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Abstract 

The molecular structure of the 2‑(4‑oxo‑3‑phenylthiazolidin‑2‑ylidene) malononitrile (3) is calculated using DFT 
B3LYP/6‑311G(d, p) method. The calculated geometric parameters are in good agreement with the experimental 
data. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and 
study the different intramolecular charge transfer (ICT) interactions occurring in the studied system. The BD(2)C17–
C19 → BD*(2)C14–C15, LP(2)O2 → BD*(1)N5–C9 and LP(1)N5 → BD*(2)C10–C11 ICT interactions causing stabilization 
of the system by 23.30, 30.63 and 52.48 kcal/mol, respectively. The two intense electronic transition bands observed 
experimentally at 249 nm and 296 nm are predicted using the TD‑DFT calculations at 237.9 nm (f = 0.1618) and 
276.4 nm (f = 0.3408), respectively. These electronic transitions are due to H‑3 → L (94%) and H → L (95%) excitations, 
respectively.
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Introduction
Thiazoles are an important class of heterocyclic com-
pounds that possess the sulphur and nitrogen beside 
carbon atoms in its five member ring [1]. They are part 
of a number of pharmaceutical drugs that have analgesic 
(meloxicam) [2], antihistamine (nizatidine) [3], antibacte-
rial (penicillin) [4], antifungal (thiabendazole) [5], anti-
protozoal [6], and a number of other biological properties 
[1]. They are also part of the essential vitamin B1 or thia-
mine [7]. In the past, several thiazolidine derivatives have 
been synthesized and their molecular structural proper-
ties have been studied both experimentally and theoreti-
cally [8]. In this article we have selected a thiazole based 
derivative that we have synthesized previously and here 

we performed density functional theory (DFT) based cal-
culation for its molecular structure [9–11]. The current 
studied will provide more chemical information about 
our previously synthesized compound that has good bio-
logical activities. These current theoretical studies will 
further assist in the design and syntheses of better bio-
active analogues of thiazole in the future. The 2-(4-oxo-
3-phenyl-1,3-thiazolidin-2-yl-idene)malononitrile is a 
thiazole based derivative that possess several biological 
properties [10]. We calculated both electronic and spec-
troscopic properties and compared with previous experi-
mental results of its crystal structure [9, 10, 12, 13]. From 
the density functional theory (DFT) based calculations 
we predicted its non-linear optical properties etc. that 
are discussed below [10]. The DFT will provide informa-
tion about geometry of the molecule, different orbitals 
calculations like frontier molecular orbitals will provide 
information about the π electronic system and intramo-
lecular charge transfer, natural bond orbitals will pro-
vide information about different bond interactions and 
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their energies. Similarly, molecular electrostatic potential 
shows the reactive and non-reactive centers in the mol-
ecules while the ultra-violet visible (UV–Vis) spectrum 
and infra-red (IR) spectrum will also be obtained from 
these calculations.

Computational methods
Quantum chemical calculations
The DFT calculations for the thiazole derivative was per-
formed with the hybrid function of B3LYP and basis set 
of 6-311G(d, p) [14–16] present in Gaussian 03 software 
[10, 17]. The coordinates file of the X-ray crystal struc-
ture of the thiazole derivative (compound 3) was down-
loaded from the online repository [10, 18]. The molecular 
geometry of the compound 3 was optimized through 
the energy minimization process without any geometri-
cal parameters constraints [10]. The Gauss View 4.1 
[19] and Chemcraft [20] softwares were used for draw-
ing the refined structure of the compound 3 [10]. The 
energy minima of the optimized geometry of the selected 
molecule was established as there were no imaginary 
frequency modes. The electronic, orbital bonding and 
spectral properties of the selected molecule were also 
computed through DFT method [21–23]. The natural 
bond orbital and molecular electrostatic potential analy-
ses for the thiazole derivative was carried out using the 
B3LYP/6-311G (d, P) level [14–16]. The NBO analyses 
provides the intramolecular interaction inside the thia-
zole derivative, stabilization energies and bond interac-
tions. The second order perturbation energy calculation 
provided the donor and acceptor energies [21–23]. The 
molecular electrostatic potential analysis produced the 
most reactive sites in a molecule and thus it is easy to 
predict the electrophilic and nucleophilic attack sites.

Docking studies
The molecular docking was executed on the molecu-
lar operating environment (MOE) 2014.09 software 
[24–26]. The atomic coordinates of the human B-lactate 
dehydrogenase in complex with oxidized form of nicoti-
namide adenine dinucleotide and 4-hydroxy-1,2,5-oxa-
diazole-3-carboxylic acid having PDB ID Number 1T2F 
was downloaded from protein data bank website [27]. 
The structure of the protein and the selected ligand was 
optimized, and energy minimization was performed. The 
binding pockets in the protein receptor were determined 
with site finder module of MOE [24, 25]. The efficiency of 
the docking program was gauged by re-docking the origi-
nal ligand into the established receptor active site for the 
determination of root mean square deviation (RMSD) 
[26]. After that, the malononitrile compound 3 was 
docked with the receptor protein and the conformer with 
best docking score and free energy was selected [26, 28].

Results and discussion
Chemistry
Malononitrile was stirred with phenyl isothiocyanate in 
 K2CO3 in dimethylfluoride to afford an intermediary ani-
onic compound 2, which on reacting with ethyl chloroac-
etate forming the targeted molecule 3 [9] (Fig. 1a).

Optimization of the compound geometry
The optimized molecular structure bond lengths and 
their angles were calculated through the hybrid func-
tion of B3LYP with 6-311G(d, p) basis set as tabulated 
in Table 1; and compared with the experimentally deter-
mined optimized molecular structure from the litera-
ture [9, 29]. This compound possess  C1 point group and 
its optimized structural information were compared 
with the crystallographic information file (CIF) [9, 10]. 
All the predicted geometric parameters agree with the 
experimental results. The bond distances of the com-
pound 3 are a little overestimated except the C11‒C12 
bond which is shorter by 0.009 Å than the experimental 
one [30]. The main deviations in the values of calculated 
from the experimental bond length and angle are 0.041 Å 
(S1–C) and 1.3° (O2–C9–C6), respectively [30]. The pre-
dicted values of C‒C‒C bond angle of the phenyl ring of 
compound 3 are in the range of 119.1‒120.3° while the 
experimental values are 117.9‒120.8° [10, 31]. The calcu-
lated dihedral angles of the phenyl and thiazole rings of 
this molecule are close to 0° showing a planar structure 
[10] (Fig. 1b).

Natural atomic charge on the molecule
The charge distribution over a molecule has pivotal role 
in quantum chemistry. The atomic charges are related 
to the electronic density, charge distribution and dipole 
moment of a compound. The natural atomic charges 
(NAC) computed through DFT at the different atomic 
positions are tabulated in Table 2. The studied molecule 
has oxygen, nitrogen and sulfur-heteroatoms. The O and 
N-atoms are the most electronegative atomic spots in 
the malononitrile analogue [33]. In contrast, the S-atom 
is electropositive. The calculated natural atomic charge 
for the two N-sites of the nitrile groups (N3 and N4) are 
approximately equivalent [33]. While the NAC at the thi-
azole nitrogen atom is more negative than the N-atoms 
of the nitrile group. In the present compound 3, all the 
H-atoms are electropositive whereas the aliphatic pro-
tons (H7 and H8) are more positively charged than the 
aromatic ones [33]. The NAC on the aliphatic and aro-
matic protons are 0.2437 and 0.2080–0.2146, respectively. 
Most of the aromatic C-atoms are electronegative except 
C14 as this carbon bonded to the high electronegative 
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N5-atom [34]. The most electropositive C-atom in the 
molecule is the carbonyl carbon [32].

Molecular electrostatic potential
The distribution of charge and its related properties of 
compounds can be obtained through the 3D electrostatic 
potential maps. The electrostatic potential map was pro-
duced by overlapping the Van der Waal’s radii of each 
atoms present in the compound 3 so that it reveals the 
charged surface and thus one can visualize the morpho-
logical properties of the molecule [10, 35, 36]. Through 
these maps, we can forecast the reactive spots for elec-
trophilic as well as the nucleophilic attack during the 
chemical reactions [10, 37, 38]. The malononitrile deriva-
tive electrostatic potential map was predicted through 
the same DFT hybrid function and basis set as other 
parameters were measured and is presented in Fig. 2. The 
charged surface map in Fig.  2 showed that the negative 
regions (red) contain the N3 and N4 atoms of the nitrile 
group, showing that these N-sites are the hot spots for 
electrophilic attack. While the blue regions in Fig. 2 rep-
resent the positive regions that contain the area of H7, 
H8 and C6-atoms of the compound 3 and are the hot 
spot of nucleophilic attacks. These results gave informa-
tion about how compound 3 interact with receptor active 
sites.

a

b

Fig. 1 a Synthesis of thiazole derivative 3 [9]. b Optimized chemical structure of the malononitrile analogue

Table 1 Comparison of  different geometric parameters 
of malononitrile analogue [32]

Parameter Calc. Exp Parameter Calc. Exp

R(1‑6) 1.824 1.783 A(2‑9‑5) 124.0 123.6

R(1‑10) 1.769 1.739 A(2‑9‑6) 124.9 126.2

R(2‑9) 1.199 1.191 A(3‑12‑11) 179.1 179.4

R(3‑12) 1.157 1.132 A(4‑13‑11) 175.2 175.1

R(4‑13) 1.156 1.137 A(9‑5‑10) 116.8 116.7

R(5‑9) 1.411 1.399 A(9‑5‑14) 118.8 119.1

R(5‑10) 1.377 1.357 A(5‑9‑6) 111.1 110.2

R(5‑14) 1.447 1.444 A(10‑5‑14) 124.4 124.2

R(6‑9) 1.518 1.501 A(5‑10‑11) 127.9 126.9

R(10‑11) 1.376 1.367 A(5‑14‑15) 119.3 118.9

R(11‑12) 1.425 1.434 A(5‑14‑23) 119.3 119.0

R(11‑13) 1.423 1.426 A(10‑1112) 118.1 118.1

R(14‑15) 1.391 1.370 A(10‑1113) 126.0 126.8

R(14‑23) 1.391 1.368 A(12‑1113) 115.9 115.0

R(15‑17) 1.391 1.384 A(15‑1423) 121.4 122.1

R(17‑19) 1.393 1.366 A(14‑1517) 119.1 117.9

R(19‑21) 1.393 1.361 A(14‑2321) 119.1 119.0

R(21‑23) 1.391 1.365 A(14‑2324) 120.0 120.4

A(6‑1‑10) 92.1 92.1 A(15‑1719) 120.1 120.1

A(1‑6‑9) 107.8 108.5 A(17‑1921) 120.3 120.8

A(1‑10‑5) 112.1 112.3 A(19‑2123) 120.1 120.1

A(1‑10‑11) 119.9 120.8
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Nonlinear optical properties
The nonlinear optical materials are important for pho-
tonic communications due to its use light for data 
transmission and thus are an actively used in industry 
nowadays [39–41]. Many organic based compounds are 
used in photonic communication instruments due to 
their superior polarizability (α0) and lower energy gap 
(ΔE) between their highest occupied and lowest unoc-
cupied molecular orbitals [40–42]. Here the α0 and ΔE 
values of the thiazole based malononitrile derivative are 
162.89  Bohr3 and 4.6905 eV, while the polarizability value 
is approximately six times that of urea. Based on our cal-
culations it has lower ΔE than urea. Thus, this thiazole 

based compound has superior nonlinear optical qualities 
than the reference molecules [33, 43, 44].

Frontier molecular orbitals (FMOs) of the malononitrile 
analogue
The electronic densities of FMOs are helpful in predict-
ing the reactive positions and different reaction types for 
a π-electron systems containing molecules [33, 43]. Fur-
ther, the energies of the two types of orbitals  (EHOMO and 
 ELUMO) and their ΔE of a molecule showed its inherent 
chemical reactivity and intramolecular charge transfer 
(ICT) capacities [32, 45–48]. The ΔE for the FMOs of the 
thiazole based compound 3 was calculated through the 
hybrid function of B3LYP/6‒311G (d, p) and its FMOs 
picture is presented in Fig.  3 [32]. It was observed that 
the molecular orbitals level are delocalized over the five 
member ring of the compound and the C10–C11–C–N 
π-electronic systems. The  EHOMO is − 6.9947  eV while 
 ELUMO is − 2.3043  eV. The orbitals ΔE signifies a lower 
energy electronic transition with a value of 4.6905  eV 
for the thiazole based compound under study. This ICT 
of electron transition happens due to π–π* excitations. 
The 40 spin allowed singlet–singlet electronic transitions 
predicted are tabulated in Additional file 1: Table S1 and 
the electronic spectrum is presented in Additional file 1: 
Figure S4 [49]. Experimentally there are two intense 
electronic transition bands that are observed at 249 nm 
and 296  nm. On the basis of DFT calculations, these 
electronic spectral bands were observed at 237.9  nm 
(f = 0.1618) and 276.4  nm (f = 0.3408) on the spectrum 
and these can be assigned to the excitation from H-3 → L 
(94%) and H → L (95%) respectively.

Natural bond orbital (NBO) analysis
The stabilization energies  E(2) for the relevant intra-
molecular charge transfer contacts were calculated 
through the NBO method (Table  3) [51, 52]. The dif-
ferent types of interactions between filled and empty 
orbitals in a complex molecule can be used to measure 
the intra-molecular electronic density delocalization. A 
larger stabilization energy showed high rate of electronic 
exchange between donor and acceptor NBOs, i.e. higher 
the amount of conjugation inside the molecule [53]. The 
second-order perturbation theory is used to describe the 
energetics of such interactions [10, 54, 55]. The intramo-
lecular charge transfer exchange as a result of the orbital 
overlap between π → π*, n → σ* and n → π* orbitals helps 
in stabilization of the molecular system up to 23.30, 
30.63 and 52.48  kcal/mol respectively, which are due to 
BD(2)C17–C19 → BD*(2)C14–C15, LP(2)O2 → BD*(1)

Table 2 The natural atomic charges theoretically 
measured for the malononitrile derivative

Atom NAC Atom NAC

S1 0.3360 C13 0.2843

O2 − 0.5350 C14 0.1276

N3 − 0.3001 C15 − 0.1827

N4 − 0.3016 H16 0.2146

N5 − 0.4890 C17 − 0.1768

C6 − 0.5793 H18 0.2096

H7 0.2437 C19 − 0.1724

H8 0.2437 H20 0.2080

C9 0.7180 C21 − 0.1768

C10 0.1830 H22 0.2096

C11 − 0.3820 C23 − 0.1827

C12 0.2855 H24 0.2146

Fig. 2 The molecular electrostatic potentials map predicted for the 
malononitrile analogue
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N5–C9 and LP(1)N5 → BD*(2)C10–C11 ICT interac-
tions, respectively [10]. These predicted results showed 
that there is strong electronic density spread from LP(1)

N5 to the nearby C10–C11π*-NBO. Further, there is a 
π → π* electron delocalization between the nitrile group 
π-system to the nearby π*-NBO of the C10–C11 bond in 
this thiazole based compound.

Vibrational spectrum analyses
The IR vibrational spectrum of the malononitrile ana-
logue were computed through the same hybrid function 
and basis set as described previously and the vibrational 
modes were assigned through visual inspection through 
the GaussView software [10, 17, 56]. The comparison 
between theoretically computed and the experimental 
vibrational band frequencies of the compound 3 are tab-
ulated in Additional file 1: Table S2 and the IR spectrum 
is shown in Fig.  5 [10]. The Additional file  1: Table  S2 

ELUMO=-2.3043 eV ELUMO=-2.3043 eV 

EHOMO = -6.9947 eV EHOMO = -6.9947 eV 
Fig. 3 Electronic density surface plots at ground state for the FMOs 
of thiazole based malononitrile analogue. The molecular orbitals level 
are delocalized over the five member thiazole ring and the attached 
cyanate groups. Green represent negative values of the orbital 
overlap, dark red represents positive values of the orbitals overlap [50]

Table 3 The stabilization energies  E(2) in  (kcal/
mol) of  the  important charge transfer interactions 
between  the  donor and  acceptor in  the  malononitrile 
analogue

Donor NBO (i) Acceptor NBO (j) E(2) kcal/mol

BD(1)N3–C12 BD*(1)C11–C12 8.09

BD(3)N3–C12 BD*(2)C10–C11 7.66

BD(1)N4–C13 BD*(1)C11–C13 8.49

BD(3)N4–C13 BD*(2)C10–C11 8.50

BD(1)C10–C11 BD*(1)C11–C12 5.29

BD(1)C10–C11 BD*(1)C11–C13 5.93

BD(2)C10–C11 BD*(3)N3–C12 20.67

BD(2)C10–C11 BD*(3)N4–C13 19.65

BD(2)C10–C11 BD*(2)C10–C11 6.94

BD(1)C11–C12 BD*(1)N3–C12 8.23

BD(1)C11–C12 BD*(1)N5–C10 6.32

BD(1)C11–C12 BD*(1)C10–C11 5.01

BD(1)C11–C13 BD*(1)N4–C13 8.66

BD(1)C11–C13 BD*(1)C10–C11 6.46

BD(2)C14–C15 BD*(2)C17–C19 17.82

BD(2)C14–C15 BD*(2)C21–C23 20.47

BD(1)C15–C17 BD*(1)N5–C14 5.05

BD(2)C17–C19 BD*(2)C14–C15 23.30

BD(2)C17–C19 BD*(2)C21–C23 20.11

BD(1)C21–C23 BD*(1)N5–C14 5.05

BD(2)C21–C23 BD*(2)C14–C15 21.81

BD(2)C21–C23 BD*(2)C17–C19 20.50

LP(2)S1 BD*(2)C10–C11 26.02

LP(2)O2 BD*(1)N5–C9 30.63

LP(2)O2 BD*(1)C6–C9 22.18

LP(1)N3 BD*(1)C11–C12 12.47

LP(1)N4 BD*(1)C11–C13 12.59

LP(1)N5 BD*(2)O2–C9 44.57

LP(1)N5 BD*(2)C10–C11 52.48
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showed that there is close resemblance between the two 
IR vibrational frequencies [10, 57].

Aromatic C–H bending vibrations
The thiazole ring of the malononitrile derivative posseses 
the carbon–hydrogen stretching vibrations in 3100–
3000 cm−1 region [10, 58]. In this study, the IR band rec-
ognized for the C–H stretching vibrations at 3042 cm−1 
is present at 3097–3070 cm−1 [10, 59]. The in-plane and 
out-of-plane ring C–H bending vibrations bands are 
predicted in the region 1400–1000 and 1000–600  cm−1 
respectively [10, 60, 61]. The DFT analyses also showed 
that the in-plane bending modes are at 1475, 1438, 1305, 
1158, 1148, 1128, 1067 and 1013 cm−1 (exp. 1461, 1291, 
1157 and 1024  cm−1) [10]. Few of the in-plane C–H 
bending vibrational modes mixed with other bands [62]. 
On other hand, the out-of-plane bending modes for C–H 
are present at 980–904, 817, 739 and 684 cm−1 (exp. 991, 

911, 791 and 698 cm−1) [10]. Thus our theoretical calcu-
lated C–H vibrational frequencies agree very well with 
experimental data.

Aliphatic C–H vibrations of the thiazole ring
The compound under investigation has one methylene 
group at the thiazole ring. It will therefore exhibits two 
aliphatic C–H stretching vibration at lower frequencies 
in the spectrum than those of the aromatic C–H ring 
vibrations [63–65]. Both the symmetric and asymmet-
ric stretching vibrations of the  CH2 group are present at 
3027 (exp. 2997 cm−1) and 2979 cm−1 (exp. 2944 cm−1), 
in the computed vibrational spectrum [62, 66, 67]. The 
theoretically computed  CH2 scissoring, wagging, twist-
ing and rocking vibrations are present at 1410 cm−1 (exp. 
1384 cm−1), 1285 cm−1 (exp. 1234 cm−1), 1109 cm−1 and 
888 cm−1 (exp. 886 cm−1), respectively [10, 64].

Fig. 4 2D representation showing the hydrogen bond interactions of the interesting compound and the targeting enzyme
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C≡N vibrations
Generally the nitrile stretching vibration is present at 
2250 ± 10 cm−1 in saturated nitriles or in olefinic nitriles 
where no conjugation exists between the nitrile and the 
olefinic group [68, 69]. While in conjugated nitrile, the 
band moves to lower frequency of 2225 ± 7  cm−1 [69, 
70]. Here in this molecule, there are two nitrile groups 
attached to the C=C so the symmetric and asymmetric 
υC≡N modes are predicted at 2251 and 2241  cm−1 [71]. 
In agreement with literature, the υC≡N mode observed 
experimentally at 2215  cm−1. In the IR spectrum of 
this compound 3, the symmetric and asymmetric δC–

C≡N modes were predicted at 602 and 462  cm−1 (exp. 
468  cm−1), respectively. Furthermore, the nitrile group 
out-of-plane torsion mode has a predicted at 454  cm−1 
(exp. 453 cm−1) [10, 64, 65, 72].

C=O, C=C and C–S vibrations
In compounds that have aromaticity, the C=C stretch-
ing vibrations is mostly present at 1600–1500 cm−1 [63, 
73]. In the current system, these stretching vibrations 
are predicted at 1587–1438  cm−1 while experimentally 
observed at 1597–1461  cm−1 [10]. We also found that 
the aromatic rings breathing modes are at 987  cm−1 
(exp. 999 cm−1) [10]. We noted, the υ(C10=C11) stretching 
mode at 1520  cm−1 while experimentally it is observed 
at 1527  cm−1 [10]. The malononitrile analogue showed 
intense carbonyl vibration observed experimentally 
at 1745  cm−1 (calc. 1769  cm−1). The thiazole ring C–S 
stretching vibrational frequency mode is calculated at 
758  cm−1 while it is experimentally noted at 757  cm−1 
[69].

Molecular docking
Lactate dehydrogenase (LDH) has an active role in the 
metabolism of lactate during normal physiological pro-
cess [74, 75]. The high levels of lactate are associated in 
different ways to several types of human cancers, as can-
cerous cells have increased metabolism [75]. The increase 
level of lactate ion may directly contributes to tumor 
growth and progression [75]. Molecular docking was 
conducted to find out the interaction of 2-(4-oxo-3-phe-
nylthiazolidin-2-ylidene) malononitrile with the lactate 
dehydrogenase enzyme. The malononitrile derivative has 
good affinity for the LDH enzyme showing a total free 
energy of − 4.6  kcal/mol on its interaction. It is clearly 
the cyano moiety that is the highly active group in the 
malononitrile by making two hydrogen acceptor interac-
tions with Arg 106 with − 3.0 kcal/mol and one hydro-
gen acceptor interaction with Thr 248 with − 1.6  kcal/
mol (Figs. 4, 5). 

Fig. 5 3D representation of the selected compound pose fitted inside the targeted enzyme

Fig. 6 Pharmacophore annotations of the malononitrile analogue
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Pharmacophore studies
The pharmacophore analyses was done with the MOE 
software package (version 2014.010) using the default 
settings. The different conformers production for the 
under test ligand was carried out using the conforma-
tional analysis algorithm, present in the MOE software 
package [76]. Pharmacophore modeling tools determine 
the different chemical properties and spatial arrangement 
in three dimensions that are essential for interaction 
between ligand and its receptor and thus for the drug 
action. Pharmacophore models can be generated from 
the structural data of protein–ligand complexes as well 
as from ligands when no receptor information is available 
and also from the receptor structure when no ligands are 
available. The generated models are usually used for vir-
tual screening of online libraries of compounds that are 
the potentially active molecules. Also, the pharmacoph-
oric feature may represent a specific property and is not 
necessarily related to a particular chemical structure; but 
different chemical groups may share the same property 
and possesses the same feature (Fig. 6 and Table 4) [77, 
78].

Conclusions
The chemical structure of the 2-(4-oxo-3-phenylthiazo-
lidin-2-ylidene) malononitrile was optimized through 
the hybrid B3LYP method and 6-311G (d, p) basis set. 
The predicted geometrical parameters of the malononi-
trile derivative agree well with the previous experimental 
results. From this study it was observed that this malo-
nonitrile compound has superior non-linear optical 
properties than urea. Thus, it can be used in photonic 
communication instruments.

Additional file

Additional file 1: Table S1. The calculated electronic transition bands of 
the malononitrile compound. Table S2. Comparison of the predicted and 
experimental frequency modes of the malononitrile analogue. Figure S1. 
Comparison of the predicted (upper) and experimental (lower) absorb‑
ance spectra of the thiazole based malononitrile analogue. Figure S2. 
The experimental (lower one) and calculated (upper one) IR spectra of the 
studied compound.
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