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Inflammation induced by traumatic brain injury (TBI) is complex, individual-specific, and
associated with morbidity and mortality. We sought to develop dynamic, data-driven,
predictive computational models of TBI-induced inflammation based on cerebrospinal
fluid (CSF) biomarkers. Thirteen inflammatory mediators were determined in serial CSF
samples from 27 severe TBI patients. The Glasgow Coma Scale (GCS) score quantifies
the initial severity of the neurological status of the patient on a numerical scale from 3
to 15. The 6-month Glasgow Outcome Scale (GOS) score, the outcome variable, was
taken as the variable to express and predict as a function of the other input variables.
Data on each subject consisting of ten clinical (one-dimensional) variables, such as age,
gender, and presence of infection, along with inflammatory biomarker time series were
used to generate both multinomial logistic as well as probit models that predict low
(poor outcome) or high (favorable outcome) levels of the GOS score. To determine if
CSF inflammation biomarkers could predict TBI outcome, a logistic model for low (≤3;
poor neurological outcome) or high levels (≥4; favorable neurological outcome) of the
GOS score involving a full effect of the pro-inflammatory cytokine tumor necrosis factor-
α and both linear and quadratic effects of the anti-inflammatory cytokine interleukin-
10 was obtained. To better stratify patients as their pathology progresses over time, a
technique called “Dynamic Profiling” was developed in which patients were clustered,
using the spectral Laplacian and Hartigan’s k-means method, into disjoint groups at
different stages. Initial clustering was based on GCS score; subsequent clustering was
performed based on clinical and demographic information and then further, sequential
clustering based on the levels of individual inflammatory mediators over time. These
clusters assess the risk of mortality of a new patient after each inflammatory mediator
reading, based on the existing information in the previous data in the cluster to which

Abbreviations: CBF, cerebral blood flow; CSF, cerebrospinal fluid; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale;
IL, interleukin; MIP, macrophage inflammatory protein; TBI, traumatic brain injury; TNF-α, tumor necrosis factor-α; VEGF,
vascular endothelial growth factor.
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the new patient belongs at the time, in essence acting as a “virtual clinician.” Using
the Dynamic Profiling method, we show examples that suggest that severe TBI patient
neurological outcomes could be predicted as a function of time post-TBI using CSF
inflammatory mediators.

Keywords: TBI, TBI outcome, Inflammation, mathematical modeling, precision medicine

INTRODUCTION

In the United States alone, traumatic brain injury (TBI) accounts
for an estimated 3.5 million emergency department visits,
hospitalizations, and death (Coronado et al., 2012). Despite
research leading to innovative treatments and standardized
care, TBI-related morbidity remains a major cause of disability
in the United States with an estimated 5.3 million people
living with long-term cognitive and psychological impairments
each year (Selassie et al., 2008). Although improvements in
post-TBI mortality have been seen in recent years (Spiotta
et al., 2010; Coronado et al., 2012), morbidity following a
severe TBI remains extremely high, frequently accompanied
by long-term disability (Selassie et al., 2008), and costly,
with an estimated economic cost at $76.5 billion, including
direct medical costs and indirect costs (e.g., lost wages,
and lost productivity and non-medical expenditures) (CDC,
2013).

The primary injury of a severe TBI is heterogeneous and
may result in morphological damage to cerebral structures
due to physical trauma and may include bleeding within the
intracranial cavity, diffuse axonal injury and brain tissue swelling
(DeKosky et al., 2013). The response to the initial TBI leads
to neurochemical changes that have direct pathogenic effects
on regional cerebral blood flow (CBF), blood-brain barrier
function, cerebral metabolism, ion homeostasis, and/or brain
tissue that may be further impacted by secondary injuries, such
as hypotension and hypoxia. This secondary damage develops
over time, beginning immediately after injury and evolving
over hours, days, and weeks after the initial trauma. These
cellular and molecular changes initiate both neuroprotective and
neurotoxic cascades and ultimately impact recovery (Selassie
et al., 2008). In particular, inflammatory responses that occur
post-TBI may greatly impact neurological outcome. In autopsy
tissues from patients that succumbed to severe TBI, acute
microglial and macrophage activity was evident 2–10 days after
injury (Velazquez et al., 2015). Increased levels of inflammatory
proteins in CSF and serum indicative of an inflammatory
response have been noted within hours to days following an
injury (Newell et al., 2015; Shan et al., 2016). Although acute
inflammation after TBI may be neuroprotective to assist in
repair and recovery (Corps et al., 2015; Michell-Robinson et al.,
2015; Chen and Trapp, 2016); there is additional evidence
that an exaggerated or lack of clearance of inflammatory
activity which may result for an extended period after injury is
associated with deleterious effects and poorer clinical outcomes
(Schwarzmaier and Plesnila, 2014; Corps et al., 2015; Hinson
et al., 2015; Lozano et al., 2015; Witcher et al., 2015; Karve et al.,
2016).

Current predictors of outcome after severe TBI are neither
sufficiently sensitive or specific to be used for clinical decision
making in the acute recovery period (Gao and Zheng, 2015).
Improving individual outcome after severe TBI will require
interactive measures of acute injury (cellular level) and response
to injury. We believe the balance of pro- and anti-inflammatory
mediators influences survival after severe TBI. We propose
that this balance, or alterations in this balance, can be used
to develop predictive models of cellular level damage and
survival after TBI. Because both the response to TBI and the
inflammatory response are complex processes, more refined
analytic techniques are needed to predict outcomes and identify
the role of inflammatory processes after TBI in a clinical setting.
Temporal and patient-specific variations in the response profile,
multi-mechanistic injury and the interaction of molecules in
variable tissue level environmental states further this complexity.
Such complexity and individual variability in response require
an analytic procedure that can account for temporal changes in
response, identify patterns in the resultant data, and determine
dynamic patterns that accurately predict recovery.

In the present study, we produced data-driven statistical
models for TBI, based on serial measurements of inflammatory
mediators in the cerebrospinal fluid (CSF) of severe TBI patients.
Our goal was to develop models that relate the initial severity of
injury, along with the patient demographic data and clinical and
inflammatory mediator biomarker data, to their overall, dynamic
state of health. This paper first describes a statistical analysis
of the data, followed by a clustering module that accomplishes
subject profiling over time based on incrementally accumulating
inflammation of biomarker data. The power of the method is then
evaluated. We develop also a logistic model based, in part, on
the profiling method to predict the patient state of health from
the available clinical and inflammatory mediator data collected
during the acute period of hospitalization. We suggest that this
Dynamic Profiling approach may be used as a diagnostic tool
during the acute care period to provide additional predictive
power for rehabilitative trajectory recovery.

MATERIALS AND METHODS

Traumatic Brain Injury Patients
Severe TBI patients were enrolled prospectively in this University
of Pittsburgh Institutional Review Board-approved study upon
meeting inclusion criteria judged by the on-call neurosurgeon.
Informed consent was obtained by the legal authorized
representative prior to study procedures. CSF and blood samples
were obtained by trained study personnel for the initial
through 5 days of ICU admission. A trained neuropsychological
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technician obtained the 6- and 12-month Glasgow Outcome
Scale (GOS) scores. The patient cohort consisted of 27 TBI
patients [20 survivors (18 males/2 females) and 7 non-survivors
(6 males/1 female)]. Non-survivors were determined by having a
Glasgow Outcome Scale (GOS) score of 1 by 12 month follow up,
and had a Glasgow Coma Scale (GCS) score (an estimate of TBI
injury severity) of 5.6 ± 0.57 on hospital arrival. Survivors had a
similar admission GCS of 6.0 ± 0.24 (Table 1), with a GOS score
of 2–5.

Description of the Data
The data on each subject consisted of two distinct components,
namely clinical/demographic data and CSF inflammatory
mediator data. Clinical/demographic (one-dimensional)
variables included: age, gender, presence of infection, bleeding,
surgical decompression, presence of subarachnoid hemorrhage,
and initial GCS score. Inflammatory mediator data consisted
of acute CSF time series in each of 13 inflammatory mediators.
The GCS score quantified the initial brain injury severity on a
numerical scale from 3 to 15. The inflammatory mediator time
series variables varied in both in length and in the time sequence
at which they were collected.

The GOS score was utilized as the outcome variable and was
viewed as the response variable to study and predict neurological
outcome, as a function of the other input variables. The GOS
score quantifies the neurological outcome at 6 and 12 months
post-TBI. GOS scores ranged from 1 to 5, with 1 indicating death
and higher values indicating a progressively better neurological
state of health.

In addition to the clinical and demographic data, data
included inflammatory mediator readings on 34 patients.
The data are given as time series for the following 13
cytokines/chemokines (assayed using LuminexTM multiplexing
technology): IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10,
IL-13, macrophage inflammatory protein (MIP)-1α, MIP-1β,
tumor necrosis factor (TNF)-α, and vascular endothelial growth
factor (VEGF). Correlation analysis on the 13 time series found
dependencies among the variables.

Logistic Regression Models
We initially sought to validate our study population against
prior studies of circulating inflammation biomarkers (Forde
et al., 2014), and to determine if we could utilize CSF
inflammatory biomarkers to segregate patient neurological
outcomes. Accordingly, we extracted from each time series,
associated to a given inflammatory mediator, orthogonal
(Chebyshev) polynomial trends up to a specific degree d. The
degree d is constant across both inflammatory mediators and

TABLE 1 | General demographics and injury characteristics of TBI patient
cohort.

Survivors Non-Survivors

Age 34.0 ± 3.1 37.9 ± 5.7

Sex Ratio (M:F) 18:2 6:1

GCS 6.0 ± 0.24 5.6 ± 0.57

subjects. We then utilized these polynomial trends, quantified
as one-dimensional variables, as predictors for the GOS score,
representing neurological outcome. The degree d was constant
across both inflammatory mediators and subjects. Choice of
d, typically d = 1, 2, or 3, restricts the patients that can be
included in the analysis; specifically, we can only include those
that have at least d+1 rounds of biomarker readings. Multinomial
logistic analytics were explored, as well as probit models. The
models selected emerged upon fitting to data, and selecting
the statistically significant clinical predictors as well as the
orthogonal polynomial time trends of inflammatory mediators.
Upon extracting polynomial trends, we performed analyses of the
residuals.

When extracting polynomial trends, two options were
considered: smoothing the time series and then taking the trends,
or taking the trends directly on the unsmoothed data. Though
it is common to smooth the data, in this case we observed large
differences in the time series response of certain mediators. It
seemed reasonable to attempt to capture these changes with
polynomials of higher degree, thus allowing extraction of higher
order polynomial trends from the unsmoothed data as an option
in the analysis. The model was obtained by using 80% of the
available data and was tested on the remaining 20%. Ultimately, a
logistic model was found as an optimal predictive tool.

Dynamic Profiling
We developed the Dynamic Profiling method as a means of
assessing the dynamic course of a TBI patient within the acute
care hospital setting (Figure 1). In the present application of
Dynamic Profiling, a cluster is a subset of severe TBI patients that
share similar characteristics. The set of clusters, recalculated after
each set of inflammatory mediator readings, forms a partition of
the TBI patients. To a given cluster, we associate three statistics
based on the GOS score: the number of GOS scores equal to 1
in the cluster (this is the number of patients that died, to which
we refer as “red flags”), the average GOS score of the subjects in
the cluster, and the standard deviation of the GOS scores in that
cluster. The vector of these three statistics is called the “weight”
of the cluster. A cluster has a favorable weight if it has a small
number of deaths, a high GOS average and a low GOS standard
deviation. A useful statistic for the cluster is the probability of
death of a patient belonging to that cluster (a “red flag”); it is
derived as the ratio of “red flags” to the total number of subjects
in the cluster. During the hospital stay the aim is to diagnose and
reduce the probability of death, as we pass from stage i clusters to
stage i+1.

Clustering, at any stage, was based on Hartigan’s k-means
routine (as implemented in R and Splus). Initially (Stage -1),
before any inflammatory mediator data are collected on the
subject, the algorithm classifies solely in accordance to the initial
GCS score. We use as many clusters as seems appropriate for the
size of the available data; in the present study, we chose to use
three clusters at any stage of clustering. We then introduce the
clinical (and demographic) information and produce (three) new
clusters; we call these Stage 0 clusters. Across the time series of
the inflammatory mediator data we revise the existing clusters,
and produce stage i clusters after the ith round of inflammatory
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FIGURE 1 | Clusters are determined by existing patient data, and a particular GOS outcome is associated with each cluster. As a new patient arrives,
they are placed in a cluster at each stage based on what the cluster is examining (found in parenthesis under the clusters). After each round of inflammatory
mediator readings, the potential GOS outcome for the patient is predicted by the cluster the patient is in. This figure was previously published in modified form in
Vodovotz et al. (2010).

mediator readings. The ith round of inflammatory mediator
readings refers to the time interval since initial injury during
which inflammatory mediator data readings were collected.
Variables used to obtain the clusters are the following: initial
GCS score, the subset of statistically significant demographic and
clinical variables, the statistically significant polynomial trends
in the time series of inflammatory mediator readings up to
stage i-1 clustering (inclusive), and the inflammatory mediator
readings during the current time interval. We note that the
number of variables used to cluster on does not increase as we
move to higher stage clustering. Indeed, we only use polynomial
trends of degree at most d, irrespective of the length of the time
series, or, equivalently, irrespective of the stage of clustering. This
yields robustness to the clustering process while simultaneously
bounding the dimension in which clustering takes place. The
clusters weights offer the opportunity of identifying patterns in

the inflammatory mediators that yield favorable GOS scores.
As a new patient is received we classify him by the severity
of initial injury (GCS score) - Stage -1 clustering. We classify
next by adding the demographic and clinical variables - Stage
0 clustering. In the ith time interval after the initial injury, we
classify in accordance to previous inflammatory mediator trends
and current inflammatory mediator readings; this is Stage i
clustering. At each Stage, the fraction of “red flags” (deaths) in the
cluster in which the new patient falls, estimates the probability
of death of the patient. The procedure lends itself easily to a
Bayesian approach by placing a prior distribution (of probability
of death) on existing clusters based on known medical expertise
not pertaining to the data at hand. This is then updated by the
observed data through the Dynamic Profiling method described
above. The resulting posterior distribution encapsulates both the
medical expertise as well as the observed probabilities of death
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within the data. We thus obtain parametric models from both
the Chebyshev orthogonal polynomial fits to the time series data,
as well as the Bayesian prior and posterior distributions. This
algorithm is implemented as a module in the R language.

RESULTS

Logistic Regression Modeling of
Post-TBI Inflammation Data
We initially sought to determine if CSF inflammatory mediators
are associated with neurological outcomes post-TBI. Our initial
approach to testing this hypothesis involved extracting from
each time series orthogonal polynomial trends up to a specific
degree d, associated to a given inflammatory mediator. The
degree d was constant across both inflammatory mediators and
subjects. We then used these polynomial trends, quantified as
one-dimensional variables, as predictors for the GOS score.
Thus, we combined the clinical variables with the time
series data to produce a total of 10 clinical and 13(d+1)
polynomial trends as potential predictors for the GOS score.
The 10 + 13(d+1) one-dimensional variables were used to
produce a predictive model for GOS score. Extraction of
trends as orthogonal Chebyshev polynomials has the advantage
of relating time series of differing lengths. Specifically, the
existence of a linear or quadratic trend in a time series
of length 5 and another of length 8 provides a meaningful
comparison of the two series in spite of their differing
lengths.

We then explored multinomial logistic as well as probit
models. The models emerged upon fitting to data, and subsequent
selection of the statistically significant clinical predictors as
well as the orthogonal polynomial time trends of inflammatory
mediators. Upon extracting polynomial trends, we carried out a
study of the residuals. An issue of concern is the large variations
observed in the residuals of certain inflammatory mediator
readings at certain time intervals. We have no explanation for
this, other than possible significant clinical interventions, such
as administration of drugs or surgical procedures that are not
recorded in the data.

The model was obtained by using 80% of the available data and
was tested on the remaining 20%. Ultimately, a logistic model was
found as an optimal predictive tool. The model involves only two
inflammatory mediators, TNF-α (a canonical pro-inflammatory
mediator) and IL-10 (a canonical anti-inflammatory mediator).
Specifically, the log-odds ratio is expressed as an additive model
containing the full TNF-α effect in addition to a linear and
quadratic effect in IL-10.

The significance of the logistic model, along with its
coefficients, is summarized in Table 2. Furthermore, the fitted
probabilities of the logistic model are given in Table 3. The first
column records the patient number, the second is the binary
GOS score outcome (1 indicates survival, and 0 indicates death),
while the third column gives the predicted probability of survival
based on the model specified above. In the present study, we
were only able to use d = 2 or 3 in the predictive models we
developed, due to the difficulty in obtaining a larger number of

TABLE 2 | Parameter estimates of the logistic model predictive of GOS
score.

value Standard Error t-value

(Intercept) −9.29 4.77 −1.95

TNFa.L 1.68 0.79 2.14

TNFa.Q 0.54 0.27 1.98

TNFa.C −1.04 0.49 −2.14

IL10.L −0.09 0.11 −0.82

IL10.Q 0.19 0.12 −1.57

CSF measurements in TBI patients, precluding the construction
of a statistical model with a large number of parameters that a
higher value of d would entail.

Dynamic Profiling of Patient-Specific
Outcomes Post-TBI
Logistic regression modeling can account for the properties
of sub-groups of TBI patients (such as survivors vs. non-
survivors, or low score GOS vs. high). However, a key piece of
information missing relates to the probability over time of the
occurrence of such outcomes. We hypothesized that changes in
this dynamic probability of survival vs. non-survival are related
to the dynamics of the inflammatory response as well as to factors
intrinsic to the patient (i.e., key demographic indicators) and
to the injury (i.e., metrics such as GCS score). We therefore
sought to develop a dynamic tool for assessment of TBI based
on demographic and inflammation biomarker reading time series
taken during stay in the emergency room and in the hospital.
To address this goal, we developed the Dynamic Profiling
method. This method allows estimation of certain probabilities
of recovery for a patient at any time during the hospital stay
based on the knowledge gained from the previously modeled
data at all prior sampling times. Specifically, from the available
data we developed profiles by clustering subjects into disjoint
groups and seeking predictive techniques that exploit both the
similarities within clusters as well as differences among clusters
(Figure 1).

We note that the GOS score is the statistic that assesses
outcome and that the GCS score assesses initial injury. The
Pearson correlation between these two scores is only 0.06 across
subjects. The correlation becomes 0.56 across surviving subjects,
however (not shown; Abboud et al., 2016). Accordingly, we
counted the deaths within a cluster (or equivalently, upon
dividing to the cluster size, the probability of death within a
cluster) as the primary component of the cluster weight. There
are at least 13 GCS score values possible, but we use as many
clusters as seems appropriate for the size of the available data. In
the present study, we chose to use three clusters at any stage of
clustering.

To illustrate the process of dynamic profiling, we highlight
subjects 11 and 14 and assess their evolution through the dynamic
profiling clusters. The results are summarized in Table 4 with
a graphical display given in Figure 2. The subject profiling
technique reveals the following information in this case. At Stage
-1 clustering (clustering solely on the initial injury GCS score),
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TABLE 3 | Observed and fitted probabilities of survival using the logistic model.

Patient number 1 2 3 4 5 6 7

GOS outcome 1 0 1 0 1 1 1

Probability of survival 1.00 0.87 0.55 0.29 0.78 0.95 0.89

Patient number 8 9 10 11 12 13 14

GOS outcome 0 1 1 1 1 1 0

Probability of survival 0.12 0.97 1.00 0.97 0.90 0.24 0.00

Patient number 15 16 17 19 21 22 28

GOS outcome 1 1 1 1 1 1 0

Probability of survival 0.90 0.58 0.99 0.75 0.99 0.99 0.62

Patient number 29 30 31 33 34 35

GOS outcome 0 1 1 1 1 0

Probability of survival 0.61 1.00 0.88 1.00 0.77 0.38

TABLE 4 | Summary of the performance of Dynamic Profiling for two exemplar patients.

Cluster Stage –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Patient 11 0.18 0.00 0.10 0.27 0.17 0.12 0.19 0.12 0.11 0.11 0.091 0.31 0.20 0.00 0

Patient 14 0.18 0.36 0.22 0.27 0.29 0.33 0.50 0.29 0.50 0.60 0.333 0.33 0.29 0.11 1

we see from Table 4 that subjects 11 and 14 belong to the same
cluster (cluster “2”). This is not surprising, since subject 11 has
GCS score 6, while subject 14 has GCS score 7 (quite close to each
other in ranking).

At Stage 0 clustering, when only clinical and demographic
variables (but not data on inflammatory mediators) are used to
cluster (in addition to the GCS), we notice that subject 11 belongs
to the “best” cluster (which has no deaths). In contrast, subject
14 is in the “worst” cluster (cluster 1, which has chance of death
more than a third – 4/11). Demographic data are more favorable
to patient 11 who is 29 years old, as contrasted with subject 14
who is 60. In this instance, we know that patient 11 recovers with
a GOS score of 4, while patient 14 dies.

Stage 1 clustering starts on the first instance of inflammatory
mediator readings. Patients 11 and 14 had 12 rounds of
inflammatory mediator readings. As can be read in Table 4,
and seen graphically in Figure 2, we have 12 clusters based on
these inflammatory mediator readings, with probabilities of death
estimated from the cluster weights. It is worth noting that patient
14, who dies, has uniformly higher chance of death, across all
inflammatory mediator readings.

In order to assess the predictive power of Dynamic Profiling,
we adopted the following strategy. From the existing subjects,
we omitted one subject. The subject omitted is treated as an
incoming TBI patient, the treatment evolution of whom will
be based on the data available on the rest of the patients
and the data on himself until the ith inflammatory mediator
reading. From these available data, we predict either a Low
(poor outcome) or High (favorable outcome) value for GOS; the
binary prediction can be refined as a function of the amount of
data available. Since this method of analysis emphasizes patient
profiling, the prediction of GOS takes this into evidence in the
following way. After the ith round of inflammatory mediator
readings, each subject has an associated survival curve, as the ones
highlighted in Figure 2 for patients 11 and 14. The incoming

FIGURE 2 | Dynamic Profiling of TBI survivor vs. non-survivor. The three
clusters are determined by existing patient data, and a particular GOS
outcome is associated with each cluster. As a new patient arrives, he is
placed in a cluster at each stage based on what the cluster is examining
(found in parenthesis under the clusters). The potential GOS outcome for the
patient can be predicted by which cluster the patient is in. Red curve indicates
the probability of death for Patient 14 (non-survivor). Blue curve indicates the
probability of death for Patient 11 (survivor). Data is available in Table 4. This
figure was previously published in modified form in Vodovotz et al. (2010).

patient has (up to the ith inflammatory mediator reading)
such a survival curve as well. We now select, from the data
available on all other subjects (but not the incoming subject),
the patient whose curve matches that of the incoming patient
most closely. Closeness between two curves is measured by the
difference of the area under them (up to and including the ith
inflammatory mediator reading). We predict the GOS for the
incoming patient after the ith inflammatory mediator reading
to be the GOS (rounded to Low or High) of the patient(s) in
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the data base whose survival curve is closest to the curve of the
incoming patient. The last inflammatory mediator reading on
the incoming patient, based on the curve matching described
above, yields the predicted GOS. For these data, we have a 72%
success rate in prediction, a rate considerably higher than that
of 50% obtained by assigning the GOS outcome to Low or
High randomly, and one that is commensurate with other data-
driven models for outcome prediction in TBI (Iverson et al.,
2005).

DISCUSSION

Traumatic brain injury is a leading cause of morbidity and
mortality in both the civilian and military settings. Like
many other forms of injury, TBI is associated with an acute
inflammatory response that drives, and in turn is likely driven by,
further damage/dysfunction. The complexity of inflammation is
daunting, and to date there have been no effective therapies that
modulate inflammation in TBI (Namas et al., 2009).

After any injury, inflammation occurs as a necessary response,
serving to remove or reduce challenges to the organism and
subsequently restore homeostasis to promote organism survival.
In an attempt to re-establish homeostasis, the inflammatory
response clears foreign invaders and injured cells, enhances
healing and promotes tissue repair. If sustained, the inflammatory
response can also become excessive creating an environment
that promotes further cell death (Medzhitov, 2008; Vodovotz
et al., 2008). Tissue survival depends upon proper initiation
and cessation of inflammation, mediated by pro- and anti-
inflammatory mediator release. In response to trauma, pro-
inflammatory mediators such as damage-associated molecular
pattern (DAMP) molecules, chemokines, and cytokines are
released to signal danger to injured cells (Namas et al.,
2015). In the specific setting of head injury, TBI results in
acute activation of astrocytes and microglia, with the release
of pro- inflammatory mediators such as Interleukin (IL)-1β,
IL-6, and Tumor Necrosis Factor (TNF)-α (Namas et al.,
2009).

We and others have suggested that computational modeling
is a means by which to integrate the numerous putative
pathways known to be involved in post-injury inflammation
and subsequent tissue damage/dysfunction. We have developed
both mechanistic and data-driven computational models of
inflammation in cells, experimental animals, and humans. We
have suggested that such systems biology models could be used
to simulate clinical trials, to predict the inflammatory responses
of individuals, and to design novel drugs or devices for the control
of inflammation (Vodovotz and An, 2013; Vodovotz and Billiar,
2013; Aerts et al., 2014).

In the present study, we utilized data-driven modeling to
gain insights into the dynamic interactions among patient
demographics, TBI severity and inflammation. We developed
an algorithm, Dynamic Profiling, in order to integrate factors
that clinicians would use in their decision making process
(e.g., demographics, injury severity) along with biological data
that, although currently not used in forming a diagnosis or

prognosis, are thought to play a role in the pathophysiology
of TBI. We envisioned this method as allowing for the
estimation of probabilities of recovery for an individual patient
at any time during the hospital stay based on the knowledge
gained from the previously modeled data at all prior sampling
times, knowledge gained by clustering subjects into disjoint
groups and seeking predictive techniques that exploit both the
similarities within clusters as well as differences among clusters.
In this sense, Dynamic Profiling represents a form of precision
medicine (National Research Council (U.S.). Committee on a
Framework for Developing a New Taxonomy of Disease, 2011),
in which data define the dynamic patient state. In another
sense, Dynamic Profiling is a “virtual clinician”: the allocation
of a given patient to a given cluster, and hence the likelihood
to improve or decline in health, is carried out much as a
clinician would. The initial assessment is based on patient
demographics and injury characteristics. This diagnosis is refined
over time as new data are obtained. In this particular instance,
the data stream consists of CSF inflammatory mediators, since
inflammation is considered to be a major driver of outcomes
post-TBI, and since the CSF is the most proximal biofluid
for measurement. Of course, data other than inflammatory
mediators might be included in the dynamic profiling algorithm.
For example, we have shown recently that we can incorporate
biochemical and physiological data into data-driven network
models of acute inflammation (Emr et al., 2014; Sadowsky et al.,
2015).

We found that Dynamic Profiling could reach a predictive
value of 72% with regard to GOS score. If validated further,
we suggest that Dynamic Profiling could eventually be used
in the treatment protocol for TBI patients. If the prediction
from Dynamic Profiling is that of a high probability of non-
survival, clinical intervention might be indicated. A new TBI
patient may thus be steered, through clinical or surgical
interventions, toward a cluster with as favorable a weight
as possible. For example, Figure 2 indicates that, perhaps
at approximately the 6th or 7th round of inflammatory
mediator readings, intense clinical intervention should have
occurred to improve the probability of survival of Patient
14. Whether this would have been clinically viable, or even
possible, is at present unknown, and therefore prospective
studies are needed in order to validate this hypothetical
approach.

Our study is subject to several limitations. First, the
number of patients and the number of time points could be
increased. Second, patient samples were constrained in part
by the necessities of clinical management, and thus for some
patients samples were missing. Another important limitation
is that treatments were administered to the patients during
the course of study but not registered in our data set; to
do otherwise would have been unethical (or a more complete
data collection could be performed for a future prospective
study. Third, the panel of inflammation biomarkers assessed
in each patient sample could be enlarged to encompass a
broader set of mediators. Nonetheless, our findings point to a
methodology that might be applicable in other complex, dynamic
diseases.
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