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The success rate of molecular replacement (MR) falls

considerably when search models share less than 35%

sequence identity with their templates, but can be improved

significantly by using fold-recognition methods combined with

exhaustive MR searches. Models based on alignments

calculated with fold-recognition algorithms are more accurate

than models based on conventional alignment methods such

as FASTA or BLAST, which are still widely used for MR. In

addition, by designing MR pipelines that integrate phasing

and automated refinement and allow parallel processing of

such calculations, one can effectively increase the success rate

of MR. Here, updated results from the JCSG MR pipeline are

presented, which to date has solved 33 MR structures with less

than 35% sequence identity to the closest homologue of

known structure. By using difficult MR problems as examples,

it is demonstrated that successful MR phasing is possible even

in cases where the similarity between the model and the

template can only be detected with fold-recognition algo-

rithms. In the first step, several search models are built based

on all homologues found in the PDB by fold-recognition

algorithms. The models resulting from this process are used in

parallel MR searches with different combinations of input

parameters of the MR phasing algorithm. The putative

solutions are subjected to rigid-body and restrained crystallo-

graphic refinement and ranked based on the final values of

free R factor, figure of merit and deviations from ideal

geometry. Finally, crystal packing and electron-density maps

are checked to identify the correct solution. If this procedure

does not yield a solution with interpretable electron-density

maps, then even more alternative models are prepared. The

structurally variable regions of a protein family are identified

based on alignments of sequences and known structures from

that family and appropriate trimmings of the models are

proposed. All combinations of these trimmings are applied to

the search models and the resulting set of models is used in the

MR pipeline. It is estimated that with the improvements in

model building and exhaustive parallel searches with existing

phasing algorithms, MR can be successful for more than 50%

of recognizable homologues of known structures below the

threshold of 35% sequence identity. This implies that about

one-third of the proteins in a typical bacterial proteome are

potential MR targets.
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1. Introduction

Molecular replacement (MR; Rossmann, 2001) has an ad-

vantage over experimental phasing techniques because it

requires only one data set of reflections obtained from a native

protein crystal, which is considerably less resource-intensive



than multiple-wavelength experiments with substituted

protein crystals.

Because of advances in structural biology, more and more

structures are available through the Protein Data Bank (PDB;

Berman et al., 2000). As the number of known protein struc-

tures grows rapidly, the main interest shifts from studying

individual structures to studying protein complexes, which are

fundamental to our understanding of protein interactions in

biological mechanisms such as metabolism, the cell cycle or

apoptosis. MR is the method of choice for solving the struc-

tures of protein complexes because the structures of individual

proteins are often known. As a result, the number of protein

structures determined by MR increases every year, so any

improvements in the method can save considerable time and

resources.

The MR phasing algorithms pioneered by Hoppe (1957)

and Rossmann & Blow (1962) require the identification of the

correct orientation and position of the structural model in the

asymmetric unit of a new crystal. Currently, several automated

computational algorithms for solving this problem are avail-

able in popular programs such as Phaser (Storoni et al., 2004),

AMoRe (Navaza, 2001), X-PLOR/CNS (Brünger et al., 1998),

MOLREP (Vagin & Teplyakov, 2000), EPMR (Kissinger et al.,

1999) and Queen of Spades (Glykos & Kokkinidis, 2000). The

success of these MR methods depends critically on the quality

of the model used and different ways of preparing models are

still being explored. MR has been accomplished with models

that cover only a small fraction (<30%) of the molecule

(Bernstein et al., 1997), but experience has shown that in order

for the procedure to be successful a significant portion of the

molecule (>60%) is required and the differences between the

coordinates of the model and the molecule must be small

[usually with a root-mean-square distance of C� atoms

(C�RMSD) below 2.5 Å]. The requirements for optimal

search models for MR are still being explored. Several inter-

esting ideas regarding search models have been proposed or

tested on individual cases or on small sets of structures

(Kleywegt, 1998). These ideas include removing or cutting

back residues or regions with high temperature factors, the

omission of regions where sequence conservation is low, using

composite search models (Chen, 2001) and building alter-

native models based on suboptimal alignments (Jones, 2001).

Recently, the analysis of several difficult MR problems from

our center has demonstrated that the alignment accuracy and

side-chain modeling have a significant impact on MR success

rates (Schwarzenbacher et al., 2004). Some of the methods

of model preparation have been implemented in the

CHAINSAW program, written by Norman Stein and included

in the CCP4 suite (Collaborative Computational Project,

Number 4, 1994). CHAINSAW prepares different variants of

pruned (mixed) search models for MR.

The most effective methods of protein structure prediction

are based on establishing a homology between a protein of

interest and an already characterized protein. However, the

standard sequence-comparison methods rapidly lose sensi-

tivity in the ‘twilight zone’ where there is below 30% sequence

identity between the protein of interest and the closest known

structure (Holm et al., 1992). The sensitivity of fold recogni-

tion can be improved by using evolutionary information,

which can be extracted from large families of protein

sequences. Instead of comparing two sequences, one compares

a protein sequence with sequences from an entire protein

family represented by a sequence profile as implemented in

PSI-BLAST (Altschul et al., 1997) or by hidden Markov

model (HMM; Eddy, 1998). A logical next step in this strategy

is to compare two sequence profiles as introduced in FFAS

(Rychlewski et al., 2000) or two hidden Markov models as

implemented in HHSEARCH (Soding, 2005).

The application of sequence profiles has a significant impact

on the number of fold predictions one can make from a given

set of known structures. A widely accepted way of testing

homology-prediction methods is to apply them to repre-

sentative sets of known structures and to calculate the number

of correct predictions and false positives for different score

thresholds corresponding to different error levels. Using this

procedure, we re-evaluated the sensitivity of remote

homology detection using three different methods. We used

the ASTRAL resource (Chandonia et al., 2004) based on the

SCOP database (Murzin et al., 1995) to construct a benchmark

set of 5868 protein domain structures with less than 25%

sequence identity to each other. The predictions obtained with

BLAST, PSI-BLAST and FFAS for this benchmark clearly

illustrate the advantage of using sequence profiles for the

detection of distant homologues (see Fig. 1). At the 5% error

level the profile–sequence comparison method PSI-BLAST

(Altschul et al., 1997) gives almost twice as many correct

predictions as the sequence–sequence comparison algorithm

BLAST (Altschul et al., 1990). The profile–profile comparison

method FFAS improves the sensitivity by another 20%.
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Figure 1
The percentages of correct and incorrect structural predictions derivable
by BLAST, PSI-BLAST and FFAS for the representative benchmark set
of homologous protein pairs with less than 25% sequence identity based
on the SCOP database. With 5% of false positives, BLAST correctly
detects 35% of such pairs and PSI-BLAST finds 60%, while FFAS can
predict up to 72%.



Other advanced fold-recognition methods based on

sequences profiles or similar methods of using evolutionary

information include 3D-PSSM (Kelley et al., 2000), FUGUE

(Shi et al., 2001), BIOINBGU (Fischer, 2000), PROSPECT

(Xu & Xu, 2000) and SAMT98 (Karplus et al., 1998). These

methods are more sensitive than sequence–sequence align-

ment methods such as BLAST and are usually more sensitive

than profile–sequence alignment methods such as PSI-

BLAST.

Besides the accuracy of the model, for more difficult MR

problems, the success may critically depend on certain settings

of the phasing algorithm, such as the low- and high-resolution

limit applied to the crystallographic data. The strong depen-

dence on the resolution limit and cutoff is especially evident

for MR phasing algorithms, which are not based on the

maximum-likelihood principle. It is rather difficult to propose

any useful rules of thumb for selecting optimal low- and high-

resolution cutoffs and, as suggested by the authors of MR

programs, it is beneficial to test several combinations of these

cutoffs. Usually, in difficult MR cases multiple phasing trials

with different models and input parameters are performed

manually, which imposes practical limits on the number of

tested combinations.

We demonstrated that it is possible to extend the limits of

the MR method by using several specifically designed protein

models based on profile–profile fold recognition and exhaus-

tive MR searches in a parallelized and automated MR pipeline

(Schwarzenbacher et al., 2004) built at the Joint Center for

Structural Genomics (Lesley et al., 2002).

At least three other groups are also involved in the devel-

opment of advanced and publicly available MR pipelines,

including CaspR (Claude et al., 2004), MrBUMP (Keegan &

Winn, 2008) and BALBES (Long et al., 2008). Interesting

attempts have also been made to go beyond the ‘rigid search

model’ and generate search models using normal-mode

analysis (Suhre & Sanejouand, 2004; Jeong et al. 2006).

In this manuscript, we provide a short description of the

JCSG MR pipeline, discuss the advantages of using sensitive

fold-recognition algorithms and show the benefits of applying

parameter-space screening to MR searches. We also give an

update on the statistics of the results of the pipeline and

further explore methods of generating alternative models for

MR.

2. Methods and results

2.1. The JCSG MR pipeline and its results

The parallelized MR pipeline used in the JCSG auto-

matically performs all steps from homology detection through

model preparation and MR searches to automated refinement.

The pipeline includes the following steps (see Fig. 2).

(i) Firstly, a homology search is carried out in the PDB with

the FFAS profile–profile fold-recognition method to assure

optimal sensitivity in finding homologous templates and the

highest accuracy of the alignment. As soon as significant

sequence similarity to a known structure can be detected with

FFAS, the protein is treated as a potential MR target [the

sequence identity should exceed 15% and the FFAS score

should be better (lower) than �15]. In most cases, we also

required that at least two-thirds of the structure is included in

the search model. However, MR may be feasible with smaller

models of high accuracy. For example, individual protein

domains with determined structures may be used for the

phasing of full multi-domain proteins. The pipeline can be

used to attempt MR phasing in such cases.

(ii) PDB files of the top-scoring homologues are obtained,

including their biologically relevant oligomers, if available.

(iii) A pool of different types of models is built using the

program WHATIF (Vriend, 1990): all-atom models with side

chains replaced according to the alignment and side-chain

conformations optimized, ‘mixed’ models with side-chain

conformations of conserved residues transferred from the

template and with the other residues replaced with serine

(Schwarzenbacher et al., 2004) and all-atom and ‘mixed’

models of possible oligomers based on the physiologically

relevant oligomers of the templates.

(iv) MR searches are performed with

the program MOLREP. Exhaustive

parameter-space screening is applied to

the similarity (SIM) and completeness

(COMPL) parameters of MOLREP,

with other parameters set to default

values. For both parameters values of

0.1, 0.3, 0.5, 0.7 and 1.0 are tested,

yielding a total of 25 parameter combi-

nations. We found out that finer sear-

ches with 100 combinations did not

provide solutions which could not be

achieved with 25 combinations. In some

cases, however, we performed finer grid

searches for illustration purposes (see

Fig. 3).

(v) All solutions are subjected to

rigid-body refinement and restrained
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Figure 2
Schema of the JCSG MR pipeline.



refinement with REFMAC5 (Murshudov et al., 1997) and the

solution with the lowest Rfree value is selected. In most cases,

we performed 5–20 steps of rigid-body refinement and 100–

500 steps of restrained refinement. The REFMAC5 WEIG

parameter controlling the weighting of the X-ray and

geometric parts was set to 0.05 and in the most difficult cases

additional values in the range 0.02–0.05 were tested.

(vi) If the structure cannot be phased using the procedure

described above, large sets of trimmed models may be

generated. As suggested by Kleywegt (1998), trimming

includes loop regions, regions corresponding to gaps and

regions of low sequence conservation in the alignment. The

models with all possible combinations of such trimmings are

tested in MR searches as described in (iv) and (v) above. The

combinatorial trimming step is optional and is not yet fully

automated.

(vii) Electron-density maps are examined and solved

structures are completely refined and deposited in the PDB.

The MR pipeline provided solutions for 33 protein struc-

tures with less than 35% sequence identity to their modeling

templates (column P in Table 1). These results were compared

with results from ‘simple’ MR runs (column S in Table 1) in

which one model based on a BLAST alignment was used in an

MR search with default parameters. The same model was also

used in exhaustive MR searches (column E in Table 1) with a

wide range of parameters. By using different types of models

based on accurate alignments combined with parallel proces-

sing, we can practically double the number of protein struc-

tures which can be solved by MR. Our results indicate that

MR is usually straightforward if models share more than 30–

35% identical residues with their templates (Schwarzenbacher

et al., 2004), which is in good agreement with the widely

accepted limit of highly accurate homology modeling (Vogt et

al., 1995). Almost all MR cases with more than 35% sequence

identity between the model and the structure were solved with

the ‘simple approach’ and unsolved problems are most likely

to indicate problems with the crystallographic data rather than

with model accuracy. Below 35% sequence identity the ‘simple

approach’ was ineffective and successful in only ten out of 33

cases (column S in Table 1). Exhaustive MR searches with

standard templates resulted in six additional MR solutions

(column E, Table 1). Exhaustive MR searches with different

types of models including biologically relevant oligomers,

mixed and all-atom homology models based on FFAS align-

ments (column P, Table 1) solved 17 additional structures with

less than 35% sequence identity to their templates. Despite

exhaustive searches with multiple models, 14 structures with

less than 35% sequence identity remained unsolved.

2.2. Parameter-space screening in MR searches

The procedure of exhaustive testing of different input

parameters of crystallographic software has been called

parameter-space screening (Liu et al., 2005). In order to

complete calculations in a reasonable time, parameter-space

screening is usually performed in a parallel way using

computer clusters. The results of MR phasing algorithms often

depend on several input parameters connected to filters

applied to the data and to the anticipated accuracy of the

search model. In our pipeline, we relied on the program

MOLREP (Vagin & Teplyakov, 2000) from the CCP4 suite

(Collaborative Computational Project, Number 4, 1994)

because of its robustness, speed and simple usage. Two of the

input parameters of the program are related to the expected

completeness of the search model and its expected similarity

to the structure being solved. The completeness parameter

(COMPL) is linked to the soft low-resolution cutoff applied to

the crystallographic data and the similarity parameter (SIM) is

linked to the high-resolution cutoff. Since we do not have

exact information about the accuracy of the model before the

actual structure is solved, different combinations of these two

parameters are exhaustively tested, as suggested by the

authors of the program. In particular, low-resolution reflec-

tions and the low-resolution cutoff are known to play impor-

tant roles in MR phasing. However, instead of examining the

low-resolution part of the data and trying to find the optimal

low-resolution cutoff, we applied different low-resolution

cutoffs by changing the COMPL parameter and tested the

correctness of all solutions by refining them. In fact, our tests

indicated that in several cases the success of phasing with

MOLREP was dependent on these input parameters in an

unpredictable way, which underscores the importance of

exhaustive parameter-space screening. For example, para-

meter-space screening was used for MR phasing of orotidine

50-phosphate decarboxylase (TM0332) from Thermotoga

maritima. FFAS detected similarity to the structure of oroti-

dine 50-phosphate decarboxylase from Escherichia coli (PDB

code 1eix) with a score of�60, a sequence identity of 24% and

the alignment covering 98% of the sequence with six gaps.

Fig. 3 shows a contour map of final Rfree values after restrained

refinement obtained for MR solutions calculated with
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Figure 3
The results of parameter screening applied to MR phasing and automated
refinement of JCSG target TM0332. All combinations of similarity (SIM)
and completeness (COMPL) parameters of the MOLREP program were
tested by an exhaustive grid search between 0.1 and 1.0 at intervals of 0.1.
All resulting solutions were subject to 20 steps of rigid-body refinement
and 500 steps of restrained refinement. The final Rfree value after
restrained refinement is plotted as a contour map.



different values of the similarity and completeness parameters.

The MR solutions obtained for different input parameters of

the program MOLREP led to final Rfree values from

REFMAC5 ranging from 0.464 to 0.546. The solution with the

lowest Rfree value was manually refined and deposited in the

PDB (PDB code 1vqt). The C�RMSD between fully refined

TM0332 structure and 1eix is 2.27 Å. A detailed analysis of the

solutions with different final Rfree values showed that most of

the solutions with Rfree values higher than 0.5 were incorrect,

underscoring the significance of parameter-space screening for

this case.

2.3. Combinatorial trimming of search models

For difficult cases in which the application of exhaustive

parameter-space screening combined with multiple models

based on different templates does not yield a solution, it is

possible to increase the variability of the models used in the

pipeline by using models with different combinations of

trimmings of possibly unreliable regions.

It is widely accepted that an optimal model for MR phasing

should contain all atoms that can be predicted with sufficient

accuracy and should not contain any atoms with high co-

ordinate errors. Unreliable regions of the model usually

include loops, gaps and fragments of low sequence similarity

between the model and the template. Such regions are more

likely to contain significant errors. Therefore, by removing

such regions from the model one can significantly increase its

overall accuracy, but some accurately predicted regions can

also be removed, since the exact locations of inaccurate

regions are not known before the structure is solved. The level

of accuracy required for MR models is also not obvious and

may vary for different data sets. A brute-force solution to this

problem is to use the capabilities of a parallelized MR pipeline

and test all combinations of possible trimmings of the model.

This procedure allowed MR phasing of the structure of
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Table 1
JCSG MR projects for structures with less than 35% sequence identity to the template.

Target, TIGR or GeneBank ID and the name of the target protein; L, target-sequence length; SG, crystallographic space group; M, number of molecules in the
asymmetric unit; R, resolution (Å) of the crystallographic data set; o/a, number of observations per atom; T, the closest homologue with known structure (PDB
code); Id, sequence identity between target and template; S, results of a single MR search with a simple template; E, results of exhaustive MR searches with a
simple template; P, results of MR pipeline (different types of models based on FFAS alignments plus exhaustive MR search); X, successful MR phasing and
automated refinement; PDB, PDB code of the solved MR structures (if already deposited in PDB).

Target L SG M R o/a T Id S E P PDB

17134165, hypothetical protein, Nostoc sp. 165 P21212 2 1.50 18.7 1g76 14 X 1vl7
tm1459, carbohydrate-binding protein, T. maritima 114 P32 2 1.75 11.8 1lr5 18 X 1o5u
tm1287, oxalate decarboxylase, T. maritima 121 C2 2 1.70 8.9 1vj2 18 X X 1o4t
15079298, glia maturation factor-�, Mus musculus 142 P1 1 1.35 15.7 1ahq 19 X X X 1vkk
tm0603, 30s ribosomal protein s6, T. maritima 128 P41212 1 1.70 15.0 1lou 19 X 1vmb
17391249, haloacid dehalogenase-like hydrolase, M. musculus 248 P6122 1 1.90 12.0 1x42 19 X 2gfh
tm1394, heat-shock protein 33, T. maritima 290 P212121 2 2.00 8.6 1i7f 20 X 1vq0
18044849, bifunctional coenzyme A synthase, M. musculus 269 C2 1 1.70 15.0 1n3b 22 X 2f6r
tm0820, NADH-dependent butanol dehydrogenase,

T. maritima
395 P21 2 1.78 10.0 1o2d 24 X 1vlj

tm0332, orotidine 50-phosphate decarboxylase, T. maritima 201 C2 1 1.90 9.2 1eix 24 X 1vqt
10175646, BH3024 protein, Bacillus halodurans 126 P41212 1 2.40 6.5 1kgs 25 X X X 2b4a
NP_394403, GMP synthase, T. acidophilum 212 P21212 4 2.45 4.4 1gdl 25 X 2a9v
tm0262, DNA polymerase III, � subunit, T. maritima 366 P42212 1 2.70 4.8 1jqj 26 X 1vpk
tm1419, myo-inositol-1-phosphate synthase, T. maritima 382 I222 1 1.58 22.5 1gr0 26 X X 1vjp
YP_290749.1, NADH dehydrogenase subunit C, T. fusca YX 252 P43212 1 2.60 8.6 2fug 27 X
tm1088A, hypothetical protein, T. maritima 143 P2 1 1.50 20.3 1lss 27 X X X 2g1u
tm0748, SAM-dependent O-methyltransferase, T. maritima 265 I222 1 1.70 16.7 1i9g 28 X X X 1o54
tm0544, ABC transporter ATP-binding protein, T. maritima 244 P3121 1 2.10 10.6 1ji0 29 X 1vpl
tm1128, ferritin, T. maritima 182 H32 8 2.35 8.1 1eum 30 X X X 1vlg
tm0295, transaldolase, T. maritima 218 P21 20 2.40 5.1 1l6w 30 X 1vpx
tm0343, DAHP synthase, T. maritima 338 P212121 3 1.90 8.5 1fwn 31 X X X 1vr6
tm1385, glucose-6-phosphate isomerase, T. maritima 448 I212121 3 2.90 6.8 1b0z 31 X X
tm1645, quinolinate phosphoribosyltransferase, T. maritima 273 I222 2 2.80 6.9 1qpn 31 X 1o4u
tm0066, 2-dehydro-3-deoxyphosphogluconate aldolase,

T. maritima
205 C2221 3 2.30 6.8 1eua 31 X X 1vlw

tm1393, MEP cytidylyltransferase, T. maritima 222 P61 2 2.60 6.7 1vgz 31 X 1vpa
tm1244, phosphoribosylformylglycinamidine synthase,

T. maritima
82 I4122 4 2.50 7.0 1t4a 32 X 1vq3

tm0166, dihydrofolate synthase, T. maritima 430 P6122 1 2.75 8.9 1fgs 32 X X X 1o5z
tm0919, hydroperoxide-resistance protein OsmC, T. maritima 138 P21 4 1.80 12.9 1ml8 33 X 1vla
tm1698, aspartate aminotransferase, T. maritima 397 P21 6 2.50 4.1 1xi9 29 X X X 2gb3
tm0604, single-stranded DNA-binding protein, T. maritima 141 F222 1 2.40 10.0 1qvc 34 X X 1z9f
tm1169, 3-oxoacyl-(acyl carrier protein) reductase,

T. maritima
237 P212121 4 2.50 4.3 1i01 34 X X 1o5i

17130499, anthranilate phosphoribosyltransferase 2,
Nostoc sp.

345 P21 2 2.50 4.8 1kgz 35 X X X 1vqu

tm0159, xanthosine triphosphate pyrophosphatase,
T. maritima

191 P41212 2 1.78 18.3 1v7r 35 X X X 1vp2



NADH dehydrogenase subunit C from Thermobifida fusca

(GenBank accession code YP_290749). According to FFAS,

the only structure homologous to this protein is subunit 5 of an

oligomeric domain in respiratory complex I from Thermus

thermophilus (PDB code 2fug). FFAS aligned 66% of the

sequence of YP_290749 with the sequence of 2fug, with a

score of �79 and a sequence identity of 27%. Residues 213–

249 of the target sequence were aligned with the region of 2fug

subunit 5 which extends from its globular domain and binds to

another subunit in the complex. However, since the present

crystals only contained the isolated domain, we expected that

this particular region may have a different conformation and

removed it from the model. This resulted in a decrease in the

sequence identity to 22% and in the sequence coverage by the

model to 50% (see Fig. 4a). Since the asymmetric unit of 2fug

contains four slightly different copies of subunit 5 (chains 5, E,

N, W), each of them was used to build models of the target.

Model trimmings were proposed based

on the sequence alignment, in which six

potentially unreliable regions of the

model were identified. We applied up to

four alternative trimmings in each of

these regions (see Fig. 4a). By applying

all combinations of these trimmings, we

produced 540 trimmed models from

each copy of subunit 5, yielding a total

of 2160 models. All search models were

submitted to the MR pipeline. MR

searches were completed in about 5 h

on a 50 CPU Linux cluster. Because of

time limitations, parameter-space

screening was not used and MR solu-

tions obtained with default MOLREP

parameters went directly to 30 cycles of

restrained refinement in REFMAC5.

Interestingly, only a small subset of

trimmed models led to successful

phasing as indicated by significantly

lower Rfree values from REFMAC5 (see

Fig. 4b).

3. Discussion

The JCSG MR pipeline increases the

success rate of MR by using accurate

modeling methods, large numbers of

alternative models and applying para-

meter-space screening to phasing algo-

rithms. We observed that MR was

relatively straightforward when the

sequences of the target and the

template were more than 35% identical.

Based on our results, we tend to accept

35% as a limit of straightforward MR,

since almost all cases in this range could

be solved using the standard approach.

This situation changes when the

sequence identity drops below 35%: standard alignment

methods start to be less accurate and C�RMSD values

between structures of related proteins increase significantly

(Chothia & Lesk, 1986). Although the relationship between

the sequence identity of pairs of protein structures and their

C�RMSD values is well established, the character of this

relationship varies significantly among protein families, as it

becomes apparent when structural alignments of large families

are calculated and analyzed (Reeves et al., 2006). Therefore,

one can expect that the limit of accurate homology modeling

(which is also the limit of feasible MR) may be different for

different protein families. In some cases, the chances of

successful MR phasing can be estimated based on the struc-

tural variability observed among known structures from a

protein family of interest. If known structures from a family

show only small differences in the protein core, then unknown

structures from this family are also likely to have a well
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Figure 4
(a) The alignment used for modeling of target YP_290749.1 based on PDB structure 2fug. The
regions of lower alignment reliability are labeled on the alignment and on the model. The table
shows the trimmings applied in these regions. (b) Final Rfree values from restrained refinement
obtained for trimmed models tested in the pipeline. All 2000 results were ranked by their final Rfree.
Sorted Rfree values for the 1000 best ranking models are shown as a graph.



conserved core. Members of such protein families could be

suitable for MR, even when the sequence identity to the

closest known structure is very low. Therefore, as an element

of experiment design one may perform homology searches in

the PDB database using sensitive fold-recognition methods

such as the FFAS server (Jaroszewski et al., 2005; available at

http://ffas.burnham.org). Then, if homologous structures are

found one can assess the structural similarity between them

using a multiple structural alignment method such as POSA

(Ye & Godzik, 2005; available at http://fatcat.burnham.org/

POSA). The POSA server provides a quantitative measure of

the structural similarities between submitted structures along

with a graphical interface, which we found very helpful in

determining the extent of the conserved structural core in the

family. At this point it is rather difficult to provide general

quantitative limits of the applicability of MR based on such

analyses, but in many cases it is possible to tell whether MR

phasing is worth considering.

Below 35% sequence identity models based on BLAST

alignments had a lower success rate, since in most cases they

are shorter and less accurate than the alignments from PSI-

BLAST and FFAS. Furthermore, in two cases (targets

17134165 and TM0603) BLAST could not detect a homo-

logous structure at all, while remote similarity detected using

FFAS led to successful MR phasing. This observation implies

that some difficult MR problems can be solved by using

publicly available fold-recognition servers.

Because of its high computational cost, the method of

combinatorial model trimming was only applied to a few

unsolved MR problems. The example of the phasing of NADH

dehydrogenase subunit C using this method is interesting

because the distribution of Rfree values for trimmed models

has a very narrow minimum. It is impossible to make general

conclusions based on one example, but this observation

suggests that the results of MR and refinement are highly

susceptible to the ratio of correctly and incorrectly predicted

atoms in the search model. This implies that combinatorial

trimming, which allows maximization of this ratio in some

models, may provide solutions to problems that are beyond

the reach of models based on one optimal alignment. It has to

be noted that the method of combinatorial trimming is

currently only partly automated and requires manual inter-

vention. For example, the model regions to be trimmed were

proposed based on visual inspection of the alignment. In

principle, one can imagine full automation of such a procedure

by using known methods of assessing the local accuracy of the

model. The method needs to be tested on more examples

before it can be fully automated.

The results obtained for 47 data sets still do not allow a

thorough statistical analysis of the feasibility of MR, which

depends on too many features of the data and the model.

Nevertheless, we can roughly estimate that the success rate is

about 50% for proteins with an FFAS score better (lower)

than �15, a sequence identity in the range 15–35% and a

model which covers at least two-thirds of the sequence.

The main conclusion of our tests is that search models based

on alignments from sensitive fold-recognition algorithms

together with the latest MR phasing techniques in combina-

tion with parameter-space screening do improve the success

rate of MR phasing. This improvement will be critical for

solving protein complexes and may save a considerable

amount of time and resources, especially for structural geno-

mics projects.

It has to be noted that the procedures described above are

very CPU demanding and in most cases impractical without a

computer cluster. At JCSG we used 25–50 CPUs of a Linux

cluster for most calculations. Completion of most searches still

took several hours.

The FFAS program is available as a web server at http://

ffas.burnham.org and is linked to a modeling server which can

produce all-atom and mixed models based on FFAS align-

ments. The authors are preparing a distribution version of the

JCSG MR pipeline scripts and it will be made available to the

academic community on request.

The results presented in this publication were possible

thanks to the effort of the entire JCSG team. The authors are

especially grateful to their colleagues from the JCSG Struc-

ture Determination Core at Stanford Synchrotron Radiation

Laboratory, who obtained all data sets used in this work and

helped with their crystallographic expertise. The JCSG is

supported by the NIH Protein Structure Initiative grant U54

GM074898 from the National Institute of General Medical

Sciences (http://www.nigms.nih.gov). RS is supported by EC

grant MEXT-CT-2006-033534.
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