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Objectives: In contrast to coronary heart disease (CHD), genetic variants that influence
susceptibility to peripheral arterial disease (PAD) remain largely unknown.

Background: We performed a two-stage genomic association study leveraging an
electronic medical record (EMR) linked-biorepository to identify genetic variants that
mediate susceptibility to PAD.

Methods: PAD was defined as a resting/post-exercise ankle-brachial index (ABI) ≤0.9
or ≥1.4 and/or history of lower extremity revascularization. Controls were patients without
history of PAD. In Stage I we performed a genome-wide association analysis adjusting for
age and sex, of 537, 872 SNPs in 1641 PAD cases (66 ± 11 years, 64% men) and 1604
control subjects (61 ± 7 year, 60% men) of European ancestry. In Stage II we genotyped
the top 48 SNPs that were associated with PAD in Stage I, in a replication cohort of 740
PAD cases (70 ± 11 year, 63% men) and 1051 controls (70 ± 12 year, 61% men).

Results: The SNP rs653178 in the ATXN2-SH2B3 locus was significantly associated
with PAD in the discovery cohort (OR = 1.23; P = 5.59 × 10−5), in the replication cohort
(OR = 1.22; 8.9 × 10−4) and in the combined cohort (OR = 1.22; P = 6.46 × 10−7). In
the combined cohort this SNP remained associated with PAD after additional adjustment
for cardiovascular risk factors including smoking (OR = 1.22; P = 2.15 × 10−6) and
after excluding patients with ABI > 1.4 (OR = 1.24; P = 3.98 × 10−7). The SNP is in
near-complete linkage disequilibrium (LD) (r2 = 0.99) with a missense SNP (rs3184504)
in SH2B3, a gene encoding an adapter protein that plays a key role in immune and
inflammatory response pathways and vascular homeostasis. The SNP has pleiotropic
effects and has been previously associated with multiple phenotypes including myocardial
infarction.

Conclusions: Our findings suggest that the ATXN2-SH2B3 locus influences susceptibility
to PAD.

Keywords: genome-wide association study, peripheral arterial disease, ankle-brachial index, electronic medical

records, biorepository

INTRODUCTION
Peripheral arterial disease (PAD) affects nearly 10 million people
in the US and more than 200 million people worldwide (Hirsch
et al., 2001; Fowkes et al., 2013). PAD is associated with signifi-
cant mortality and morbidity, underscoring the need to discover
genetic variants that mediate susceptibility to this disease (Leeper
et al., 2012). In contrast to coronary heart disease (CHD), genetic
variants that influence susceptibility to PAD remain unknown.
A genome-wide association study (GWAS) of smoking quantity
revealed a variant in CHRNA3 that was associated with PAD and
lung cancer (Thorgeirsson et al., 2008).

Repositories of DNA from patients seen in the clinical setting
and linked to the electronic medical record (EMR) systems can be

leveraged to conduct genotyping or sequencing studies to iden-
tify genetic variants associated with human diseases and related
quantitative traits. Extensive clinical data residing in the EMR can
be leveraged for high-throughput phenotyping of medically rele-
vant traits (Kullo et al., 2010). Such an approach may reduce the
time, effort, and cost involved in conducting genomic studies to
identify disease susceptibility loci.

The Electronic Medical Records and Genomics (eMERGE)
consortium (McCarty et al., 2011) was created to develop and
implement approaches for leveraging biorepositories linked to the
EMR for large-scale genomic research, including but not limited
to GWAS, sequencing, and structural variation (Kho et al., 2011).
We undertook a GWAS of PAD cases and controls identified
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from the EMR using a two-stage study design. In Stage I we per-
formed a GWAS of 1641 PAD cases and 1604 controls, and in
Stage II we attempted replication of the top significant SNPs in
an independent sample of 740 PAD cases and 1051 controls.

MATERIALS AND METHODS
STUDY PARTICIPANTS
All participants gave written informed consent for participation
in the study and the use of their data for future research. The
Institutional Review Board of the Mayo Clinic approved the study
protocol.

ASCERTAINMENT OF PAD CASES AND CONTROLS
The PAD patients were recruited from the non-invasive vascu-
lar laboratory at the Mayo Clinic Rochester, MN, based on the
following criteria: (1) an ankle brachial index (ABI) of ≤0.9 at
rest or 1 min after exercise, along with an abnormal continuous
wave Doppler signal in one of the lower extremity arteries; (2) his-
tory of lower extremity revascularization if the ABI was normal;
and (3) ABI ≥ 1.4 or ankle systolic BP > 250 mm Hg, repre-
senting poorly compressible arteries. Exclusion criteria included
PAD secondary to vasculitis, radiation to the abdomen or lower
extremities, trauma to a lower extremity artery, thrombophilia,
and arterial thrombosis. Controls were identified from patients
referred to the Cardiovascular Health Clinic for exercise ECG to
screen for cardiovascular disease. We excluded patients who had a
positive exercise ECG, were younger than age 50, or had an abnor-
mal ABI or history of PAD. A proportion (60%) of the subjects
who underwent exercise ECG also underwent measurement of
ABI. The prevalence of an abnormal ABI in patients who had a
negative stress ECG was <1%.

Patient-level data elements in the Mayo EMR included demo-
graphics, outpatient visits and hospitalizations, providers, diag-
nosis and procedure codes, and results of non-invasive lower
extremity arterial evaluation. Birth date, race, sex, and eth-
nicity were obtained from the demographic database; the cat-
egories for race were “White,” “Black or African American,”
“Hispanic,” “Asian/Pacific Islander,” “American Indian/Alaskan
Native,” “Others,” and “Unknown.”

STAGE-I: HIGH-DENSITY GENOTYPING OF DISCOVERY COHORT
Genotyping was performed using the Illumina 660W-Quad
BeadChip at the Center for Genotyping and Analysis at the Broad
Institute, Cambridge, MA. This platform consists of 561,490 SNPs
and 95,876 intensity-only probes. In addition to 3347 patient
DNA samples, 58 blind duplicates, and 37 Coriell controls were
genotyped. The Coriell controls include 1 trio (3 unique samples)
that was duplicated on each plate. Genotyping calls were made
using BeadStudio version 3.3.7 (2010).

Analysis tools used for quality control (QC) procedures
included Illumina BeadStudio (2010), PLINK (Purcell et al.,
2007), R (The R Development Core Team, 2007), STRUCTURE
(Pritchard et al., 2000), and Eigenstrat in the Eigensoft package
(Price et al., 2006). Data were cleaned using the QC pipeline
developed by the eMERGE Genomics Working Group (Turner
et al., 2011). This process includes evaluation of sample and
marker call rate, gender mismatch and anomalies, duplicate and

HapMap concordance, batch effects, Hardy-Weinberg equilib-
rium, sample relatedness, and population stratification. The data
from all the patients, in addition to the HapMap II popula-
tions, were evaluated for population structure/substructure using
Eigenstrat (Price et al., 2006). Of the 3347 unique samples, 3336
passed genotyping QC (see Supplementary Data and Figures
S1–S3).

STAGE-II: GENOTYPING OF LEAD SNPs IN THE REPLICATION COHORT
The replication cohort consisted of 744 (470 males and 274
females) patients who had PAD based on the criteria listed above
and 1053 (645 males and 408 females) controls with no prior his-
tory of PAD. The top 48 SNPs associated with PAD in the discov-
ery cohort were genotyped using an Illumina custom genotyping
panel with primers and probes from Assay-by-Design (Applied
Biosystems, Foster City, CA). Custom capture and genotyping
was performed at Mayo Clinic’s Genotyping Core lab/Genotyping
Shared Resource Lab.

Standard QC procedures were applied including evaluation of
sample and marker call rate, HapMap concordance, and Hardy-
Weinberg in controls only. We excluded six patients with low
call rates (<95%). Of the 48 SNPs selected for replication, one
(rs7900716) had a low call rate. All the 47 remaining SNPs had call
rates >99% and Hardy-Weinberg P-value > 0.05 in the controls.

STATISTICAL ANALYSES
Statistical analyses were conducted using SAS v. 9.3 {SAS Institute
Inc., Cary, NC} and PLINK v1.07 (Purcell et al., 2007), and
plots were created using R v2.11.0 (The R Development Core
Team). Descriptive analyses were performed for the covariates
and outcome variables using t-tests for continuous variables and
chi-square tests for discrete variables. To adjust for population
stratification, we used principal components to identify outliers
in the study cohort (Price et al., 2006). Quantile-quantile (QQ)
plots of observed –log10 P-values for PAD association versus
the expected –log10 P-values under the null hypothesis of no
association were generated to display the potential significant
associations and to calculate the genomic inflation factor λ and
to check for over dispersion of the test statistics. For each locus,
we determined the set of HapMap SNPs in linkage disequilibrium
(LD) (r2 > 0.5) with the most significantly associated SNP. We
then bounded the associated interval by the flanking HapMap
recombination hotspots. These windows are likely to contain
the causal variants explaining the associations. We used logistic
regression analyses that adjusted for age and sex to identify the
SNPs associated with PAD case/control status in the discovery,
replication, and combined sets. All analyses were forced to test
the same allele as the original sample. We performed sensitivity
analyses by including additional adjustment variables for smok-
ing, CHD, statin use, diastolic and systolic blood pressure, and
diabetes. Since the additional adjustment variables did not have
a qualitative impact on the final inferences, the results are not
shown.

FUNCTIONAL ANNOTATION OF THE LEAD SNP
Data for the SNP rs3184504 (c.784T>C), which is in nearly com-
plete LD with the most significant SNP, were obtained from the
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Exome Variant Server. The impact of the variant was assessed
using SIFT (Ng and Henikoff, 2003), PoplyPhen2 (Adzhubei
et al., 2010), and conservation based measures such as PhastCons
(Siepel et al., 2005), GRANTHAM (Grantham, 1974), and GERP
(Cooper et al., 2005) scores. We performed Gene Ontology (GO)
term enrichment analysis of SH2B3 using first-degree interacting
partners that were obtained from the protein-protein interac-
tion database “STRING” (http://www.string-db.org). To under-
stand the impact of SNP rs3184504 on protein structure, we
performed a molecular dynamics simulation using GROMACS
v4.5.7 (http://www.gromacs.org/) of the pleckstrin homolog
(PH) domain of the SH2B3 protein where the SNP is localized.

RESULTS
DISCOVERY
After exclusions based on QC, including removal of related
individuals and those of non-European Ancestry, a total of
3245 individuals—1641 PAD subjects and 1604 controls—were
included in the analyses. No evidence of population stratification
was found and therefore correction for population stratifica-
tion was not needed in the analyses. Since the estimate of λ

was 1.0, the test statistics showed no significant over dispersion.
The study population demographic and clinical characteristics by
case-control status are presented in Table 1. Among PAD cases,
64.3% were men, while among the controls, 60.3% were men. The
mean age of the PAD patients was higher than the mean age of the
control patients (65.7 years vs. 60.8 years) (Table 1). Assuming an
additive genetic model and adjusting for age and sex, 60 SNPs
were associated with PAD at P < 1 × 10−4. Figure 1 presents
a Manhattan plot of the P-values. Of these 60 SNPs, 48 were
selected for replication based on Illumina designability score, LD,
and minor allele frequency (MAF) in controls (see Supplementary
Data for details).

REPLICATION
Characteristics of participants in the discovery and replication
cohorts are presented in Table 1. The allele C of the intronic

SNP rs653178 at the ATXN2-SH2B3 locus on chromosome 12
was present more frequently in PAD cases (52%) than in con-
trols (47%) with a resulting odds ratio (OR) of 1.23 (95% CI,
1.11–1.36, P = 5.59 × 10−5) in the discovery cohort (Table 2).
In the replication cohort, the OR was 1.25 (95% CI, 1.10–
1.40, P = 8.94 × 10−4) and in the combined sample, the
OR was 1.22 (95% CI, 1.13–1.32, P = 6.46 × 10−7) (Table 2).
The lead SNP rs653178 is in strong LD (r2 = 0.99) with a
missense SNP (rs3184504) in SH2B3, an adapter protein that
plays a key role in immune and inflammatory response path-
ways and vascular homeostasis (Devalliere and Charreau, 2011;
Devalliere et al., 2012). A locus specific visualization of lead vari-
ants associated with PAD is provided in the Supplementary Data
(Figure S4).

Two additional SNPs rs11726269 (intronic region of MAPK10)
and rs131408 (intergenic region between LOC388882 and IGLL1)
were significant at P < 0.05 in the replication cohort with similar
direction of effect. However the P values exceeded the Bonferroni
threshold for testing 48 SNPs (see Supplementary Table S1). The
two most significant SNPs in the discovery cohort, rs7795096
in PRKAG2 on chromosome 7 and rs2587888 in GNAO1 on
chromosome 16, did not replicate.

STRUCTURAL AND FUNCTIONAL IMPLICATIONS OF THE
W262R VARIANT IN THE SH2B3 PROTEIN
Our analyses indicate that SH2B3 encodes a multi-functional pro-
tein involved in diverse molecular pathways. Comparative protein
sequence analyses using wild type and mutant sequences indi-
cated that that rs3184504 leads to substitution of tryptophan with
arginine (W262R) thereby introducing a new cAMP phosphory-
lation site in the PH domain of SH2B3 (see Supplementary Data
and Figure S5). The PH domain in SH2B3 is important for lipid
binding, membrane tethering and protein-protein interactions.
GO terms (Ashburner et al., 2000) that are enriched among pro-
teins interacting with SH2B3 include blood coagulation; wound
healing, and cell signaling events (see Supplementary Data,
Table S2 and Figure S6). Conservation measures like Genomic

Table 1 | Participant characteristics.

Discovery cohort Replication cohort

Cases (n = 1641) Controls (n = 1604) Cases (n = 740) Controls (n = 1051)

Men, n (%) 1055 (64.3) 968 (60.3) 468 (63.2) 643 (61.2)

Age, years 65.7 ± 10.68 60.8 ± 7.41‡ 70.6 ± 11.60 70.2 ± 12.42

European ancestry, n (%) 1547 (94.3) 1512 (94.3) 721 (97.4) 1023 (97.3)

“Ever” smoker, n (%) 1322 (80.5) 963 (60.1) 632 (85.4) 641 (61.0)

ABI (pre-exercise) 0.72 ± 0.25 1.1 ± 0.07‡ 0.79 ± 0.30 1.07 ± 0.16‡

ABI (post-exercise) 0.54 ± 0.25 1.1 ± 0.12‡ 0.56 ± 0.28 1.03 ± 0.19‡

Hypertension, n (%) 1358 (82.8) 843 (52.6)‡ 583 (78.8) 634 (60.3)‡

Type 2 diabetes, n (%) 507 (30.9) 141 (8.8)‡ 225 (30.4) 126 (12.0)‡

Statin use, n (%) 774 (49.2) 398 (24.8)‡ 532 (72.0) 326 (61.1)‡

CHD, n (%) 903 (55) 251 (15.6)‡ 483 (65.3) 235 (22.4)‡

Continuous traits are depicted as mean ± standard deviation and categorical traits as count (percent); ABI, ankle-brachial index; CHD, coronary heart disease.
‡P < 0.001 for differences between PAD cases and controls.
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FIGURE 1 | Manhattan plot for the Stage I discovery cohort showing genome wide P-value distribution and the corresponding Q-Q plot (inset). SNP
rs653178 is circled. A line at p = 1 × 10−4 is included on the Manhattan plot to provide a visual reference for p-values across the chromosomes.

Table 2 | Association of rs653178 with PAD in discovery, replication,

and combined cohorts, after adjustment for age and sex in logistic

regression models.

Cohort PAD Controls Risk allele OR (95% CI) P-value

(n) (n) (frequency*)

Discovery 1641 1604 C (0.469) 1.23 (1.11,1.36) 5.59 ×10−5

Replication 740 1051 C (0.475) 1.25 (1.10,1.40) 8.90 ×10−4

Combined 2381 2655 C (0.469) 1.22 (1.13,1.32) 6.46 ×10−7

CI, confidence interval; OR, odds ratio; PAD, peripheral disease.
*Controls.

Evolutionary Rate Profiling (GERP: 2.97) and phastCons (pos-
terior probability: 0.159) suggest the variant is marginally con-
served. Effect prediction analysis using Variant Effect Predicator
(McLaren et al., 2010) indicate the variant as tolerant (SIFT: score
= 1) benign (PolyPhen-2; score = 0.0), and moderately radi-
cal (GRANTHAM; score = 101). Molecular dynamic simulation
suggested that the mutation in the PH domain of the SH2B3
results in structural perturbations and conformational changes
(see Supplementary Data; Figures S7 and S8).

DISCUSSION
A better understanding of the genetic basis of PAD is required
to improve risk stratification and identify new pathophysiologic
pathways and drug targets. Conventional linkage and association
approaches have failed to identify replicable susceptibility loci
for PAD (Leeper et al., 2012) and the genome-wide association
approach is currently the most promising design to uncover such
loci. Heritable factors contribute to the risk of developing PAD.
In the large population-based Swedish Twin Registry (Wahlgren
and Magnusson, 2011), the odds ratio of having PAD in persons
whose twin had PAD compared with persons whose twin did not
have PAD was 17.7 (95% CI, 11.7–26.6) for monozygotic twins
and 5.7 (95% CI, 4.1–7.9) for dizygotic twins. In a large case con-
trol study we found that family history of PAD was associated with
doubling the odds of the presence of PAD (Khaleghi et al., 2014).
Heritability estimates for ABI have varied from 0.21 (Kullo et al.,
2006; Murabito et al., 2006) to 0.48 (Carmelli et al., 2000). In spite
of evidence supporting the presence of heritable contribution to
PAD, little is known about the genetic determinants of PAD.

In the present study, the SNP most strongly associated with
PAD was an intronic SNP rs653178 in ATXN2 on chromosome
12q24-12q24.1. This SNP is in near-complete LD with a missense
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SNP in SH2B adaptor protein 3 gene (SH2B3) (rs3184504; r2 =
0.99) that is likely the causal SNP. The SNP in SH2B3 results
in a substitution of tryptophan (large size and aromatic side
chain) by arginine (large size and basic side chain) that induces
changes in the structure and hydrophilic properties of the pleck-
strin homology domain. This may result in altered lipid binding
and protein–protein interactions as indicated by our molecular
dynamics analyses. The variant also introduces a new phosphory-
lation site in the pleckstrin homology domain which may influ-
ence signaling pathways mediated by SH2B3. The SNP rs3184504
exhibits significant pleiotropic effects and has been implicated in
immunological disorders, cardiovascular diseases (Gudbjartsson
et al., 2009) and hematologic traits such as platelet count, mean-
platelet volume (Gieger et al., 2011) and eosinophil count (Barrett
et al., 2009). A summary of disease/trait associations of rs3184504
and rs653178 in the ATXN2-SH2B3 locus is provided in the
Supplement (Table S3).

The pleiotropic nature of SH2B3 may be due to its role in
immune and inflammatory signaling pathways including ery-
thropoietin, cytokine receptor-mediated and integrin signaling
(20). The protein also regulates hematopoietic cell lineage
and endothelial cells, and influences adhesion and migra-
tion of platelets by modulating actin cytoskeleton organization
(Takizawa et al., 2010; Gieger et al., 2011; Devalliere et al., 2012;
Shameer et al., 2014). SH2B3 is also involved in platelet pro-
duction via megakaryocyte development; mice lacking SH2B3
(Lnk/SH2B3−/−) (Kwon et al., 2009) have altered platelet func-
tion and thrombus development (Tong et al., 2005). The relatively
high frequency of this SNP in the general population is specu-
lated to be due to a protective effect against bacterial infection
(Zhernakova et al., 2010). We (Ding and Kullo, 2011) and others
(Pickrell et al., 2009) have previously demonstrated that the SNP
may have been subject to natural selection.

Two GWAS in European ancestry cohorts have reported vari-
ants associated with PAD. Thorgeirsson et al (Thorgeirsson et al.,
2008) found a common variant in the nicotinic acetylcholine
receptor gene cluster on chromosome 15q24 to affect nicotine
dependence, smoking quantity, and the risk of PAD and lung
cancer. A synonymous SNP (rs1051730) within the cholinergic
receptor nicotinic alpha 3 gene (CHRNA3) was significantly asso-
ciated with PAD (OR = 1.19). In a meta-analysis (Murabito et al.,
2012) of GWAS for ABI consisting of 21 population-based cohort
studies and 41,692 participants of European ancestry among
whom 3409 participants had PAD (ABI < 0.90), six SNPs were
associated (P = 1 × 10−6) with PAD, but none at a genome-wide
significance level. The ATXN2-SH2B3 locus was not associated
with PAD in this study. One possible explanation may be the
differences in case ascertainment, the present study including
symptomatic PAD patients from the clinical setting whereas in
the meta-analyses by Murabito et al, most individuals had under-
gone ABI measurement as part of prospective cohort studies.
Koriyama et al. (2010) found the OSBPL10 locus to be associ-
ated with PAD in a Japanese cohort. We assessed the strength of
association of these SNPs in our dataset and found that the 9p21
variant and the OSBPL10 variants were not associated, whereas
the CHRNA3 variant was weakly (P = 1 × 10−3) associated with
PAD case status.

In conclusion, our findings suggest that SNP rs653178 in
the ATXN2-SH2B3 locus is associated with clinically defined
PAD. The SNP is in near complete LD with rs3184504, a non-
synonymous SNP in SH2B3, a gene implicated in immune,
inflammatory, and hematopoietic pathways. This SNP is emerg-
ing as a key pleiotropic genetic variant influencing multiple
cardiovascular traits. Our findings motivate additional investiga-
tion of this locus including sequencing, gene expression and drug
targeting studies as well as studies in experimental animals.
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