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Abstract: Aiming at further systematically comparing the similarities and differences of the chemical
components in ginseng of different ages, especially comparing the younger or the older and
mountain-cultivated ginseng (MCG), 4, 5, 6-year-old cultivated ginseng (CG) and 12, 20-year-old MCG
were chosen as the analytical samples in the present study. The combination of UPLC-QTOF-MSE,
UNIFI platform and multivariate statistical analysis were developed to profile CGs and MCGs. By the
screening analysis based on UNIFI, 126 chemical components with various structural types were
characterized or tentatively identified from all the CG and MCG samples for the first time. The results
showed that all the CG and MCG samples had the similar chemical composition, but there were
significant differences in the contents of markers. By the metabolomic analysis based on multivariate
statistical analysis, it was shown that CG4–6 years, MCG12 years and MCG20 years samples were obviously
divided into three different groups, and a total of 17 potential age-dependent markers enabling
differentiation among the three groups of samples were discovered. For differentiation from other
two kinds of samples, there were four robust makers such as α-linolenic acid, 9-octadecenoic acid,
linoleic acid and panaxydol for CG4–6 years, five robust makers including ginsenoside Re1, -Re2, -Rs1,
malonylginsenoside Rb2 and isomer of malonylginsenoside Rb1 for MCG20 years, and two robust
makers, 24-hydroxyoleanolic acid and palmitoleic acid, for MCG12 years were discovered, respectively.
The proposed approach could be applied to directly distinguish MCG root ages, which is an important
criterion for evaluating the quality of MCG. The results will provide the data for the further study on
the chemical constituents of MCG.
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1. Introduction

Ginseng, the king of herbs in the Orient, has always received a lot of attention, not only as a
therapeutic medicinal herb, but also as a health supplement. According to the different growing
environments and diverse cultivation methods, there two kinds of ginseng are distinguished in the
Chinese Pharmacopoeia: cultivated ginseng (CG) and mountain-cultivated ginseng (MCG). CG is
cultivated artificially in gardens, while MCG is grown for at least 10 years [1,2]. MCG, also called
“Lin-Xia-Shan-Shen”, can be regarded as a replacement of wild ginseng. MCG is of better quality than
CG and offers more production than wild ginseng [3]. Actually, the adulteration or falsification of the
cultivation age of MCG has always been a serious problem in the MCG commercial market. As we all
know, the chemical components and biological activities of ginseng with different cultivation ages are
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distinct [4,5], and more aged ginseng is usually of higher economic value. In an investigation of the
characteristic components for distinguishing CG (4–7-year of age) and MCG (with 15-years of growth),
12 compounds, including ginsenoside Ra3/isomer, gypenoside XVII, quinquenoside R1, ginsenoside
Ra7, notoginsenoside Fe, ginsenoside Ra2, ginsenoside Rs6/Rs7, malonyl ginsenoside Rc, malonyl
ginsenoside Rb1, malonyl ginsenoside Rb2, palmitoleic acid, and ethyl linoleate were regarded as
the characteristic chemical markers for the discrimination [6]. Recently, a UPLC/QTOF- MS-based
metabolomics approach was applied to the global metabolite profiling of MCG leaf samples aged from
6 to 18 years, and the authors claimed that the approach could also be applied to discriminate MCG
root ages indirectly [7]. It is undoubted that the developed method can be used as a standard protocol
for discriminating and predicting MCG leaf ages directly, but there might be some inaccuracy and
uncertainty when discriminating MCG root ages indirectly.

In the past decades, some analytical methods focusing on ginsenosides had been used to
distinguish MCG from CG, such as thin layer chromatography (TLC), or high performance liquid
chromatography (HPLC) [8,9]. However, these technologies require lots of time and energy, and the
results cannot provide a comprehensive or accurate discrimination between them. Currently,
untargeted metabolomics, combined with multivariate statistical methods such as principal component
analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), are widely
used to profile diverse classes of metabolites and to better understand the chemical diversity and
the multiple pharmacological effects of ginsenosides or ginseng [10,11]. Given the multi-component
property, the combination of LC-MS-based metabolomic profiling with multivariate statistical analysis
methods was used as a rapid means of characterization and was increasingly applied for analyzing
ginseng from different herbs, cultivation environments/areas, cultivation ages or different parts [12,13].
As an example, for different herbs belonging to the same genus, specific biomarkers including
chikusetsusaponin IVa, ginsenoside Rf and ginsenoside Rc were selected and verified for ginseng [14].
In another example of different parts analysis, the metabolic profiles of root, leaf, flower bud, berry
and seed of ginseng were investigated [12,15]. In addition, the approach for the discrimination of
different red ginseng root parts was reported. As a result, fine roots had the highest protopanaxadiol
(PPD)/protopanaxatriol (PPT) ratio, which could clearly distinguish the main roots from the lateral
roots and fine roots parts [16]. Such analysis was also applied to make metabolite profiling and age
discrimination of 4- and 6-year- old red ginseng [17], or 1–6 years ginseng [18].

In addition, UNIFI, the automated data processing software, is an integrated informatics platform
that possesses the ability to incorporate scientific library into a streamlined workflow, aiming at
identifying chemical components from complex raw data [19]. The combination of UPLC separation,
Q/TOF-MS detection and UNIFI platform has been frequently applied in the characterization of
chemical constituents of herbs [20,21].

Normally, CG is harvested after a 4–6 years cultivation period, and MCG is collected at ages of
10–20 years. To develop a more direct and more efficient discrimination method for the cultivation ages
and to explore potential age-dependent markers, we chose 4, 5, 6-year-old CG and 12, 20-year-old MCG
as the analytical samples in the present study. UPLC-QTOF-MSE, UNIFI platform and multivariate
statistical analysis were then used to profile these two kinds of ginseng. The aims were to systematically
screen the chemical components and to perform the non-targeted metabolomic analysis, and in turn
will lay the foundation for the establishment of CG and MCG quality criteria in the future. In one
hand, this study will reveal the structural diversity of secondary metabolites and the different patterns
in CG and MCG. In the other hand, the present study could provide a reference point for a reliable,
accurate method for distinguishing among CG and MCG samples of different ages.
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2. Materials and Methods

2.1. Materials and Reagents

A total of 40 batches of CG and MCG root products, including 24 batches of CGs and 16 batches
of MCGs, were collected from different cultivation areas in Jilin Province, the main source of ginseng
in China. A detailed sample list is given in Table 1. All samples were harvested and collected by
Professor Li Ping-ya from Jilin University Institute of Frontier Medical Science, according to China
Pharmacopoeia (2015 version) [22]. Voucher specimens have been deposited at the Research Center of
Nature Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China.

Table 1. Details of the MCG and CG samples.

Sample No. Source Collection Time

CG3years-1, CG3years-2; CG4years-1, CG4years-2;
CG5years-1, CG5years-2; MCG12years-1,

MCG12years-2; MCG20years-1, MCG20years-2

Ji′an City, Jilin Province,
China 2017.09–2017.10

CG3years-3, CG3years-4; CG4years-3, CG4years-4;
CG5years-3, CG5years-4; MCG12years-3,

MCG12years-4; MCG20years-3, MCG20years-4

Fusong County, Jilin
Province, China 2017.09–2017.10

CG3years-5, CG3years-6; CG4years-5, CG4years-6;
CG5years-5, CG5years-6; MCG12years-5,

MCG12years-6; MCG20years-5, MCG20years-6

Tonghua City, Jilin
Province, China 2017.09–2017.10

CG3years-7, CG3years-8; CG4years-7, CG4yeasr-8;
CG5years-7, CG5years-8; MCG12years-7,

MCG12years-8; MCG20years-7, MCG20years-8

Jingyu Country, Jilin
Province, China 2017.09–2017.10

Acetonitrile, methanol were all UPLC-MS pure grade (Fisher Scientific Inc., Geel, Belgium).
Formic acid (MS grade) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Leucine enkephaline
was provided by Waters (Waters Technologies, Milford, MA., USA). Distilled water was prepared
in-house via a Millipore water purification system (Millipore, Billerica, MA, USA). All other chemicals
were analytical grade. For reference substances, ginsenoside F1 (R20151040), -F2 (R20151040),
notoginsenoside R1 (R20170210), notoginseno- side R4 (R20170212) were provided by the Research
Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, China. Ginsenoside
Rb1, -Rb2, -Rb3, -Rc, -Rd, -Re, -Rf, -F5, -Rg1, 20(R)-Rg2, 20(S)-Rh1, 20(R)-Rh1, 20(S)-Rg3, 20(R)-Rg3,
-Ro, gypenoside XVII, ginsenoside Rs1, -Rs2 were isolated in our laboratory and identified by
spectroscopic data. Adenine (101774299), tryptophane (73-22-2), palmitoleic acid (101491588) were
purchased from Sigma-Aldrich. Notoginsenoside Fe (8105-29-5), D-adenosine (110879- 200502),
histidine (624-200304) were purchased from the National Institutes for Food and Drug Control.
Ginsenoside Rg5 (wkq16051002, Victory Biological Technology Co., Ltd., Sichuan, China), α-linoleic
acid (B21469; Yuanye Biological Technology Co., Ltd., Shanghai, China), D-arginin (130701; Nuoye
Biological Engineering Co., Ltd., Anhui, China) and phenylpropionic acid (A20160211), quillaic acid
(A20171109) were purchased from Beijing Zhongke Quality Inspection Biotechnology Co., Ltd. (Beijing,
China) with the Chinese National Standard Sieve No. 3 (R40/3 series).

2.2. Sample Preparation and Extraction

All the CG and MCG samples were air-dried, grinded (Baijie Stainless Steel Grinder, BJ-800A,
Deqing Baijie Electric Apllicance Co. Ltd., Zhejiang, China) and sieved (Chinese National Standard
Sieve No. 3, R40/3 series) to get the homogeneous powder respectively. Then, the powder of 40
samples (200 mg accurately weighed per sample) were refluxed respectively with 85% methanol (2 L)
at 80 ◦C for three times (2 h, 2 h, 1 h each time, respectively). Then, the extracts of each sample were
combined, concentrated and evaporated to dryness. Each powder was dissolved in 5.0 mL of 80%
methonal. After being filtered, each methanolic solution was injected directly into UPLC system.



Molecules 2019, 24, 33 4 of 24

Meanwhile, 20 µL aliquots of each CG and MCG sample were mixed to obtain a quality control (QC)
sample, which contained all of the components in the analysis. The QC sample was run randomly
to monitor the stability of the system. All of the above solutions were stored at 4 ◦C prior to LC-MS
analysis and the injection volume was 2 µL.

2.3. UPLC/QTOF-MSE

The chromatographic separation and mass spectrometry detection were conducted on the Waters
Acquity UPLC system coupled with a Xevo G2-S QTOF mass spectrometer equipped with an
electrospray ionization source (ESI). Separation was performed on Waters ACQUITY UPLC BEH
C18 column (100 mm × 2.1 mm, 1.7 µm) at 40 ◦C. The mobile phase consisted of eluent A (0.1% formic
acid aqueous solution) and eluent B (0.1% formic acid in acetonitrile) at flow rate of 0.4 mL/min with
the following gradient program: 0~2 min, 10% (B); 2~26 min, 10%~100% (B); 26~28 min, 100% (B);
28~28.1 min, 100%~10% (B); 28.1~30 min, 10% (B). Mixtures of 10/90 and 90/10 water/acetonitrile
were the strong wash and the weak wash solvent, respectively. The optimized conditions were
employed: source temperature was 120 ◦C, the desolvation temperature was 300 ◦C, capillary voltage
was 2.6 kV(ESI+) or 2.2 kV (ESI−), cone voltage was 40 V, desolvation gas flow was 800.0 L/h, cone gas
flow was 50 L/h. The energy of low energy function and the collision energy of high energy function
were set at 6 V and 20 V~40 V respectively in MSE mode. The mass spectrometer was calibrated with
sodium formate in the range of 200–1500 Da. The lockmass compound used was leucine- enkephaline
(external reference to the ion m/z 556.2771 in positive mode and 554.2615 in negative mode). Data
were collected with Masslynx™ V4.1 workstation in continuum mode.

2.4. Chemical Information Database for the Components of CG and MCG

In addition to the Waters Traditional Medicine Library in UNIFI software, a systematic
investigation of chemical constituents from the target herbs based on the literature was conducted.
A self-built database of compounds, such as saponins, flavonoids, volatile oil, amino acids and so on,
isolated from CG and MCG was established by searching online databases such as China Journals of
Full-Text Database (CNKI), PubMed, Medicine, Web of Science and ChemSpider. The name, molecular
formula and structure of components from CG and MCG were obtained in the database.

2.5. The Screening Analysis Based on UNIFI Platform

UNIFI 1.7.0 software (Waters, Manchester, UK) was used to perform the screening analysis on
the structural characteristics and MS fragmentation behaviors, especially for characteristic fragments.
Main parameters were set as follows: peak intensity of high energy over 200 counts and the peak
intensity of low energy over 1000 counts were the selected parameters in peak detection; mass error
up to ±10 ppm for identified compound; retention time tolerance was set in the range of ±0.1 min;
positive adducts containing +H, +Na or negative adducts containing −H, +HCOOH were all selected;
the reference compound was leucine-enkephalin (556.2766 for positive ion, 554.2620 for negative ion).
The MS raw data were processed using the streamlined workflow of UNIFI software to quickly identify
the chemical components that met the match criteria with the in-house Traditional Medicine Library
and the self-built database [20,21].

2.6. The Metabolomics Analysis Based on Multivariate Statistical Analysis

To differentiate MCG and CG, MarkerLynx XS V4.1 software (Waters, Milford, DE, USA) was used
to process the raw data by deconvolution, alignment, data reduction and to perform the multivariate
statistical analysis [20,21]. The following steps were performed: acquiring data, creating a MarkerLynx
processing method, processing the acquired data and viewing results Extended Statistics (XS) Viewer.
The main parameters in the method set to process the raw data were as follows: retention time range
5–28 min, mass range 200–1400 Da, mass tolerance 5 mDa, intensity threshold 2000 counts, mass
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window 0.05 Da, retention time window 0.20 min. In resulting database list, RT-m/z pairs represent an
identifier of ion in the order of their elution time. The same value of RT and m/z in different batches of
samples were regarded as the same compound. Multivariate statistical analysis was then performed to
find the potential biomarkers that significantly contributed to the difference among the groups. During
the analysis, principal component analysis (PCA) was firstly used to show the maximum variation
and pattern recognition in order to get the overview and classification, and the orthogonal projections
to latent structures discriminant analysis (OPLS-DA) was then performed aiming to get the maximum
separation between two groups. S-plots was then available to provide visualization of the OPLS-DA
predictive component loading to facilitate model interpretation. Variable importance for the projection
(VIP) was also used to help screen the different components, and the metabolites with VIP value above
1.0 were considered as potential markers. Additionally, a permutation test was performed to provide
reference distributions of the R2/Q2-values that could indicate the statistical significance. Simca 15.0
software (Umetrics, Malmö, Sweden) was used to show the analysis results.

3. Results and Discussion

3.1. Identification of Components from MCG and CG Based on UNIFI Platform

As a result of our analysis, a total of 126 compounds, including triterpenoids (the main
ingredients), flavonoids, organic acids and organic acid esters, alcohol phenols, aldehyde ketones and
amino acids, etc., were characterized or tentatively identified from the MCG and CG in both ESI+ and
ESI− modes. 85 compounds were identified in ESI+ mode and 41 compounds were identified in ESI-

mode. Base peak intensity (BPI) chromatograms are shown in Figure 1, the identification information
is listed in Table 2, and the chemical structures are shown in Figure 2.
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Figure 1. The representative BPI chromatograms of CG and MCG in positive and negative modes. 

Figure 1. The representative BPI chromatograms of CG and MCG in positive and negative modes.
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Table 2. Compounds identified from MCG and CG by UPLC-QTOF-MSE.

No. tR (min) Formula Calculated
Mass (Da)

Theoretical
Mass (Da)

Mass Error
(ppm) MSE Fragmentation Identification Sources Ref.

1 0.49 C5H8N2O5 176.0431 176.0433 −1.5 177.0503[M + H]+; 130.0495[M – 2 × OH − NH2]+ Dencichine CG, MCG12, MCG20 [23]

2 0.54 C6H14N4O2 174.1115 174.1117 −1.1
175.1188[M + H]+;158.0912[M − NH2]+;
116.0704[M − NH2 − CN2H2]+;114.1015[M − NH2
− CHO2]+

Adipodihydrazide CG, MCG12, MCG20 a

3 0.55 C30H22O10 542.1257 542.1213 8.1

543.1330[M + H]+; 273.0833[M − C15H10O5]+;
242.1025[M − OH − C15H10O6]+; 127.0388[M −
C24H17O7]+; 116.0703[M − 2 × OH − C21H12O8]+;
109.0284[M − C24H15O8]+

Chamaejasmine CG, MCG12, MCG20 a

4 0.59 C12H22O11 342.1156 342.1162 −1.6 365.1055[M + Na]+; 203.0550[M − OH − C4H8O4]+;
185.0444[M − 2 × OH − C4H8O4]+ α-Maltose CG, MCG12, MCG20 [24]

5 0.69 C6H14N4O2 174.1115 174.1117 −0.9 175.1188[M + H]+ D-Arginin CG, MCG12, MCG20 s

6 0.74 C19H18O11 422.0842 422.0849 −1.7 423.0915[M + H]+; 268.1040[M + H − C6H6O5]+;
119.0349[M − C15H10O7]+ Isomangiferin CG, MCG12, MCG20 [25]

7 0.75 C5H5N5 135.0546 135.0545 0.5 136.0618[M + H]+; 119.0352[M − NH2]+ Adenine CG, MCG12, MCG20 s

8 0.76 C10H13N5O4 267.0974 267.0968 2.4 268.1050[M + H]+; 136.0618[M − C5H9O4]+;
119.0352[M − C5H9O4 − NH2]+ D-Adenosine CG, MCG12, MCG20 s

9 0.80 C20H15NO6 365.0876 365.0899 −6.3 366.0949[M + H]+ Integriamide CG, MCG12, MCG20 a

10 0.81 C25H30O12 538.1677 538.1686 −1.7
561.1569[M + Na]+; 393.1138[M − C6H8O4]+;
381.0788[M − CH3 − C7H10O3]+; 366.0930[M −
OH − C8H10O3]+; 366.0930[M − C19H21O8]+

Linearoside CG, MCG12, MCG20 [26]

11 0.82 C9H11NO2 165.0782 165.0790 −0.5 166.0862[M + H]+; 120.0805[M − COOH]+
;

103.0543[M − COOH − NH2]+
Phenylpropionic

acid CG, MCG12, MCG20 s

12 0.91 C6H9N3O2 155.0762 155.0695 −3.5 156.0762[M + H]+ Histidine CG, MCG12, MCG20 s

13 1.05 C11H12N2O2 204.0898 204.0899 −0.5
205.0971[M + H]+; 188.0706[M − NH2]+;
143.0723[M − NH2 − COOH]+; 118.0649[M − NH2
− COOH − C2H3]+

Tryptophan CG, MCG12, MCG20 s

14 1.06 C6H14N4O2 174.1117 174.1117 0.0 175.1190[M + H]+ Argentine CG, MCG12, MCG20 [27]
15 3.13 C25H28O4 392.2009 392.1988 5.5 393.2082[M + H]+ Glabrol CG, MCG12, MCG20 [28]
16 3.27 C25H24O5 404.1646 404.1624 5.1 405.1719[M + H]+ Puerarol CG, MCG12, MCG20 [29]
17 4.42 C27H38O6 458.2716 458.2668 10.0 481.2609[M + Na]+

; 436.2642[M − COOH]+ Lucideric acid CG, MCG12, MCG20 a

18 4.64 C36H58O8 618.4107 618.4132 −4.0 619.4180[M + H]+; 421.3446[M − Glc − OH]+ β-D-Glcopyranosyl
oleanolate CG, MCG12, MCG20 [30]

19 4.89 C48H82O19 962.5484 962.5450 3.3
985.5312[M + Na]+; 765.4795[M − Glc − OH]+;
541.2637[M − Glc − OH − C15H28O]+; 421.3463[M
− Glc − Glc/Rha − 2 × OH]+

Majoroside F6 CG, MCG12, MCG20 [31]

20 5.21 C31H46O8 546.3248 546.3193 9.7 569.3140[M + Na]+; 133.0859[M − C25H33O5]+ Methyl
ganoderate G CG, MCG12, MCG20 a
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Table 2. Cont.

No. tR (min) Formula Calculated
Mass (Da)

Theoretical
Mass (Da)

Mass Error
(ppm) MSE Fragmentation Identification Sources Ref.

21 5.53 C35H48O9 612.3344 612.3298 7.4 613.3416[M + H]+
; 582.3264[M − OCH3]+

;
526.2986[M − C4H7O2]+

Cinobufagin
3-hemisuberate

methyl ester
CG, MCG12, MCG20 a

22 5.56 C45H74O17 886.4877 886.4926 −5.4

909.4769[M + Na]+; 745.4383[M − CH2OH −
C6H10O2]+; 729.4136[M − OH − C8H14O2]+;
601.2768[M − 2 × OH − C16H26O4]+; 431.1870[M −
Glc − C19H27O2]+

Shatavarin IV CG, MCG12, MCG20 [32]

23 5.64 C25H32O13 540.1800 540.1843 3.0
541.1873[M + H]+; 347.0906[M − CH3O − C2H4 −
C8H9O2]+; 195.1008[M − Glc − C2H4O2 −
C6H5O2]+

Oleuropein CG, MCG12, MCG20 [33]

24 5.65 C14H16O4 248.1025 248.1049 −9.7 271.0917[M + Na]+; 195.1008[M − C2H4 − COH]+;
189.1348[M − OH − COOH]+

Isohistiopterosin
A CG, MCG12, MCG20 a

25 5.79 C45H74O17 886.4881 886.4926 −5.0

909.4773[M + Na]+; 707.4360[M − Glc]+; 689.4262[M
− Glc − OH]+; 657.3636[M − Glc − OH − 2 ×
CH3]+; 609.3646[M − Glc − C6H10O2]+; 523.3626[M
− Glc/Glc − C3H6]+

Malonylginsenoside
Rf CG, MCG12, ## MCG20 [34]

26 6.21 C42H70O14 798.4778 798.4766 1.6 799.4851[M + H]+; 439.3563[M − Glc/Rha − 2 ×
OH]+; 421.3441[M − Glc/Rha − 3 × OH − H2O]+ Ginsenoside Rg8 CG, MCG12, MCG20 [34]

27 6.23 C22H32O13 504.1840 504.1843 −0.6 503.1767[M − H]−; 457.1715[M − OH − CH2OH]−;
293.0878[M − C2H4O − CH2OH − C8H9O2]− Cistanoside H CG, MCG12, MCG20 [35]

28 6.24 C23H28O11 480.1594 480.1632 −7.7 481.1667[M + H]+; 317.0803[M − C10H12O2]+ Peoniflorin CG, MCG12, MCG20 a
29 6.28 C24H30O12 510.1702 510.1737 −6.9 511.1775[M + H]+; 317.0803[M − C11H14O3]+ Mudanpioside D CG, MCG12, MCG20 [36]

30 6.39 C54H92O24 1124.5943 1124.5978 −3.1 1147.5835[M + Na]+; 585.2870[M − C25H47O12]+;
325.1130[M − C42H71O14]+ Ginsenoside V CG, MCG12, MCG20 [31]

31 6.49 C48H82O19 962.5484 962.5450 3.3

985.5302[M + Na]+; 865.4789[M − C6H9O]+;
823.4787[M − C8H11O2]+; 805.4668[M − C8H13O3]+;
555.2763[M − C12H26O5]+; 423.3602[M − Glc −
Glc/Glc − OH]+; 405.3507[M − Glc − Glc/Glc − 2 ×
OH]+

Ginsenoside Re1
CG, MCG12, ##,*

MCG20
[37]

32 6.59 C23H28O11 480.1587 480.1632 −9.3 481.1660[M + H]+; 317.0810[M − C7H5O − C3H5O]+ Mudanpioside I CG, MCG12, MCG20 [38]

33 6.64 C41H70O14 786.4762 786.4766 −0.4 831.4744[M + HCOO]−; 653.4270[M − H −
C5H8O4]−, 491.3710[M − H − C11H18O9]−

Notoginsenoside
Rw2 CG, MCG12, MCG20 [39]

34 6.67 C47H80O18 932.5335 932.5345 −1.0 977.5317[M + HCOO]−; 785.4693[M − Ara −
CH3]−;653.4282[M − Glc − 2 × OH − C5H9]− Quinquenoside F6 CG, MCG12, MCG20 [37]

35 6.77 C36H60O9 636.4217 636.4237 −3.1 637.4290[M + H]+; 621.42740[M − OH]+; 423.3605[M
− Glc − 2 × OH]+ Ginsenoside Rh8 CG, MCG12, MCG20 [40]

36 6.84 C48H82O19 962.5469 962.5450 1.9 1007.5456[M + HCOO]−; 799.4848[M − Glc]−;
637.4317[M − Glc/Glc]−; 179.0545[Glc − H]−

20-β-D-Glucopyranosyl-ginsenoside
Rf CG, MCG12, MCG20 [41]

37 6.80 C42H70O13 782.4773 782.4816 −5.4
805.4665[M + Na]+; 765.4734[M − OH]+; 677.4220[M
− 2 × OH − C4H7O]+; 661.4265[M − 3 × OH −
C4H7O]+; 439.3562[M − Glc −Man − OH]+

Ginsenoside Rh14 CG, MCG12, MCG20 [40]
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Table 2. Cont.

No. tR (min) Formula Calculated
Mass (Da)

Theoretical
Mass (Da)

Mass Error
(ppm) MSE Fragmentation Identification Sources Ref.

38 6.82 C17H24O8 356.1460 356.1472 −3.1 379.1352[M + Na]+; 145.0495[M − OH − C11H13O3]+ Erigeside II CG, MCG12, MCG20 [42]

39 6.96 C47H80O18 932.5410 932.5345 6.7
977.5392[M + HCOO]−; 799.4825[M − Xyl]−;
769.4724[M − H − Glc]−; 637.4291[M − (Glc/Xyl) ]−;
179.0539 [Glc − H]−

Notoginsenoside
R1

CG, MCG12, MCG20 s

40 6.99 C28H44O12 572.2810 572.2833 −3.9 573.2883[M + H]+; 555.2779[M − OH]+; 531.2860[M
− C2H3O]+ Picrasinoside G CG, MCG12, MCG20 a

41 7.05 C48H82O19 962.5425 962.5450 −2.6 1007.5415[M + HCOO]−; 799.4822[M − Glc]−;
637.4333[M − (Glc/Glc) ]−

Notoginsenoside
N CG, MCG12, MCG20 [43]

42 7.20 C48H82O19 962.5422 962.5450 −2.9 985.5314[M + Na]+; 703.4371[M − Glc − 2 × OH −
CH2OH]−; 439.3565[M − Glc − Glc/Glc − OH]− Ginsenoside Re2

CG, MCG12,
##,**MCG20

[40]

43 7.34 C42H72O14 800.4934 800.4922 1.4 845.4916[M + HCOO]−; 637.4344[M − Glc]−;
475.3798[M − Glc − Glc]−; 179.0553[Glc − H]−; Ginsenoside Rg1 CG, MCG12, MCG20 s

44 7.36 C48H82O18 946.5524 946.5501 2.3
991.5506[M + HCOO]−; 783.4912[M − Glc]−;
637.4344[M − (Glc/Rha)]−; 475.3798[M − Glc −
(Glc/Rha)]−

Ginsenoside Re CG, MCG12, MCG20 s

45 7.74 C45H74O17 886.4925 886.4926 −0.1
885.4853[M − H]−; 781.4740[M −
HOCOCH2COOH]−; 619.4197[M − Glc(Mal)]−;
161.0438[Glc − H2O]−

Malonylginsenoside
Rg1

CG, MCG12, MCG20 [39]

46 7.93 C48H76O19 956.4960 956.4981 −2.2
979.4852[M + Na]+; 799.4161[M − CO2 − CH2OH −
C6H12]+; 641.4008[M − Glc − C4H6O5]+;439.3562[M
− Glc − Glc/Glc(mal)]+; 145.0493[Glc − OH]+

Isomer of
ginsenoside Ro

# CG, MCG12, MCG20 [31]

47 8.04 C51H84O21 1032.5532 1032.5505 2.6
1031.5460[M − H]−; 987.5564[M − CO2]−;
927.5337[M − HOCOCH2COOH]−; 781.4759[M −
Rha(Mal) ]−; 619.4222[M − (Rha(Mal)/Glc]−

Malonylginsenoside
Re CG, MCG12, MCG20 [39]

48 8.08 C48H76O19 956.4950 956.4981 −3.1 979.4842[M + Na]+; 817.4311[M − Glc]+; 439.3571[M
− Glc/Glc − Glc − OH]+

Isomer of
ginsenoside Ro CG, MCG12, MCG20 [44]

49 8.09 C44H74O15 842.5032 842.5028 0.5

841.4959[M − H]−; 799.4861[M − CH2O]+;
781.4741[M − CH2O − OH]+; 637.4316[M −
Xyl(mal)]+; 619.4228[M − Xyl(mal) − OH]+;
475.3798[M − Xyl(mal) − Glc]+; 179.0550[Glc − H]+;
161.0439[Glc − OH]+

Yesanchinoside D CG, MCG12, MCG20 [45]

50 8.10 C45H74O17 886.4931 886.4926 0.6
885.4858[M − H]−; 781.4741[M − H −
HOCOCH2COOH]−; 619.4228[M − H − Glc(Mal) ]−;
161.0439[Glc − H − H2O]−

Isomer of
malonylginsenoside

Rg1

CG, MCG12, MCG20 [39]

51 8.49 C41H70O13 770.4801 770.4816 −1.5 815.4784[M + HCOO]−; 637.4321[M − Xyl]− Notoginsenoside
R2

CG, MCG12, MCG20 [39]

52 8.50 C56H94O24 1150.6124 1150.6135 −1.1
1149.6051[M − H]−; 1119.5951[M − CH2OH − 2 ×
OH]−; 807.4861[M − Glc/Glc − OH]−; 605.4423[M
− Glc/Glc − Glc(mal) ]−; 325.1119[Glc/Glc − OH]−

Quinquenoside
R1

CG, MCG12, ## MCG20 [46]
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Mass (Da)

Theoretical
Mass (Da)
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(ppm) MSE Fragmentation Identification Sources Ref.

53 8.60 C22H30O47 406.1957 406.1992 −8.5 407.2030[M + H]+; 376.1859[M − OCH3]+ Nigakilactone K CG, MCG12, MCG20 [47]
54 8.87 C48H82O19 962.5445 962.5450 −0.5 1007.5427[M + HCOO]−; 797.4706[M − Glc]− Ginsenoside Re3 CG, MCG12, MCG20 [37]

55 8.96 C56H92O25 1164.5929 1164.5928 0.1
1187.5821[M + Na]+; 1147.5803[M − OH]+;
805.4305[M − Ara/Glc − CH2OH − CH3]+;
443.3868[M − Ara/Glc − Glc/Glc(mal)]+

Malonylginsenoside
Rb2

CG, MCG12, ##,*
MCG20

[44]

56 9.41 C59H100O27 1240.6488 1240.6452 2.8
1285.6740[M + HCOO]−; 945.5421[M − (Ara/Xyl)
]−; 913.5184[M − (Glc/Glc)]−; 783.4900[M −
(Ara/Xyl) − Glc]−

Notoginsenoside
R4

CG, MCG12, MCG20 s

57 9.56 C42H72O14 800.4921 800.4922 −0.1
845.4903[M + HCOO]−; 637.4319[M − Glc]−;
475.3786[M − (Glc/Glc)]−; 1,3A2β221.0658;
161.0439[Glc – H − H2O]−;2,5A1β101.0235

Ginsenoside Rf CG, MCG12, MCG20 s

58 9.79 C18H34O5 330.2398 330.2406 −2.3 353.2290[M + Na]+; 213.1459[M + H – COOH –
C5H11]+

12,13,15-Trihydroxy-9-octadecenoic
acid

# CG, MCG12, MCG20 [48]

59 9.87 C41H70O13 770.4809 770.4816 −1.0 815.4791[M + HCOO]−; 475.3783[M − (Glc /Xyl)]−;
161.0437[Glc – H – H2O]− Ginsenoside F5 CG, MCG12, MCG20 s

60 9.89 C60H102O28 1270.6635 1270.6558 5.9 1315.6617[M + HCOO]−; 841.4991[M − Glc/Glc –
OH – C4H4]−; 769.4777[M − Glc/Glc/Glc – CH3]− Ginsenoside Ra0 CG, MCG12, MCG20 [49]

61 9.94 C58H98O26 1210.6358 1210.6346 1.0
1255.6340[M + HCOO]−; 1077.5833[M – Xyl]−;
1047.5719[M – Glc]−; 955.4871[M – Glc – OH –
C4H7]−; 783.4892[M – Glc/Xyl/Rha]−

Ginsenoside Ra2 CG, MCG12, MCG20 [50]

62 10.00 C22H22O10 446.1192 446.1213 −4.5

469.1084[M + Na]+; 429.1154[M – OH]+; 385.0884[M
– OH – CH3 – CH2OH]+; 341.0661[M – C4H8O3]+;
237.0746[M – C10H13O5]+; 193.0483[M –
C12H16O6]+

Glycitin CG, MCG12, MCG20 a

63 10.01 C59H100O27 1240.6462 1240.6452 0.8
1285.6444[M + HCOO]−; 1107.5964[M-Xyl]−;
945.5424[M – (Glc/Xyl)]−; 783.4912[M – Xyl –
GlcGlc]−

Notoginsenoside
Fa CG, MCG12, MCG20 [50]

64 10.05 C54H92O23 1108.6101 1108.6029 6.2

1153.6083[M + HCOO]−; 945.5437[M – Glc]−;
783.4888[M – (Glc/Glc)]−; 621.4382[M – (Glc/Glc) –
Glc]−; 459.3835[M – (Glc/Glc) – (Glc/Glc)]−;
2,5A1β101.0235

Ginsenoside Rb1 CG, MCG12, MCG20 s

65 10.10 C42H70O12 766.4863 766.4867 −0.5 767.4936[M + H]+; 443.3866[M – Rha – Glc]+;
425.3762[M – Rha – Glc – OH]+ Ginsenoside Rg4 CG, MCG12, MCG20 [34]

66 10.20 C57H94O26 1194.6087 1194.6033 4.5 1193.6015[M – H]−; 1149.6098[M – CO2]−;
783.4908[M – Glc/Glc)]−; 179.0545[Glc – H]−

Isomer of
malonylginsenoside

Rb1

CG, MCG12, ##,**
MCG20

[39]

67 10.22 C42H72O13 784.4997 784.4973 2.9 829.4979[M + HCOO]−; 637.4336[M − Rha]−;
475.3809[M – (Glc/Rha)]−; 161.0449 [Rha – H]−

20(R)-Ginsenoside
Rg2

CG, MCG12, MCG20 s

68 10.25 C36H62O9 638.4407 638.4394 2.9 683.4389[M + HCOO]−; 161.0449[Glc − H −
H2O]− Ginsenoside Rh1 CG, MCG12, MCG20 s
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(ppm) MSE Fragmentation Identification Sources Ref.

69 10.27 C41H70O13 770.4779 770.4816 −4.7 793.4672[M + Na]+; 587.4276[M − Ara(p) − 2 ×
OH]+; 423.3589[M − Ara(p)/Glc − 2 × OH]+ Ginsenoside F3 CG, ∆∆ MCG12, MCG20 [34]

70 10.29 C36H60O8 620.4292 620.4288 0.7 621.4365[M + H]+; 390.2277[M − C17H26]+;
187.1473[M − OH − Glc − C16H24O]+ Ginsenoside Rh4 CG, MCG12, MCG20 [40]

71 10.32 C53H90O22 1078.5939 1078.5924 1.3
1101.5805[M + Na]+; 939.5312[M − Glc]+;
929.5452[M − Ara(f)]+; 789.4784[M − Ara(f) −
Glc]+

Ginsenoside Rc CG, MCG12, MCG20 s

72 10.34 C58H98O26 1210.6356 1210.6346 0.7
1255.6338[M + HCOO]−; 1077.5851[M − Xly]−;
1047.5702[M − Glc]−; 945.5396[M − (Xly/
Ara(p))]−; 621.4323[M − (Xly/ Ara(p)/Glc − Glc]−

Ginsenoside Ra1 CG, MCG12, MCG20 [50]

73 10.38 C42H70O12 766.4872 766.4867 0.6
767.4945[M + H]+;605.4423[M − Glc]+;443.3870[M
− Glc/Xyl]+;407.3660[M − Glc − 2 × OH]+;
163.0591[Glc− OH]+;145.04901[Glc− OH−H2O]+

Ginsenoside Rg5 CG, MCG12, MCG20 s

74 10.47 C56H92O25 1164.5947 1164.5928 1.6 1163.5874[M − H]−; 1119.5961[M − CO2]−;
927.5320[M − Ara(f) − HOCOCH2COOH]−

Malonylginsenoside
Rc CG, MCG12, MCG20 [44]

75 10.51 C48H76O19 956.5001 956.4981 2.1 955.4928[M − H]−; 793.4399[M − Glc]−;
613.3739[M − Glc − Glc − OH]− Ginsenoside Ro # CG, MCG12, MCG20 s

76 10.57 C57H94O26 1194.6059 1194.6033 2.2
1193.5986[M − H]−; 1149.6062[M − CO2]−;
1089.5851[M − HOCOCH2COOH]−; 945.5428[M −
Glc(Mal)]−; 783.4926[M − (Glc/Glc)]−

Malonylginsenoside
Rb1

CG, MCG12, MCG20 [39]

77 10.63 C53H90O22 1078.5979 1078.5924 4.9 1123.5961[M + HCOO]−; 945.5448[M − Ara(p)]−;
783.4896[M − (Ara/Glc)]−; 149.0443[Ara(p) − H]−

Ginsenoside
Rb2/Rb3

CG, MCG12, MCG20 s

78 10.77 C56H92O25 1164.5986 1164.5928 5.0 1163.5913[M − H]−; 1101.5822[M − CO2]−;
765.4782[M − H − Glc(Mal) − Ara(p) − OH]−

Malonylginsenoside
Rb2

CG, MCG12, MCG20 [44]

79 11.06 C36H62O9 638.4391 638.4394 −0.4 683.4373[M + HCOO]− 20(R)-Ginsenoside
Rh1

CG, MCG12, MCG20 s

80 11.14 C36H62O9 638.4399 638.4394 0.7 661.4291[M + Na]+; 376.2462[M − C17H24O2]+ Ginsenoside F1 CG, MCG12, MCG20 s

81 11.15 C56H92O25 1164.5971 1164.5928 3.7 1163.5898[M − H]−; 1119.6000[M − CO2]−;
1059.5772[M − H − C3H4O4]−;

Malonylginsenoside
Rb3

CG, MCG12, MCG20 [39]

82 11.27 C48H82O18 946.5482 946.5501 −1.9 991.5464[M + HCOO]−; 783.4878[M − Glc]−;
621.4350[M − (Glc/Glc)]−; 161.0435[Glc − H]− Ginsenoside Rd CG, MCG12, MCG20 s

83 11.31 C55H92O23 1120.6049 1120.6029 1.7 1143.5941[M + Na]+; 831.4874[M − Glc(mal)]− Ginsenoside Rs1
CG, MCG12, ##,*

MCG20
s

84 11.36 C42H70O12 766.4875 766.4867 1.0

767.4947[M + H]+; 605.4423[M − Rha]+; 587.4300[M
− Rha − OH]+; 569.4211[M − Rha − 2 × OH]+;
443.3866[M − Rha/Glc]+; 425.3769[M − Rha/Glc
− OH]+; 145.0491[Rha − H − H2O]+

Ginsenoside Rg6 CG, MCG12, MCG20 [44]

85 11.42 C51H84O21 1032.5515 1032.5505 0.9 1131.5442[M − H]−; 765.4785[M − Glc(mal) −
OH]−; 621.4372[M − (Glc/Glc(mal)]−

Malonylginsenoside
Rd CG, MCG12, MCG20 [45]

86 11.53 C55H92O23 1120.6065 1120.6029 3.0 1165.6047[M + HCOO]−; 1077.5851[M − Ac]−;
1059.5745[M − Ac − OH]− Ginsenoside Rs2 CG, MCG12, MCG20 s
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87 11.69 C42H70O13 782.4738 782.4816 −9.7 805.4631[M + Na]+; 621.4354[M − Glc]+;
311.0902[Glc/Glc − CH2OH]+ Ginsenoside Rg10 CG, MCG12, MCG20 a

88 11.79 C48H82O18 946.5494 946.5501 −0.7 991.5476[M + HCOO]−; 927.5308[M − OH]−;
783.4926[M − Glc]−; 621.4412[M − (Glc/Glc) ]− Gypenoside XVII CG, MCG12, MCG20 s

89 11.81 C51H84O21 1032.5504 1032.5505 −0.1
1031.5431[M − H]−; 987.5535[M − CO2]−;
621.4412[M − (Glc/Glc(mal))]−; 179.0546[Glc −
H]−

Isomer of
malonylginsenoside

Rd
CG, MCG12, MCG20 [49]

90 11.88 C48H82O18 946.5476 946.55021 −2.6

969.5368[M + Na]+; 605.4394[M − Glc/Glc]+;
587.4312[M − Glc/Glc − OH]+; 425.3744[M −
Glc/Glc − Glc]+; 407.3661[M − Glc/Glc − OH −
Glc]+

Chikusetsusaponin
FK1

CG, MCG12, MCG20 [40]

91 12.18 C47H80O17 916.5398 916.5396 0.2 961.5380[M + HCOO]−; 783.4870[M − Xyl]−;
621.4388[M − (Xyl/glc)]−

Notoginsenoside
Fe CG, MCG12, MCG20 s

92 12.39 C50H84O19 988.5565 988.5607 −4.1 1011.5458[M + Na]+; 831.4819[M − Glc]+;
425.3763[M − Glc/Glc(ace) − Glc]+ Quinquenoside III CG, MCG12, MCG20 [51]

93 12.45 C47H80O17 916.5376 916.5396 −2.1 939.5268[M + Na]+; 789.4754[M − 2 × OH −
CH6O3]+

Vinaginsenoside
R16

CG, MCG12, MCG20 [40]

94 12.59 C47H80O17 916.5361 916.5396 −3.7 939.5253[M + Na]+; 407.3672[M − Glc − (Glc/Xyl)
− OH]+ Gypenoside IX CG, MCG12, MCG20 [52]

95 12.91 C50H84O19 988.5569 988.5607 −3.8 1011.5461[M + Na]+; 789.4784[M − Glc − 2 × OH]+ Quinquenoside III
isomer CG, MCG12, MCG20 [51]

96 13.29 C52H86O19 1014.5753 1014.5763 −1.0 1037.5645[M + Na]+; 857.5032[M − C4H8O4 − 2 ×
OH]+; 393.1376[Glc/Glc(ace) − OH]+ Quinquenoside I CG, MCG12, MCG20 [53]

97 13.34 C42H72O13 784.4984 784.4973 1.4 829.4966[M + HCOO]−; 621.4373[M − Glc]−;
161.0437[Glc − H − H2O]− Ginsenoside F2 CG, MCG12, MCG20 s

98 13.55 C42H72O13 784.4977 784.4973 0.5
807.4869[M + Na]+; 605.4402[M − Glc]+;
587.4286[M − Glc − OH]+; 425.3765[M − Glc/Glc
− OH]+; 407.3659[M − Glc/Glc − 2 × OH]+

20(R)-Ginsenoside
Rg3

CG, MCG12, MCG20 s

99 13.57 C17H24O2 260.1774 260.1776 −0.8 261.1847[M + H]+ Panaxydol
∆∆,## CG, MCG12,

MCG20
[54]

100 13.77 C42H66O14 794.4464 794.4453 1.4 793.4391[M − H]−; 731.4375[M − CO2 − OH]−;
613.3746[M − Glc]−

Chikusetsusaponin
Iva CG, MCG12, MCG20 [51]

101 14.02 C52H86O19 1014.5750 1014.5763 −1.3 1037.5642[M + Na]+; 789.4732[M − Glc −
C2H4O2]+

Isomer of
Quinquenoside I CG, MCG12, MCG20 [51]

102 14.38 C17H26O3 278.1879 278.1882 −1.1 279.1952[M + H]+ Panaxtriol CG, MCG12, MCG20 [55]

103 14.46 C42H72O13 784.4970 784.4973 −0.3 829.4966[M + HCOO]−; 621.4373[M − Glc]−;
407.3672[M − Glc/Glc − 2 × OH]+

20(S)-Ginsenoside
Rg3

CG, MCG12, MCG20 s

104 15.05 C18H34O4 314.2444 314.2457 −3.8 337.2336[M + Na]+ Dibutyl sebacate CG, MCG12, MCG20 a

105 17.90 C16H22O4 278.1516 278.1518 −0.7 301.1408[M + Na]+; 149.0230[M − C4H9 −
C4H9O]+

n-Butyl isobutyl
phthalate CG, MCG12, MCG20 a
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106 17.93 C30H52O4 476.3856 476.3866 −2.2
499.3747[M + Na]+; 441.3728[M − 2 × OH]+;
423.3590[M − 3 × OH]+; 317.2049[M − 2 × CH3 −
C8H15O]+

20(R)-ProtopanaxatriolCG, MCG12, MCG20 [56]

107 17.95 C16H30O2 254.2246 254.2268 8.2 277.2161[M + Na]+ Palmitoleic acid CG, ∆,** MCG12,
MCG20

s

108 18.07 C19H18O3 294.1258 294.1256 0.5 317.1150[M + Na]+ Tashinone IIA CG, MCG12, MCG20 [57]
109 18.08 C30H48O4 472.3546 472.3553 −1.4 495.3438[M + Na]+ β-Amyrone CG, MCG12, MCG20 [58]
110 18.08 C6H6O3 126.0331 126.0317 9.4 149.0223[M + Na]+ Pyrogallol CG, MCG12, MCG20 a

111 18.09 C30H48O4 472.3546 472.3553 −1.8 495.3438[M + Na]+ 24-Hydroxyoleanolic
acid

CG, ∆∆,** MCG12,
MCG20

[59]

112 18.09 C24H38O5 406.2720 406.2719 0.3 429.2613[M + Na]+; 319.1950[M − CH3 − C4H7O]+;
261.2213[M − 2 × C2H4O2 − C2H3]+; Vitetrifolin CG, MCG12, MCG20 a

113 20.14 C31H46O2 450.3535 450.3498 8.0 473.3428[M + Na]+; 430.2889[M − C3H7]+ Vitamin K1 CG, MCG12, MCG20 [60]

114 20.97 C18H30O2 278.2224 278.2252 −7.9 277.2151[M − H]−; 232.2172[M − COOH]− α-Linolenic acid
∆∆,## CG, MCG12,

MCG20
[61]

115 21.18 C21H38O4 354.2758 354.2770 −3.1 377.2650[M + Na]+ β-Monolinolein CG, MCG12, MCG20 [62]

116 22.11 C18H32O 264.2452 264.2453 −0.5

265.2525[M + H]+; 149.1320[M − CH2 − C6H12O]+;
135.1166[M − CH2 − C7H13O]+; 121.1008[M −
CH2 − C8H15O]+; 109.1010[M − C8H15O −
C2H3]+

(Z)-9,17-OctadecadienalCG, MCG12, MCG20 [63]

117 22.49 C18H32O2 280.2386 280.2402 −5.9 279.2313[M − H]−; 234.2325[M − COOH]− Linoleic acid
∆∆,## CG, MCG12,

MCG20
s

118 23.85 C14H20O2 220.1478 220.1463 5.6 265.1460[M + HCOO]− Thymyl
isobutyrate CG, MCG12, MCG20 [64]

119 24.25 C18H34O2 282.2541 282.2559 −6.3 281.2468[M − H]−; 236.2481[M − COOH]− 9-Octadecenoic
acid

∆∆,## CG, MCG12,
MCG20

a

120 24.40 C36H62O8 622.4454 622.4445 1.6 623.4527[M + H]+; 316.2842[M − OH − Glc −
C8H14]+; Compound K CG, MCG12, MCG20 [40]

121 24.89 C40H56O4 600.4219 600.4179 6.7 601.4292[M + H]+; 557.4021[M − C2H4]+ Violaxanthin CG, MCG12, MCG20 [65]
122 25.31 C20H38O2 310.2862 310.2872 −3.2 311.2935[M + H]+; 277.1995[M − C6H13]+ Ethyloleate CG, MCG12, MCG20 a
123 25.35 C40H56O4 600.4212 600.4179 5.6 601.4285[M + H]+; 497.3800[M − OH − C4H8O2]+ Neoxanthine CG, MCG12, MCG20 [65]

124 26.38 C24H38O4 390.2758 390.2770 −2.8
413.2653[M + Na]+; 301.1406[M − 3 × C2H5]+;
189.0153[M − C2H5 − C4H9 − C8H17]+;
167.0327[M − 2 × C2H17]+

Bis(2-ethylhexyl)
phthalate CG, MCG12, MCG20 a

125 28.01 C30H46O5 486.3334 486.3345 −2.2 509.3226[M + Na]+ Quillaic acid CG, MCG12, MCG20 s
126 29.04 C5H8O2 100.0512 100.0524 −10.0 123.0404[M + Na]+ Pentanedial CG, MCG12, MCG20 [66]

s Identified with standard. a Compared with spectral data obtained from Wiley Subscription Services, Inc. (USA). ∆, ∆∆: Represented the content either in CG4–6 years group or in MCG12 years

group was significantly higher than the other one (∆ p < 0.05, ∆∆ p < 0.001) #,##: Represented the content either in CG4–6 years group or in MCG20 years group was significantly higher than
the other one (# p < 0.05, ## p < 0.001) *, **: Represented the content either in MCG12 years group or in MCG20 years group was significantly higher than the other one (* p < 0.05, ** p < 0).
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Figure 2. Chemical structures of compounds identified in MCG and CG.

For the isomers, they could be compared with the retention time of the standards or distinguished
by the characteristic MS fragmentation patterns reported in literature. Taking compounds 82 and 88
as example, both of them had the same protonated ion [M + HCOO]− at m/z 991.5464 and 991.5476.
In a result, one of them was identified as ginsenoside Rd due to the same retention time, and the other
one was tentatively identified as gypenoside XVII because it was matched with the characteristic MS
fragmentation pattern of gypenoside XVII reported in the literature [31].

3.2. Biomarker Discovery for Distinguishing MCG and CG

The MSE data of CG and MCG samples were statistically analyzed via PCA and OPLS-DA. As seen
in PCA 2D plots (Figure 3), there was no obvious difference among of 4–6-year-old CG samples, but the
MCG20 years, MCG12 years and CG4–6 years groups were obviously separated, indicating that these three
groups could be differentiated. With the aim of distinguishing MCG from CG, or MCG20 years from
MCG12 years, OPLS-DA plot, permutation test, and S-plot, VIP values were obtained to understand
which variables were responsible for the separation (Figures 4–6). The variables showing VIP > 1 and
p < 0.05 (in t-test) were considered as potential biomarkers. The robust known biomarkers enabling the
differentiation between CG and MCG were discovered and marked in S-plots. In order to systematically
evaluate the biomarkers, heatmaps (Figure 7) were generated from these biomarkers. The hierarchical
clustering heatmaps, intuitively visualizing the differential levels of potential biomarkers concentration
in different ginseng groups, are shown in Figure 7. The larger contents were represented by red squares
and smaller values by green squares.
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Between the CG4–6 years and MCG12 years groups, the contents of 24-hydroxyoleanolic acid,
ginsenoside F3 and palmitoleic acid in MCG12 samples were significantly higher. While, the contents
of α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol in all the CG samples were
significantly higher.

Between the CG4–6 years and MCG20 years groups, the contents of ginsenoside Re1, -Re2, -Rs1,
malonylginsenoside Rb2, -Rf, isomer of malonylginsenoside-Rb1 and quinquenoside R1 in the samples
of MCG20 years were higher. On the contrary, the contents of ginsenoside Ro and the isomer of
ginsenoside Ro, 12,13,15-trihydroxy-9-octadecenoic acid, linoleic acid, 9-octadecenoic acid, α-linolenic
acid, panaxydol were rather higher in CG samples.

Between the MCG12 years and MCG20 years groups, the contents of palmitoleic acid and
24-hydroxyoleanolic acid in MCG12 years samples were significantly high, while the contents of
ginsenoside Re1, -Rs1, malonylginsenoside Rb2, -Re2 and isomer of malonylginsenoside Rb1 were
rather higher in MCG20 years samples.

Overall, on one hand, the contents of α-linolenic acid, linoleic acid, 9-octadecenoic acid and
panaxydol in CG samples were significantly higher than those in all MCG samples. On the other
hand, ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and isomer of malonylginsenoside Rb1

in MCG20 years samples were really higher than those both in MCG12 years and in all of CG samples,
but there is no significant difference between MCG12 years and CG4–6 years samples. The summary with
variable identity, VIP and p value were shown in Table 3.
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Table 3. The summary table with variable identity, VIP and p value.

Groups for Comparison Marker’ Name VIP Value p Value

CG4–6 years vs.
MCG12 years

CG4–6 years

α-linolenic acid 1.23 <0.001
9-octadecenoic acid 2.17 <0.001

linoleic acid 2.57 <0.001
panaxydol 1.49 <0.001

MCG12 years

24-hydroxyoleanolic acid 4.13 <0.001
ginsenoside F3 2.15 <0.001
palmitoleic acid 1.54 0.037

CG4–6 years vs.
MCG20 years

MCG20 years

ginsenoside Re1 1.60 <0.001
ginsenoside Re2 1.75 <0.001
ginsenoside Rs1 1.59 <0.001

malonylginsenoside Rb2 4.10 <0.001
ginsenoside Rf 1.83 <0.001

isomer of malonylginsenoside Rb1 2.30 <0.001
quinquenoside R1 1.21 <0.001

CG4-6 years

ginsenoside Ro 1.39 0.017
isomer of ginsenoside Ro 2.31 0.022

12,13,15-trihydroxy-9-octadecenoic acid 1.25 0.003
linoleic acid 7.08 <0.001

9-octadecenoic acid 3.45 <0.001
α-linolenic acid 1.86 <0.001

panaxydol 1.12 <0.001

MCG12 years vs.
MCG20 years

MCG12 years
palmitoleic acid 2.07 <0.001

24-hydroxyoleanolic acid 3.26 <0.001

MCG20 years

ginsenoside Re1 1.16 0.002
ginsenoside Rs1 1.89 0.024

malonylginsenoside Rb2 2.76 0.026
ginsenoside Re2 1.60 <0.001

isomer of malonylginsenoside-Rb1 3.87 <0.001

4. Discussion

Although MCG and CG both belong to Panax ginseng, their chemical ingredients and
pharmacological activities are different due to their significantly different growth environment [3,67].
As we all know, MCG has been regarded as a replacement of wild ginseng. Recently, the UPLC-
QTOF-MS/MS-based approach has been developed to distinguish MCG (grown for 15 years) and CG
(grown for 4–7 years) [6]. As a result, 40 ginsenosides in both MCG and CG were unambiguously
identified and tentatively assigned, and the potential chemical markers identifying different ginseng
products were characterised [6]. Additionally, the study on 6–18-year-old Mountain Cultivated Ginseng
Leaves (MGL) samples showed that the MGL were obviously divided into three main groups according
to different age brackets (6~10, 11~13 and 14~18 years) [7]. Although the sample of the study was
the leaf of MCG, it could be indirectly speculated that the MCG roots with different cultivation ages
are also different. In order to further systematically compare the similarities and differences at the
chemical level between different ages of ginseng, especially to compare the younger or the older MCG,
4, 5, 6-year-old CG and 12, 20-year-old MCG were chosen as the analytical samples in the present study.

Firstly, based on UNIFI platform, intelligent and automatic workflows, the screening analysis
of metabolites in different cultivation ages of ginseng were rapidly performed. As a result, a total of
126 compounds were characterized from CG4–6 years, MCG12 years and MCG20 years samples. Among
of them, ginsenosides were the main ingredients. Both CG and MCG had the similar chemical
composition, but the components were variously distributed in CG and MCG samples at different
contents. That means in CG and MCG, the secondary metabolites had the features of structural diversity
and the different content patterns. As far as we know, this is the first time that the comprehensive
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screening analysis of MCG12 years and MCG20 years samples by using UPLC-QTOF-MSE combined with
UNIFI platform. It could provide the scientific data for clarifying the chemical composition of MCG.

Secondly, the combination of LC-MS based metabolomic profiling with multivariate statistical
analysis method was used to profile the CG, MCG12 years and MCG20 years samples. A total of 17
potential age-dependent markers enabling differentiation among the CG and MCG samples were
discovered. (1) There were four robust markers including α-linolenic acid, 9-octadecenoic acid, linoleic
acid and panaxydol being the characteristic components for CG samples, that distinguished them
from both MCG12 years and MCG20 years samples. The results showed that CG samples contained more
non-ginsenosides. Both linoleic acid and α-linolenic acid, the main products of the acetate-malonate
pathway, are two essential fatty acids necessary for health. Linoleic acid is used in the biosynthesis of
arachidonic acid and thus some prostaglandins, leukotrienes, and thromboxane [68,69]. Panaxydol, one
of the C17 polyacetylenic compounds, originates from acetyl-CoA/malonyl-CoA via fatty acids with
crepenynate as the intermediate [70]. It is considered a potential antitumor agent due to its significant
anticancer activity [71]. (2) In CG samples, there were three other characteristic components such as
ginsenoside Ro, the isomer of ginsenoside Ro, and 12,13,15-trihydroxy-9-octadecenoic acid, that could
be used to differentiate them from MCG20 years samples. From this, we could draw a conclusion that
pentacyclic triterpenoids decreased significantly in older MCG samples. (3) Five robust biomarkers
including ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and isomer of malonylginsenoside
Rb1 were found to enable differentiation of MCG20 years from CG and MCG12 years samples. These five
compounds might be used for rapid identification of MCG20 years samples. A proposed biosynthetic
pathway of ginsenosides is as follows: with the action of squalene epoxidase, squalene was converted
to 2,3-oxidosqualene. Dammaranes can be synthesized by dammarenediol synthase, and oleananes
by β-amyrin synthase [72]. Ginsenosides were found to have both antimicrobial and antifungal
properties and the molecules are naturally bitter-tasting, discouraging insects and other animals from
consuming the plant, so ginsenosides likely serve as mechanisms for plant defense [73,74]. (4) In
MCG20 years samples, another two markers, ginsenoside Rf and quinquenoside R1, were discovered
that distinguished them from all CG samples. (5) In MCG12 years samples, 24-hydroxyoleanolic acid and
palmitoleic acid were the two robust markers for distinguished from both CG and MCG20 years samples.
These two compounds might be used for rapid identification of MCG12 years samples. Palmitoleic
acid is biosynthesized from palmitic acid by the action of the enzyme stearoyl-CoA desaturase-1,
a key enzyme in fatty acid metabolism [75]. (6) Ginsenoside F3 was another marker for MCG12 years

samples that differentiated them from CG samples. However, there are still some unresolved issues.
For example, as shown in BPI chromatograms, though 126 compounds were identified, there are still
some unidentified components. there are still some unidentified components. Further research should
be carried out based on the formula of these unknown compounds.

5. Conclusions

By combining the UPLC-Q/TOF-MSE and UNIFI platform, 126 chemical components with various
structural types, such as triterpenoids, flavonoids, organic acids and organic acid esters, etc., were
characterized or tentatively identified from CG4–6 years, MCG12 years and MCG20 years samples for the
first time. All the CG and MCG samples had the similar chemical composition, but there were
significant differences in the content of each component. Further nontarget metabolomic analysis
combined with multivariate statistical analysis showed that CG4–6 years, MCG12 years and MCG20 years

samples were obviously divided into three different groups. A total of 17 potential age-dependent
markers enabling differentiation among the CG and MCG samples were discovered. Among of
these markers, four robust markers, including α-linolenic acid, 9-octadecenoic acid, linoleic acid and
panaxydol, could be the characteristic components for differentiation of CG from all other MCG
samples. Five robust markers including ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and
isomer of malonylginsenoside Rb1 were found to enable differentiate MCG20 years samples from all
other samples, while 24-hydroxyoleanolic acid and palmitoleic acid were the robust markers for
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distinguishing MCG12 years samples from all the CG samples and MCG20 years samples. The proposed
approach could be applied to directly distinguish MCG root ages, which is an important criterion for
evaluating the quality of MCG. The results will provide the data for the deficient study on the chemical
constituents of MCG and provide reference for the quantitative determination in the quality control
criterion of MCG.
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