment of our proteomic
and phosphoproteomic data with wheat TFs in PlantTFDB (Supplementary Materials
Figure S6 and Table S11). Protein phosphorylation is widely involved in the modification of
transcription factors, which may regulate their transcriptional activity in fertility conversion.
Some protein families have been identified as having more phosphosites, including C3H,
bZIP, bHLH, and MYB. This means that their family members may act as similar regulatory
factors, regulating the fertility of YS3038 anthers through phosphorylation modification.

Members of some TF families were determined to have significant effects on an-
ther and pollen development in rice and/or Arabidopsis, such as ARF, MADS, SBP, and
bHLH [48]. TaAGL6 (MADS-box gene) was found to be very important for floral organ
and spikelet meristem development [49]. Our proteomic and phosphoproteomic datasets
revealed six homologs of known fertility-related proteins in rice. OsLBD12-1 [50], Os-
MYB80/MYB103 [51], and OsMS1 (which encodes PHD-finger protein) [52] are essential
for tapetum development and pollen formation. Notably, we also found that these TFs
homologues are phosphorylated and have multiple phosphosites, which may indicate that
phosphosites differ in their effects on anther development. These findings, together with
the discovery of TFs homologs that were determined to regulate fertility, may clarify the
mechanism by which sterility is regulated in YS3038.

3.4. Epigenetic Differences

TCMS in wheat has typical characteristics of epigenetic systems. Epigenetic modifica-
tions can affect gene expression by changing the chromatin state without alteration of the
DNA sequence [30]. Epigenetic modification, characterized by DNA methylation, histone
modification, and chromatin remodeling, is an important regulator of anther development.
Abnormal epigenetic modification can disorder anther development, leading to male steril-
ity [9,12]. In our datasets, 95 putative epigenetic phosphoproteins (216 phosphosites) were
identified (Supplementary Materials Table S12).

Dicer, RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins are
the core components that induce gene silencing and also participate in the initiation and
maintenance of RNA molecules, which is at the core of RNAi processes. OsDCLs, OsR-
DRs, and OsAGOs show specific or preferential expression patterns during reproductive
development, which might involve reproductive-development-specific gene regulation
mechanisms [53,54]. Fifteen RDRs and ten AGOs phosphoproteins were identified during
the Bns in YS3038. As a member of the AGO family, MEL1 regulates the meiosis process of
meiotic cells through epigenetic effects [55]. OsAGO2 is highly expressed in anthers; after
knocking out OsAGO2, tapetum degeneration and pollen abortion are initiated earlier [30].
Our results identified four DAPPs that are OsAGO homologs.

Forty-seven identified phosphoproteins (83 phosphosites) were related to histones,
which are the substrates of many enzymes. Histone modification can control specific
biological functions [56]. Our datasets identified 23 histones (29 phosphosites), providing
new evidence for histone modification in anthers. Histone modification markers are
recognized by specific chromatin proteins, with the remodeling of chromatin structures
regulating DNA accessibility transcription and other activities [57]. A progressive loss
of fertility has been observed in some independent antisense OsDDM1(CHR746) lines,
leading to sterility [57]. The proteins related to histone methylation are phosphorylated in
association with YS3038 fertility alteration, and a determination of whether they participate
in fertility regulation requires further study.

In addition, we identified RNA-directed DNA methylation (RdDm) phosphoprotein.
RdDM is an important regulatory event involved in epigenetic modification, which can
trigger transcriptional gene silencing. The protein phosphorylation of factors in the RdDM
pathway in wheat has not been reported previously. RdDM may be involved in the
regulation of LDMAR expression, thus inducing the fertility conversion of photo-sensitive
sterile rice [58]. Phenotypic changes caused by epigenetic modification are affected by the
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environment, and their regulatory mechanisms are complex, which also enables epigenetic
modification to more precisely regulate the expression of plant genes.

4. Materials and Methods
4.1. Plant Materials

Triticum aestivum L. TCMS line YS3038 was first isolated from among hybrid offspring
by Professor Beiru He in 2003, and it is preserved in our laboratory (College of Agronomy,
Northwest A&F University, Yangling, China). YS3038 seeds were sown in an experimental
field of Northwest A&F University on 6 October 2020. After the regeneration period
in the spring of 2021, YS3038 seedlings were transplanted into glass greenhouses (60%
relative humidity). A uniform growth environment was maintained for the wheat before
booting. One week before the booting stage (https://bookstore.ksre.ksu.edu/pubs/MF330
0.pdf, accessed on 6 March 2021), plants were moved to different fertility temperatures, a
greenhouse with either a cooler sterile (YS3038-A) environment (17/13 °C) or a warmer
fertile (YS3038-B) environment (24/20 °C). After three biological replicates were subjected
to 4′,6-diamidino-2-phenylindole (DAPI) staining and subsequent electron microscopy,
samples of anthers collected at the binucleate stage were quickly placed in liquid nitrogen
and then stored in an ultra-cryogenic freezer (−80 ◦C).

4.2. Total Protein Extraction and Trypsin Digestion

A sample of each anther for analysis was retrieved from −80 °C refrigeration, and
the appropriate amount of each sample was added to liquid nitrogen in a pre-cooled
grinding tube and fully ground into powder. For each sample, four times the volume of
phenol extraction buffer was added, followed by ultrasonication for 35 min. Equal volumes
of Tris-balanced phenol were added to the extract, and the samples were centrifuged at
10,000× g and 4 ◦C for 10 min. The supernatant was collected, and five times the volume of
0.1 M ammonium acetate in methanol was added prior to precipitation overnight. Protein
precipitates were washed with methanol and acetone with 8 M urea re-dissolved, and a
BCA kit was used for protein concentration determination.

The anther protein samples were added to equal amounts for enzymatic solution, and
the volumes were adjusted with lysate. Then, TCA was slowly added until a 20% final
concentration was reached, before mixing for 2 h (4 °C). Then, samples were centrifuged
at 10,000× g and 4 ◦C for 5 min, washed, and received additions of pre-chilled acetone
three times, being allowed to settle after each addition. Dry precipitates were formed after
the addition of tetraethylammonium bromide, and ultrasonication was used to break up
the precipitate after adding trypsin, after which the enzymatic solution was allowed to sit
overnight. Dithiothreitol was added to reduce samples for 30 min (at 56 °C). Iodoacetamide
was then added, and samples were incubated for 20 min at room temperature.

4.3. TMT Labeling and Phosphopeptide Enrichment

The peptide segments with trypsin were vacuum-frozen, dried after desalination
with Strata X C18 (Phenomenex, Torrance, CA, USA), and processed according to the
manufacturer’s TMT kit protocol. The tryptic peptides were fractionated into fractions by
high pH reverse-phase HPLC.

Peptide segments were then dissolved in a concentrated buffer solution, the liquid
was collected as IMAC material, and the incubated sample was gently shaken. Finally,
elution of peptides, desalting, and vacuum freezing of the extraction were conducted to
prepare samples for LC-MS/MS Analysis.

4.4. LC-MS/MS Analysis

Peptides were dissolved in phase A (0.1% formic acid and 2% acetonitrile aque-
ous solution) of the liquid chromatography mobile phase and separated by EASY-nLC
1000 ultra-high performance liquid chromatography. The peptides were separated by
ultra-high performance liquid chromatography (UPLC), injected into NSI ion sources

https://bookstore.ksre.ksu.edu/pubs/MF3300.pdf
https://bookstore.ksre.ksu.edu/pubs/MF3300.pdf
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for ionization, and then analyzed by QE plus mass spectrometry. Both peptide parent
ions and their secondary fragments were detected and analyzed using high-resolution
Orbitrap spectrometry. The data acquisition mode used the data-dependent scanning
(DDA) program.

4.5. Database Search and Data Analysis

Secondary mass spectrometry data were retrieved using the Maxquant search engine
(v.1.5.2.8). Fold change (FC) was used to quantify differences (Supplementary Materials
Figure S4A), and down-regulated and up-regulated proteins were assessed according to
thresholds of P ≤ 0.05 and |log2 FC| ≥ 1.3. Information about rice proteins was obtained
from the China Rice Data Center (https://www.ricedata.cn/, accessed on 1 October 2021).
Transcription factors were also identified using the Plant Transcription Factor Database
(http://planttfdb.gao-lab.org/, accessed on 3 October 2021). Confirmation of homologous
genes between crops was conducted using BLASTp. We confirmed the preliminarily
identified protein domain with the NCBI-CDD web server. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) database was used for pathway enrichment analysis. The
InterPro database was used to analyze the enrichment of functional domains of differentially
expressed proteins. The software package MoMo using the motif-x algorithm was utilized
to analyze the motif features of the modified sites. With the STRING (v.10.5) protein
network interaction database, 2D annotation enrichment was analyzed using Perseus
software and visualized using the R statistical programing environment. The differential
protein interaction network was then visualized using the Cytoscape platform.

4.6. Phenotypic Characterization and Cytological Observations

Anthers were fixed with FAA fixative and stained with DAPI, periodic acid-Schiff
(PAS), and fluorescein diacetate (FDA) following previously described methods [29,59]. The
FDA assay was performed to assess the vitality of fresh pollen grains. 3,3′-diaminobenzidine
(DAB) staining with the diaminobenzidine method was conducted using 1 mL of 10 mM
Tris-HCL, DAB, and 0.03% CoCL2 mixed, to which 10 mL of 30% H2O2 was added, after
which the solution was mixed again. Anthers were placed in DAB staining solution in
dark incubation for 3 h and then placed in deionized water for cleaning. Mature pollen
was stained with I2-KI and peroxidase (following the aniline method). Images of the mi-
crospores were acquired using ICc5 color camera (ZEISS, Oberkochen, Germany) mounted
onto a biological fluorescence microscope (ZEISS Imager M2, Oberkochen, Germany).
Images of the anther and the seed status after wheat pollination were acquired using a
stereoscopic microscope (OLYMPUS SZX16, Tokyo, Japan).

4.7. Determination of Physiological Indexes of Anthers

The enzymatic activities of peroxidase (POD) and catalase (CAT) as well as the con-
tents of H2O2 and malonaldehyde (MDA) contents in anthers were determined following
previously published methods [60,61]. The ATP and soluble sugar contents were also
determined following previous methods [8]. Determination of the free fatty acids content
was conducted as described by Wu et al. [24].

4.8. Quantitative Real-Time PCR

Gene-specific primers were designed using Primer 5.0 (Supplementary Materials Table
S13). The actin gene of wheat (forward primer, 5′-CTCCCTCACAACAACCGC-3′; reverse
primer, 5′-TACCAGGAACTTCCATACCAAC-3′) was used as a reference to normalize the
expression levels of the assayed genes. Quantitative real-time PCR (qRT-PCR) analysis
was performed as described by Han et al. [17], and we used the 2−∆∆Ct analysis method to
determine the relative expression levels.

https://www.ricedata.cn/
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4.9. Functional Verification of Candidate Genes via BSMV-VIGS

A 200-bp fragment of TaPDCD5 (ID: TraesCS1A02G368100) gene was amplified using
cDNA as a template. Homologous arm of PacI (TAGCTAGCTGATTAATTAA) and NotI
(TTGCTAGCTGAGCGGCCGC) restriction sites were added to the 5′ ends of the forward
and reverse primers, respectively, along with protective bases. After the digestion of the
plasmids of γ-PDS and T-TaPDCD5 by PacI and NotI, the vector and the gene (TaPDCD5)
fragments were connected, and the correct clone was used for subsequent experiments.
The γ-PDS and γ-TaPDCD5 plasmids were digested with BssHII, the α and γ plasmids
were digested with MluI, the β plasmid was digested with SpeI. Production of the trans-
fection mixture and viral infection of seedlings was carried out according to Han et al.’s
method [62].

5. Conclusions

Anther development is one of the most important processes of sexual reproduction in
wheat. Our results provide new insights into the formation of the regulatory mechanism
of TCMS. Our study revealed the various potential protein and phosphoprotein control
networks associated with TCMS, which will be valuable for understanding male sterility
in wheat anthers. To identify more potential proteins controlling male sterility in wheat,
we also searched for wheat homologs of known proteins causing male sterility in rice. We
have provided the first thermosensitive sterile wheat anther phosphoproteomic dataset for
use by the broader scientific community. This critical resource supports further research on
wheat heterosis utilization and provides an important empirical basis for improved crop
breeding in wheat.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23126428/s1.

Author Contributions: Conceptualization, L.M. (Liting Ma); Funding acquisition, L.M. (Lingjian Ma);
Investigation, L.M. (Liting Ma); Methodology, Y.H. and X.L.; Project administration, L.M. (Lingjian
Ma); Software, L.S., H.W. and H.Z.; Visualization, Y.H.; Writing—original draft, L.M. (Liting Ma);
Writing—review and editing, D.Z., T.Z. and Q.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the key industrial innovation chain project of Shaanxi key
research and development plan in Shaanxi Province, China (Grant No. 2021ZDLNY01-02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data obtained in this study were deposited in the ProteomeXchange
Consortium through the PRIDE partner repository (PXD029487).

Acknowledgments: We thank colleagues at the Northwest Agricultural and Forestry University for
their assistance and instruments.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this paper.

References
1. Longin, C.F.H.; Muhleisen, J.; Maurer, H.P.; Zhang, H.; Gowda, M.; Reif, J.C. Hybrid breeding in autogamous cereals. Theor. Appl.

Genet. 2012, 125, 1087–1096. [CrossRef]
2. Melonek, J.; Duarte, J.; Martin, J.; Beuf, L.; Murigneux, A.; Varenne, P.; Comadran, J.; Specel, S.; Levadoux, S.; Bernath-Levin, K.;

et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 2021, 12, 1036. [CrossRef]
3. Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822.

[CrossRef]
4. Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [CrossRef]
5. Liu, Y.J.; Li, D.; Gong, J.; Wang, Y.B.; Chen, Z.B.; Pang, B.S.; Chen, X.C.; Gao, J.G.; Yang, W.B.; Zhang, F.T.; et al. Comparative

transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genom. 2021, 22, 911.
[CrossRef]

https://www.mdpi.com/article/10.3390/ijms23126428/s1
https://www.mdpi.com/article/10.3390/ijms23126428/s1
http://doi.org/10.1007/s00122-012-1967-7
http://doi.org/10.1038/s41467-021-21225-0
http://doi.org/10.1126/science.1183700
http://doi.org/10.1146/annurev-arplant-050213-040119
http://doi.org/10.1186/s12864-021-08163-3


Int. J. Mol. Sci. 2022, 23, 6428 20 of 22

6. Liu, H.; Sun, Z.; Hu, L.; Li, C.; Wang, X.; Yue, Z.; Han, Y.; Yang, G.; Ma, K.; Yin, G. Comparative Transcriptome Analysis of Male
Sterile Anthers Induced by High Temperature in Wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 12, 727966. [CrossRef]

7. Song, X.Y.; Zhang, L.L.; Zeng, J.L.; Qian, H.H.; Li, H.B.; He, B.R. Development of thermo-sensitive cytoplasmic male sterile
(TCMS) lines of wheat characterized by complete male sterility at lower-temperatures and partially restored fertility at higher-
temperatures. Euphytica 2013, 192, 393–399. [CrossRef]

8. Geng, X.; Ye, J.; Yang, X.; Li, S.; Zhang, L.; Song, X. Identification of Proteins Involved in Carbohydrate Metabolism and Energy
Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat. Int. J. Mol. Sci. 2018, 19, 324. [CrossRef]

9. Zhou, X.; Shi, F.; Zhou, L.; Zhou, Y.; Liu, Z.; Ji, R.; Feng, H. iTRAQ-based proteomic analysis of fertile and sterile flower buds
from a genetic male sterile line ‘AB01’ in Chinese cabbage (Brassica campestris L. ssp. pekinensis). J. Proteom. 2019, 204, 103395.
[CrossRef]

10. Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; et al.
Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010, 3, ra3.
[CrossRef]

11. Vu, L.D.; Zhu, T.; Verstraeten, I.; van de Cotte, B.; International Wheat Genome Sequencing, C.; Gevaert, K.; De Smet, I.
Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. J.
Exp. Bot. 2018, 69, 4609–4624. [CrossRef]

12. Ye, J.; Zhang, Z.; Long, H.; Zhang, Z.; Hong, Y.; Zhang, X.; You, C.; Liang, W.; Ma, H.; Lu, P. Proteomic and phosphoproteomic
analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J. 2015, 84, 527–544. [CrossRef]

13. Han, Y.; Luo, D.; Usman, B.; Nawaz, G.; Zhao, N.; Liu, F.; Li, R. Development of High Yielding Glutinous Cytoplasmic Male
Sterile Rice (Oryza sativa L.) Lines through CRISPR/Cas9 Based Mutagenesis of Wx and TGW6 and Proteomic Analysis of Anther.
Agronomy 2018, 8, 290. [CrossRef]

14. Ye, J.; Zhang, Z.; You, C.; Zhang, X.; Lu, J.; Ma, H. Abundant protein phosphorylation potentially regulates Arabidopsis anther
development. J. Exp. Bot. 2016, 67, 4993–5008. [CrossRef]

15. Chen, P.; Li, R.; Zhou, R. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther
and pollen development in kenaf cytoplasmic male sterility line. Amino Acids 2018, 50, 841–862. [CrossRef]

16. Shukla, P.; Gautam, R.; Singh, N.K.; Ahmed, I.; Kirti, P.B. A proteomic study of cysteine protease induced cell death in anthers of
male sterile tobacco transgenic plants. Physiol. Mol. Biol. Plants 2019, 25, 1073–1082. [CrossRef]

17. Han, Y.; Gao, Y.; Zhao, Y.; Zhang, D.; Zhao, C.; Xin, F.; Zhu, T.; Jian, M.; Ding, Q.; Ma, L. Energy metabolism involved in fertility
of the wheat TCMS line YS3038. Planta 2019, 250, 2159–2171. [CrossRef]

18. Araki, S.; Le, N.T.; Koizumi, K.; Villar-Briones, A.; Nonomura, K.I.; Endo, M.; Inoue, H.; Saze, H.; Komiya, R. miR2118-dependent
U-rich phasiRNA production in rice anther wall development. Nat. Commun. 2020, 11, 3115. [CrossRef]

19. Hedgcoth, C.; el-Shehawi, A.M.; Wei, P.; Clarkson, M.; Tamalis, D. A chimeric open reading frame associated with cytoplasmic
male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley,
and rye. Curr. Genet. 2002, 41, 357–365. [CrossRef]

20. Zhang, Y.; Song, Q.; Zhang, L.; Li, Z.; Wang, C.; Zhang, G. Comparative Proteomic Analysis of Developmental Changes in P-Type
Cytoplasmic Male Sterile and Maintainer Anthers in Wheat. Int. J. Mol. Sci. 2021, 22, 2012. [CrossRef]

21. Singh, M.; Kumar, M.; Thilges, K.; Cho, M.J.; Cigan, A.M. MS26/CYP704B is required for anther and pollen wall development
in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. PLoS ONE 2017,
12, e0177632. [CrossRef]

22. Singh, M.; Albertsen, M.C.; Cigan, A.M. Male Fertility Genes in Bread Wheat (Triticum aestivum L.) and Their Utilization for
Hybrid Seed Production. Int. J. Mol. Sci. 2021, 22, 8157. [CrossRef]

23. Shi, J.; Tan, H.; Yu, X.H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R.B.; Schreiber, L.; Wang, Y.; Kai, G.; et al. Defective pollen
wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 2011,
23, 2225–2246. [CrossRef]

24. Wu, Y.; Li, Y.; Li, Y.; Ma, Y.; Zhao, Y.; Wang, C.; Chi, H.; Chen, M.; Ding, Y.; Guo, X.; et al. Proteomic analysis reveals that sugar and
fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton. J. Biol. Chem. 2019, 294, 7057–7067.
[CrossRef]

25. Harris, J.R.; Boekema, E.J. Membrane Protein Complexes: Structure and Function; Sub-Cellular Biochemistry 87 Series; Springer:
Berlin/Heidelberg, Germany, 2018.

26. Tiwari, B.S.; Belenghi, B.; Levine, A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in
ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002, 128, 1271–1281.
[CrossRef]

27. Vercellino, I.; Sazanov, L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol.
2022, 23, 141–161. [CrossRef]

28. Jiang, G.; Hassan, M.A.; Muhammad, N.; Arshad, M.; Chen, X.; Xu, Y.; Xu, H.; Ni, Q.; Liu, B.; Yang, W.; et al. Comparative
Physiology and Transcriptome Analysis of Young Spikes in Response to Late Spring Coldness in Wheat (Triticum aestivum L.).
Front. Plant Sci. 2022, 13, 811884. [CrossRef]

29. Wang, S.; Zhang, Y.; Fang, Z.; Zhang, Y.; Song, Q.; Hou, Z.; Sun, K.; Song, Y.; Li, Y.; Ma, D.; et al. Cytological and Proteomic
Analysis of Wheat Pollen Abortion Induced by Chemical Hybridization Agent. Int. J. Mol. Sci. 2019, 20, 1615. [CrossRef]

http://doi.org/10.3389/fpls.2021.727966
http://doi.org/10.1007/s10681-013-0871-9
http://doi.org/10.3390/ijms19020324
http://doi.org/10.1016/j.jprot.2019.103395
http://doi.org/10.1126/scisignal.2000475
http://doi.org/10.1093/jxb/ery204
http://doi.org/10.1111/tpj.13019
http://doi.org/10.3390/agronomy8120290
http://doi.org/10.1093/jxb/erw293
http://doi.org/10.1007/s00726-018-2564-0
http://doi.org/10.1007/s12298-019-00642-y
http://doi.org/10.1007/s00425-019-03281-5
http://doi.org/10.1038/s41467-020-16637-3
http://doi.org/10.1007/s00294-002-0315-x
http://doi.org/10.3390/ijms22042012
http://doi.org/10.1371/journal.pone.0177632
http://doi.org/10.3390/ijms22158157
http://doi.org/10.1105/tpc.111.087528
http://doi.org/10.1074/jbc.RA118.006878
http://doi.org/10.1104/pp.010999
http://doi.org/10.1038/s41580-021-00415-0
http://doi.org/10.3389/fpls.2022.811884
http://doi.org/10.3390/ijms20071615


Int. J. Mol. Sci. 2022, 23, 6428 21 of 22

30. Zheng, S.; Li, J.; Ma, L.; Wang, H.; Zhou, H.; Ni, E.; Jiang, D.; Liu, Z.; Zhuang, C. OsAGO2 controls ROS production and the
initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc. Natl. Acad. Sci. USA 2019,
116, 7549–7558. [CrossRef]

31. Pradet-Balade, B.; Boulmé, F.; Beug, H.; Müllner, E.; Garcia-Sanz, J.A. Translation control: Bridging the gap between genomics
and proteomics? Trends Biochem. Sci. 2001, 26, 225–229. [CrossRef]

32. Wang, Y.; Zha, X.; Zhang, S.; Qian, X.; Dong, X.; Sun, F.; Yang, J. Down-regulation of the OsPDCD5 gene induced photoperiod-
sensitive male sterility in rice. Plant Sci. 2010, 178, 221–228. [CrossRef]

33. Li, X.; Gao, X.; Wei, Y.; Deng, L.; Ouyang, Y.; Chen, G.; Li, X.; Zhang, Q.; Wu, C. Rice APOPTOSIS INHIBITOR5 coupled with two
DEAD-box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 2011, 23, 1416–1434.
[CrossRef]

34. Su, W.; Wu, J.; Wei, C.; Li, K.; He, G.; Attla, K.; Qian, X.; Yang, J. Interaction between programmed cell death 5 and calcineurin
B-like interacting protein kinase 23 in Oryza sativa. Plant Sci. 2006, 170, 1150–1155. [CrossRef]

35. Lee, S.K.; Kim, H.; Cho, J.I.; Nguyen, C.D.; Moon, S.; Park, J.E.; Park, H.R.; Huh, J.H.; Jung, K.H.; Guiderdoni, E.; et al. Deficiency
of rice hexokinase HXK5 impairs synthesis and utilization of starch in pollen grains and causes male sterility. J. Exp. Bot. 2020,
71, 116–125. [CrossRef]

36. Chen, R.; Zhao, X.; Shao, Z.; Wei, Z.; Wang, Y.; Zhu, L.; Zhao, J.; Sun, M.; He, R.; He, G. Rice UDP-glucose pyrophosphorylase1 is
essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant
Cell 2007, 19, 847–861. [CrossRef]

37. Mu, H.; Ke, J.; Liu, W.; Zhuang, C.; Yip, W. UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a
critical role in starch accumulation during pollen maturation. Sci. Bull. 2009, 54, 234–243. [CrossRef]

38. Hu, W.; Huang, Y.; Loka, D.A.; Bai, H.; Liu, Y.; Wang, S.; Zhou, Z. Drought-induced disturbance of carbohydrate metabolism in
anthers and male abortion of two Gossypium hirsutum cultivars differing in drought tolerance. Plant Cell Rep. 2020, 39, 195–206.
[CrossRef]

39. Wan, X.; Wu, S.; Li, Z.; An, X.; Tian, Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive
Development in Plants. Mol. Plant 2020, 13, 955–983. [CrossRef]

40. Dobritsa, A.A.; Shrestha, J.; Morant, M.; Pinot, F.; Matsuno, M.; Swanson, R.; Moller, B.L.; Preuss, D. CYP704B1 is a long-chain
fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 2009, 151, 574–589.
[CrossRef]

41. Selinski, J.; Scheibe, R. Pollen tube growth: Where does the energy come from? Plant Signal. Behav. 2014, 9, e977200. [CrossRef]
42. Bennett, N.K.; Mai, K.N.; Darch, M.A.; Nakaoka, H.J.; Nakamura, K. Defining the ATPome reveals cross-optimization of metabolic

pathways. Nat. Commun. 2020, 11, 4319. [CrossRef]
43. Zancani, M.; Braidot, E.; Filippi, A.; Lippe, G. Structural and functional properties of plant mitochondrial F-ATP synthase.

Mitochondrion 2020, 53, 178–193. [CrossRef]
44. Zhang, W.; Wan, B.; Zhou, F.; Chen, H.; Li, X.; Lin, Y. Up- and Down-regulated Expression of OsCPK25/26 Results in Increased

Number of Stamens in Rice. Plant Mol. Biol. Rep. 2014, 32, 1114–1128. [CrossRef]
45. Kwon, C.T.; Kim, S.H.; Kim, D.; Paek, N.C. The Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By Modulating

Gibberellin Signaling. Rice 2015, 8, 58. [CrossRef]
46. Pu, C.X.; Han, Y.F.; Zhu, S.; Song, F.Y.; Zhao, Y.; Wang, C.Y.; Zhang, Y.C.; Yang, Q.; Wang, J.; Bu, S.L.; et al. The Rice Receptor-Like

Kinases dwarf and runtish spikelet1 and 2 Repress Cell Death and Affect Sugar Utilization during Reproductive Development.
Plant Cell 2017, 29, 70–89. [CrossRef]

47. Liu, S.; Hua, L.; Dong, S.; Chen, H.; Zhu, X.; Jiang, J.; Zhang, F.; Li, Y.; Fang, X.; Chen, F. OsMAPK6, a mitogen-activated protein
kinase, influences rice grain size and biomass production. Plant J. 2015, 84, 672–681. [CrossRef]

48. Gomez, J.F.; Talle, B.; Wilson, Z.A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol.
2015, 57, 876–891. [CrossRef]

49. Kong, X.; Wang, F.; Geng, S.; Guan, J.; Tao, S.; Jia, M.; Sun, G.; Wang, Z.; Wang, K.; Ye, X.; et al. The wheat AGL6-like MADS-box
gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol.
J. 2021, 20, 75–88. [CrossRef]

50. Ma, W.; Wu, F.; Sheng, P.; Wang, X.; Zhang, Z.; Zhou, K.; Zhang, H.; Hu, J.; Lin, Q.; Cheng, Z.; et al. The LBD12-1 Transcription
Factor Suppresses Apical Meristem Size by Repressing Argonaute 10 Expression. Plant Physiol. 2017, 173, 801–811. [CrossRef]

51. Xiang, X.J.; Sun, L.P.; Yu, P.; Yang, Z.F.; Zhang, P.P.; Zhang, Y.X.; Wu, W.X.; Chen, D.B.; Zhan, X.D.; Khan, R.M.; et al. The MYB
transcription factor Baymax1 plays a critical role in rice male fertility. Theor. Appl. Genet. 2021, 134, 453–471. [CrossRef]

52. Yang, Z.; Liu, L.; Sun, L.; Yu, P.; Zhang, P.; Abbas, A.; Xiang, X.; Wu, W.; Zhang, Y.; Cao, L.; et al. OsMS1 functions as a
transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol. Biol. 2019,
99, 175–191. [CrossRef]

53. Kapoor, M.; Arora, R.; Lama, T.; Nijhawan, A.; Khurana, J.P.; Tyagi, A.K.; Kapoor, S. Genome-wide identification, organization
and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression
analysis during reproductive development and stress in rice. BMC Genom. 2008, 9, 451. [CrossRef]

54. Wu, L.; Zhang, Q.; Zhou, H.; Ni, F.; Wu, X.; Qi, Y. Rice MicroRNA effector complexes and targets. Plant Cell 2009, 21, 3421–3435.
[CrossRef]

http://doi.org/10.1073/pnas.1817675116
http://doi.org/10.1016/S0968-0004(00)01776-X
http://doi.org/10.1016/j.plantsci.2009.12.001
http://doi.org/10.1105/tpc.110.082636
http://doi.org/10.1016/j.plantsci.2006.02.003
http://doi.org/10.1093/jxb/erz436
http://doi.org/10.1105/tpc.106.044123
http://doi.org/10.1007/s11434-008-0568-y
http://doi.org/10.1007/s00299-019-02483-1
http://doi.org/10.1016/j.molp.2020.05.009
http://doi.org/10.1104/pp.109.144469
http://doi.org/10.4161/15592324.2014.977200
http://doi.org/10.1038/s41467-020-18084-6
http://doi.org/10.1016/j.mito.2020.06.001
http://doi.org/10.1007/s11105-014-0717-1
http://doi.org/10.1186/s12284-015-0058-1
http://doi.org/10.1105/tpc.16.00218
http://doi.org/10.1111/tpj.13025
http://doi.org/10.1111/jipb.12425
http://doi.org/10.1111/pbi.13696
http://doi.org/10.1104/pp.16.01699
http://doi.org/10.1007/s00122-020-03706-w
http://doi.org/10.1007/s11103-018-0811-0
http://doi.org/10.1186/1471-2164-9-451
http://doi.org/10.1105/tpc.109.070938


Int. J. Mol. Sci. 2022, 23, 6428 22 of 22

55. Nonomura, K.; Morohoshi, A.; Nakano, M.; Eiguchi, M.; Miyao, A.; Hirochika, H.; Kurata, N. A germ cell specific gene of the
Argonaute family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 2007,
19, 2583–2594. [CrossRef]

56. Qin, F.J.; Sun, Q.W.; Huang, L.M.; Chen, X.S.; Zhou, D.X. Rice SUVH histone methyltransferase genes display specific functions in
chromatin modification and retrotransposon repression. Mol. Plant 2010, 3, 773–782. [CrossRef]

57. Hu, Y.; Liu, D.; Zhong, X.; Zhang, C.; Zhang, Q.; Zhou, D.X. CHD3 protein recognizes and regulates methylated histone H3
lysines 4 and 27 over a subset of targets in the rice genome. Proc. Natl. Acad. Sci. USA 2012, 109, 5773–5778. [CrossRef]

58. Ding, J.; Shen, J.; Mao, H.; Xie, W.; Li, X.; Zhang, Q. RNA-directed DNA methylation is involved in regulating photoperiod-
sensitive male sterility in rice. Mol. Plant 2012, 5, 1210–1216. [CrossRef]

59. Tütüncü Konyar, S.; Dane, F. Cytochemistry of pollen development in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst. Evol.
2012, 299, 87–95. [CrossRef]

60. Pinheiro, H.A.; DaMatta, F.M.; Chaves, A.R.M.; Fontes, E.P.B.; Loureiro, M.E. Drought tolerance in relation to protection against
oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci. 2004, 167, 1307–1314. [CrossRef]

61. Pompelli, M.F.; Martins, S.C.; Antunes, W.C.; Chaves, A.R.; DaMatta, F.M. Photosynthesis and photoprotection in coffee leaves is
affected by nitrogen and light availabilities in winter conditions. J. Plant Physiol. 2010, 167, 1052–1060. [CrossRef]

62. Han, Y.; Gao, Y.; Zhou, H.; Zhai, X.; Ding, Q.; Ma, L. Mitochondrial genes are involved in the fertility transformation of the
thermosensitive male-sterile line YS3038 in wheat. Mol. Breed. 2021, 41, 61. [CrossRef]

http://doi.org/10.1105/tpc.107.053199
http://doi.org/10.1093/mp/ssq030
http://doi.org/10.1073/pnas.1203148109
http://doi.org/10.1093/mp/sss095
http://doi.org/10.1007/s00606-012-0705-6
http://doi.org/10.1016/j.plantsci.2004.06.027
http://doi.org/10.1016/j.jplph.2010.03.001
http://doi.org/10.1007/s11032-021-01252-x

	Introduction 
	Results 
	Phenotypic Characterization and Cytological Observations 
	Proteomic and Phosphoproteomic Identification 
	Subcellular Localization and Functional Classification 
	Differentially Expressed Proteins Highlight Fatty-Acid-Related Metabolic Pathways 
	Abnormal Carbohydrate Metabolism in YS3038-A Anthers 
	DAPs and DAPPS Interfere with the Electron Transport Chain, Reactive Oxygen Species Accumulation, and ATP Synthesis 
	Phosphoproteomics Reveals the Protein Kinase Regulatory Network of YS3038 
	Other Sterility Candidate Proteins Identified among DAPs and DAPPs 
	Functional Verification of TaPDCD5 via BSMV-VIGS 

	Discussion 
	A regulatory Network of Energy Metabolism a Candidate for TCMS in Wheat 
	Protein Kinase-Related DAPs and DAPPs 
	Transcription Factors 
	Epigenetic Differences 

	Materials and Methods 
	Plant Materials 
	Total Protein Extraction and Trypsin Digestion 
	TMT Labeling and Phosphopeptide Enrichment 
	LC-MS/MS Analysis 
	Database Search and Data Analysis 
	Phenotypic Characterization and Cytological Observations 
	Determination of Physiological Indexes of Anthers 
	Quantitative Real-Time PCR 
	Functional Verification of Candidate Genes via BSMV-VIGS 

	Conclusions 
	References

