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Cuproptosis, as a novel copper-dependent and non-apoptotic form of cell

death, is induced by aggregation of lipoylated mitochondrial proteins and

the instability of Fe-S cluster proteins. However, the role of cuproptosis-

related long noncoding RNAs (CRLncRNAs) in hepatocellular carcinoma

(HCC) has not been clearly elucidated. In this study, we identified and

characterized cuproptosis-related lncRNAs in HCC. 343 HCC cases from

The Cancer Genome Atlas (TCGA) with gene transcriptome data and

clinical data were obtained for analysis after the screening. Univariate

and multivariate Cox proportional hazards analyses were performed to

establish a prognostic cuproptosis-related lncRNA signature (CRlncSig).

We established a prognosis-related model consisting of nine cuproptosis-

related lncRNAs: GSEC, AL158166.1, AC005479.2, AL365361.1,

AC026412.3, AL031985.3, LINC00426, AC009974.2, AC245060.7, which

was validated in the internal cohort. High-risk group stratified by the

CRlncSig was significantly related to poor prognosis (p < 0.001). The

area under the receiver operating characteristic curve (AUC) of 1 year,

3 years, and 5 years of survival were 0.813, 0.789, and 0.752, respectively.

Furthermore, a prognostic nomogram including CRlncSig with

clinicopathologic factors was built with favorable predictive power. In

addition, GO and KEGG enrichment analysis suggested that CRlncSig

was involved in many carcinogenesis and immune-related pathways.

Additionally, we found that tumor microenvironment, immune

infiltration, immune function, and drug response were significantly

different between the high-risk and low-risk groups based on the risk

model. These results highlight the value of cuproptosis-related lncRNAs

on prognosis for HCC patients and provide insight into molecular and

immune features underlying cuproptosis-related lncRNAs, which might

play an important role in patient management and immunotherapy.
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Introduction

Hepatocellular carcinoma (HCC) is the third leading

cause of cancer-related death and ranks sixth among all

cancers (Forner et al., 2018). Curative therapeutic

approaches including liver transplantation, resection, or

ablation could only be applied to patients with early-stage

disease, while most patients fail to meet the criteria and have

a poor prognosis (Lau et al., 2001). The mortality of HCC

roughly matches its incidence because of its aggressive

nature and limited treatment options (Sung et al., 2021).

Thus, uncovering novel therapeutic targets and prognostic

factors is an urgent need to improve treatment efficiency and

prognosis.

Copper is a basic trace element for human beings, which

is involved in various biological processes such as

mitochondrial respiration, oxidative stress, and

cytotoxicity (Ruiz et al., 2021; Ge et al., 2022). As to

cancer, several studies have reported that the Cu

concentration in cancer is much higher than that in

normal tissues (Blockhuys et al., 2017; Ge et al., 2022).

The dysregulation of copper homeostasis has been related

to proliferation, angiogenesis, and metastasis, which

indicates copper might play a role in tumorigenesis and

tumor progression (Babak and Ahn, 2021; Shanbhag et al.,

2021; Oliveri, 2022). Moreover, it also had been reported that

copper might play a part in immunity and affect the

expression levels of programmed death-ligand 1 (PD-L1)

(Jones, 1984; Voli et al., 2020). Recently, Tsvetkov et al.

found a novel form of cell death termed cuproptosis. The

study revealed that increment of copper in cells could induce

the aggregation of lipoylated dihydrolipoamide

S-acetyltransferase (DLAT) and then affect mitochondrial

tricarboxylic acid (TCA) cycle, which finally leads to

proteotoxic stress and cell death (Tsvetkov et al., 2022).

Metabolic reprogramming of the tricarboxylic acid (TCA)

cycle usually comes with the progression of HCC, promoting

tumor survival and proliferation in the context of nutrient

deprivation and hypoxia (Todisco et al., 2019). So

cuproptosis-related genes might be involved in tumor

development and progression.

Long noncoding RNAs (lncRNAs) are a type of

transcripts longer than 200 nucleotides lacking protein-

coding capacity (Clark et al., 2012). And they are closely

related to the development of oncogenesis, progression,

metastasis, and prognosis in various tumors (Bhan et al.,

2017; Wong et al., 2018). However, there are few studies on

cuproptosis-related lncRNAs (CRLncRNAs) in HCC

patients.

The present study identified cuproptosis-related

lncRNAs and constructed a prognostic signature from

these lncRNAs, which was associated with mutation

landscape, the tumor microenvironment, and

immunotherapy response of HCC patients. Gene

enrichment analysis was also carried out to explore

potential mechanisms.

Materials and methods

Data collection and processing

First, RNA-sequence data (50 normal samples and 374 tumoral

samples), gene mutation data (n = 364), and clinical data (n = 377) of

HCC patients were derived from the TCGA database (https://portal.

gdc.cancer.gov/). The transcripts/genes expression abundance are

estimated by STAR and RSEM. After eliminating the normal

samples, 19895 mRNA and 16773 lncRNAs were identified in

LIHC data using annotation of GENCODE project (v22)

(Frankish et al., 2019). We then screened 19 cuproptosis-related

genes from previous literature (Supplementary Table S1), and

expression data were obtained for these genes in TCGA LIHC

(Supplementary Table S2). 977 CRLncRNAs whose expression was

correlated to cuproptosis-related genes were identified by Pearson

correlation analysis (|R2 |> 0.4, p< 0.001). Clinicopathological factors,
including age, gender, TNM stage, pathologic grade and complete

survival information were also extracted. Disease-free survival (DFS)

was obtained from the previous study (Liu et al., 2018). Samples with

survival time < 30 days were excluded. Finally, 343 cases with gene

transcriptome data and clinical data were obtained for analysis.

Development of the cuproptosis-related
lncRNAs signature

A total of 343 samples with the survival data and expression data

were randomly allocated to the training sets (n = 241) and validation

set (n = 102) in a 7:3 ratio. Univariate Cox regression analysis was

performed to screen CRLncRNAs associated with prognosis in the

training set. Then these lncRNAs were analyzed by the least absolute

shrinkage and selection operator (LASSO) algorithmwith 1000 cycles

for the best subset of prognostic lncRNAs, and a cuproptosis-related

lncRNAs signature (CRlncSig) was constructed. Risk score =∑ (coef

(β)*EXPβ), where β represents each selected lncRNA. Patients were

assigned to high-risk and low-risk groups with the median risk score

as the cutoff value. Kaplan-Meier survival analysis was performed to

validate the clinical relevance between the two groups. TheROCcurve

and c-index were used to assess the predictive power of the model.

Stratified analysis was conducted to further assess the additional

prognostic value of CRlncSig.

Validation of the CRlncSig

Baseline characteristics were checked between training sets

and validation set. The patients in the validation set were grouped
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with the same method in the training set and validated using

Kaplan-Meier survival analysis and risk plot.

The independently prognostic value of
CRlncSig

Univariate and multivariate Cox regression analyses were

used to confirm predictive power. Additionally, the correlation

between CRlncSig and clinical characteristics was explored by

chi-square test using TCGA.

Construction of nomogram

Risk score combined with the clinicopathological factor of

age, gender, grade, and stage were used to construct a

nomogram to predict the 1-, 3-, and 5-year survival of

HCC patients. The calibration curve was used to test

agreement between the actual overall survival (OS) and

those predicted by the nomogram.

Functional enrichment analysis of risk
score-associated genes

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis were performed

to identify significant module using the “clusterprofiler” R

package with adjusted p value <0.05.

Prognostic analysis of the tumor
mutational burden

Somatic mutations were analyzed by “maftools” R package

and illustrated in waterfall plots. TMB of each sample was

calculated according to the definition of the total number of

variations per million bases via Perl script (version: 5.30.2)

(https://www.perl.org/). According to the median value of the

TMB, patients were divided into the high-TMB group and the

low-TMB group. Then we merged the mutation data with

survival information and performed the Kaplan-Meier survival

analysis for the two groups.

Immune-related analysis of CRlncSig

We used the single-sample gene set enrichment analysis

(ssGSEA) algorithm via R packages (limma, GSVA and

GSEABase) to assess immune function between high- and

low-risk groups based on CRlncSig (Hänzelmann et al.,

2013). ESTIMATE and CIBERSORT algorithm was

performed to assess the proportions of components in the

tumor microenvironment (TME) and immune cell

infiltration (Yoshihara et al., 2013; Newman et al., 2015).

Then we explored the relationship between the expression

level of immune checkpoint genes and the two groups.

Immunophenoscore (IPS) was further obtained from The

Cancer Immunome Atlas (https://tcia.at/home) and used to

assess the clinical response to immunotherapy between the

two groups (Charoentong et al., 2017).

Significance of the CRlncSig in drug
sensitivity

Fifty percent maximum inhibitory concentration (IC50)

values of different groups for various antitumor drugs

recommended for hepatocellular carcinoma were calculated

via “pRRophetic” and “ggplot2” R package. The IC50 was then

compared between low- and high-risk groups by Wilcoxon

signed-rank test.

Statistical analysis

R version 4.0.2 was used to analyze the data and visualize

the results. Clinicopathological parameters were compared

using t-tests and chi-square tests. Spearman or Pearson

correlation coefficients were performed to evaluate

relationships between variables. Survival curves were

created by the Kaplan-Meier method and compared by log-

rank test. Univariable and multivariable analyses were

performed using Cox regression models to determine

prognostic factors for DFS and OS. Statistical significance

was set at p < 0.05.

Results

Construction of the CRLncRNAs
predictive signature

The flow chart of this study is shown in Figure 1A. We

curated a catalog of 19 cuproptosis-related genes from

previous reports (Supplementary Table S1) (Huang et al.,

2015; Deigendesch et al., 2018; Tsvetkov et al., 2022).

Functional annotations are shown in Supplementary Table

S1. Fifteen of these genes showed significant differences (p <
0.05) between tumor and normal tissues in LIHC patients

from TCGA (Figure 1B). The correlation between

cuproptosis-related genes and prognosis of HCC patients

is shown in Supplementary Figure S1.

We identified 977 CRLncRNAs (Figure 1C,

Supplementary Table S2). Supplementary Table S3 showed
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the correlation result between lncRNAS and cuproptosis

genes. Then 211 CRLncRNAs were found as prognostic

factors using univariate COX analysis (Supplementary

Table S4). Subsequently, we performed LASSO Cox

regression intending to reduce the risk of over-fitting and

13 robust genes were obtained (Figures 2A,B). Multivariate

Cox regression was applied to analyze the thirteen genes and

nine of them (GSEC, AL158166.1, AC005479.2, AL365361.1,

AC026412.3, AL031985.3, LINC00426, AC009974.2,

AC245060.7) were then used to construct a prognostic

signature for HCC. Supplementary Figure S2 showed the

correlation between cuproptosis-related genes and their

associated lncRNAs.

Correlation between CRlncSig and
prognosis of HCC patients

The coefficients of the nine CRlncSig were used to assess the

scores for each patient. The risk score was calculated as follows: Risk

score = (0.319,888 × expression value of GSEC) + (0.332,438 ×

expression value of AL158166.1) + (0.40166 × expression value of

AC005479.2) + (-0.59091 × expression value of AL365361.1) +

(0.764,221 × expression value of AC026412.3) + (0.457,035 ×

expression value of AL031985.3) + (-0.95334 × expression value of

LINC00426) + (-1.61518 × expression value of AC009974.2) +

(0.958,349 × expression value of AC245060.7). Then patients were

assigned to low- and high-risk groups according to the median value

of the risk score. Seventy percent of the 343 patients were randomly

divided into the training group and the rest were in the validation

group. No significant differences were found in clinical characteristics

between the low- and high-groups (Supplementary Table S5). In the

training set, patients in high-risk group had shorter overall survival

than patients in low-risk group (p < 0.001, Figure 2C). This was also

validated in the validation set (p< 0.001, Figure 2D).Next, we checked
the predictive performance in disease-free survival using the dataset

with DFS information (Liu et al., 2018). K-M analysis indicated

significantly reduced DFS in high-risk patients (p < 0.001, Figure 2E).

As shown in risk survival status plot, the survival of patients was

inversely proportional to the risk score both in training and validation

set (Figures 2F,G).

Evaluation of CRlncSig

The time-dependent ROC curve was used to assess the

performance of the signature. The area under the ROC curve

(AUC) of 1 year, 3 years, and 5 years of survival were 0.813, 0.789,

FIGURE 1
A screen of the differentially expressed cuproptosis-associated lncRNAs in hepatocellular carcinoma (HCC) (A) Flowchart of the present
research. (B) Differential expression of cuproptosis-related genes in normal and HCC tissue (C) Network graph of cuproptosis-associated lncRNAs.
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and 0.752, respectively (Figure 3A). The AUC of 1-year survival rate

suggested that risk score (0.813) and stage (0.713) possessed a

favorable prediction power (Figure 3B). The C-index of the risk

score was superior to clinicopathological factors as shown in

Figure 3C. The prognostic value of the risk score and other factors

were evaluated with univariate and multivariate Cox regression

analyses. The risk score and stage were identified as significant

independent prognostic factors in both univariate Cox regression

analyses (HR = 1.077, 95% CI = 1.055–1.099, p < 0.001 and HR =

1.804, 95% CI = 1.456-2.234, p < 0.001) and multivariate Cox

regression analyses (HR = 1.069, 95% CI = 1.046-1.092, p <
0.001 and HR = 1.775, 95% CI = 1.423-2.213, p < 0.001)

(Figures 3D,E).

Construction of nomogram

To provide a quantitative tool for clinical application, we

established a nomogram with age, gender, pathological

grade, stage, and risk score to predict the overall survival

of patients (Figure 4A). The calibration plot showed good

consistency between the actual versus predicted rates of the

1, 3, and 5-year OS (Figure 4B).

Subgroup analysis of clinicopathological
variables

At last, to explore the applicability of CRlncSig, patients

were assigned into groups according to age, gender, and stage.

For each subgroup, patients with high-risk scores had a poor

prognosis, which indicated that CRlncSig had good predictive

power for all patients (Figures 4C–H).

Functional and pathway analysis

GO and KEGG analyses were performed to explore the

underlying mechanisms of different prognoses between

high- and low-risk groups. 1090 differentially expressed

genes (DEGs) were obtained between two groups,

including 947 upregulated genes and 143 downregulated

genes (Supplementary Table S6). The cellular component

(CC) of GO enrichment analysis indicated that DEGs were

mainly enriched in “immunoglobulin complex”, and

“immunoglobulin complex circulating”. Biological process

(BP) showed DEGs were mainly associated with “nuclear

division”, “phagocytosis, recognition”, and “humoral

immune response”. While molecular function (MF)

indicated DEGs were mainly concentrated in “antigen

binding”, and “immunoglobulin receptor binding”

(Figure 5A). According to KEGG pathway analysis, DEGs

were found mainly connected with tumorigenesis and cancer

progression, such as “ECM-receptor interaction”,

“p53 signaling pathway”, “Central carbon metabolism in

cancer”, as well as immune-related pathways, such as

“HIF-1 signaling pathway” “Cytokine-cytokine receptor

interaction”, (Figure 5B). These results suggested that

DEGs are involved in both carcinogenesis and immune-

related pathways.

Risk score-associated mutation landscape

Various basic features of somatic mutation data for low-

and high-risk groups were shown in waterfall plot (Figures

5C,D). The top three mutated genes were TP53 (40%),

CTNNB1 (24%) and TTN (21%) in the high-risk group,

while CTNNB1 (26%), TTN (24%) and TP53 (14%) were

the most common mutation genes in low-risk

group. Missense mutation was the main variant

classification in both groups. Then patients were divided

into low- and high-TMB groups according to the median

value of TMB and a significant survival difference was found

between the two groups (Supplementary Figure S3A). The

risk score also showed good predictive power when patients

were stratified by TMB (Supplementary Figure S3B).

Immunity analysis of the risk score

To further explore the correlations between risk score and tumor

immune cell infiltration, the proportions of 22 immune cell typeswere

compared between the low- and high-risk groups with CIBERSORT

algorithm. The results showed that naïve B cells, CD8+ T cells (known

as main immune effector cells), resting memory CD4+ T cells had

higher fractions in low-risk group (all p < 0.05) while

M0 macrophages, M2 macrophages, which were known to exert

immunosuppressive functions, had higher fractions in high-risk

group (both p < 0.05) (Figure 6A). The ESTIMATE algorithms

suggested a higher proportion of immune and stromal cells in the

low-risk group (Figures 6B,C). Then the immune function was

inferred by ssGSEA algorithm. As shown in Figure 6D, Type II

IFN (IFN-γ) response, chemokine receptor (CCR), para-

inflammation, T cell co-inhibition, checkpoint, T cell co-

stimulation, cytolytic activity, inflammation-promoting, antigen-

presenting cell (APC) coinhibition and human leukocyte antigen

(HLA) were significant difference between two groups, which

indicated that immune function was more active in the low-risk

group. These results suggested that the signature was not only a

predictivemarker but also associatedwith immune function. Next, we

explored whether levels of immune checkpoint genes were associated

with risk scores. High-risk patients tended to express higher levels of

16 immune checkpoint genes, including HAVCR2, VTCN1, CD276,

TNFRSF4, CD27, TNFRSF14, TNFSF4, LGALS9, CD80, TNFRSF15,

CD47, HHLA2, TNFSF9, LAIR1, TNFRSF18, CD44, while low-risk
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patients tended to express higher levels of 10 immune checkpoint

genes, including LAG3, PDCD1LG2, IDO2, KIR3DL1, CD244,

CD48, CD40LG, TMIGD2, CD160, CD96 (Figure 6E). To access

the power of the signature for predicting the response to

immunotherapy, immunophenoscore (IPS) calculated and patients

in low-risk group had a higher IPS, suggesting that patients in this

groupmight have a better response to immunotherapy (Figures 6F–I).

Drug response features underlying the
CRLncRNAs

In addition to immunotherapy, we also explored the

association between the risk score and the efficacy of targeted

therapy and chemotherapy for HCC patients. The results

suggested that the IC50 of trametinib, talazoparib was

FIGURE 2
Identification of cuproptosis-associated lncRNAswith prognostic value in hepatocellular carcinoma (HCC) patients (A,B) LASSOCox regression
with a 10-fold cross-validation for the prognostic value of the cuproptosis-associated lncRNAs. (C) Kaplan-Meier analysis of the OS rate of training
set patients in the high- and low-risk groups (D) Kaplan-Meier analysis of the OS rate of validation set patients in the high- and low-risk groups. (E)
Kaplan-Meier analysis of the DFS rate of HCC patients in the high- and low-risk groups (F) Risk score distribution, survival status for patients in
high- and low-risk groups from training set. (G) Risk score distribution, survival status for patients in high- and low-risk groups from validation set.
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positively correlated with risk score and the IC50 of 5-

fluorouracil, doxorubicin, gemcitabine, mitomycin C,

paclitaxel, sorafenib, sunitinib, tipifarnib, tivozanib,

vinorelbine was negatively correlated with risk score

(Supplementary Figure S4), which helps explore individualized

treatment strategy HCC patients.

Discussion

HCC is the third leading cause of cancer-related death

worldwide. The high molecular and clinical heterogeneity of

HCC results in inefficient treatments and poor prognosis (Wörns

and Galle, 2014). Integrating multiple biomarkers and clinical

features into a single model could improve the accuracy of

prediction and help formulate individualized treatment plans

when compared with a single biomarker. In the present study,

we identified CRLncRNAs and constructed a prognostic signature,

which was associated with mutation landscape, the tumor

microenvironment, and immunotherapy response of HCC

patients. We also explore potential mechanisms through gene

enrichment analysis.

We identified 211 CRLncRNAs associated with the overall

survival of HCC patients via univariate regressions analysis. Then

nine lncRNAs were conformed and developed lncRNA signature

for prognostic prediction. Different kinds of predictive lncRNA

signatures for HCC patients have been reported in previous

studies (Huang et al., 2021; Li et al., 2021; Wang et al., 2021;

Yang et al., 2021). Li et al. reported an eight m6A-related lncRNA

signature with AUC of 0.633, 0.651, and 0.638 at 1-, 3–5-year (Li

et al., 2021). While the highest AUC of the immune- and

ferroptosis-related lncRNA signature in 5 years was 0.761 in

the study by Huang (Huang et al., 2021). In our study, the lowest

AUC in 5 years is 0.753, which indicates this CRLncRNAs

signature has strong predictive power.

The critical contribution of this study is to demonstrate the

relationship between CRLncRNAs signature and tumor

microenvironment. Notably, it is worth noting that TME not

only plays a vital role in the development of tumors but also has

an important impact on immunotherapy response and overall

survival (Hinshaw and Shevde, 2019; Fane and Weeraratna,

2020; Petitprez et al., 2020). Functional enrichment analysis

showed that CRLncRNAs were mainly related to cytokine-

cytokine receptor interaction, the phosphatidylinositol 3-

kinases/protein kinase B (PI3K-AKT) signaling pathway and

immune pathways. Cytokines are major regulators of the

innate and adaptive immune systems that allow cells of the

immune systems to communicate over short distances in

FIGURE 3
Evaluation of the prognostic cuproptosis-associated lncRNAs signature (A) ROC curve and AUCs at 1-year, 3-years and 5-years survival for the
predictive signature. (B) The ROC curve of the risk score and clinicopathological variables (C) C index of the risk score and clinicopathological
variables. (D) Forest plot for univariate Cox regression analysis. (E) Forest plot for multivariate Cox regression analysis.
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paracrine and autocrinefashion (Waldmann, 2018). Cytokine

and cytokine receptor interaction networks were regarded as

crucial effects on inflammation and oncogenesis (Dranoff, 2004).

Cytokines and its receptors, such as tumor necrosis factor and

interleukin 6, were important factors in the development of HCC

and affected the immunotherapy effect (Kern et al., 2018;

Derynck et al., 2021). PI3K-AKT signaling pathway was a

classical intracellular signaling receptor to react extracellular

stimulators. The PI3K/AKT pathway was dysregulated in both

initiation and progression of HCC (Whittaker et al., 2010). To

explore whether the signature could predict the efficiency of

immunotherapy for HCC patients, we first checked the

expression levels of 48 immune checkpoints genes and found

that more than half of these genes were related to the risk score.

Tumor immune microenvironment was also evaluated between

two groups. Patients with high-risk scores had lower proportions

of CD8+ T cells and higher proportions of M0 macrophages and

M2 macrophages, which indicated the roles of CRLncRNAs in

regulating the tumor microenvironment. As we know, CD8+

T cells are the main effectors in antitumor immunotherapy

while M2 macrophages, working as immunosuppressive cells,

promote tumor growth and invasion (Pitt et al., 2016). Patients in

high-risk group are more likely to be “cold” tumors characterized

by resistance to immune checkpoint therapy. IPS, derived from

four major gene categories, could work as a superior predictor for

immunotherapy (Charoentong et al., 2017). Then we calculated

IPS to predict immunotherapy response, patients in low-risk

group had a higher IPS, suggesting that patients in this group

might respond better to immunotherapy. This is consistent with

result of the tumor immune microenvironment analysis.

FIGURE 4
Clinical prognostic nomogram for survival prediction and subgroup analysis (A) A nomogram combining clinicopathological variables and risk
score predicts 1, 3, and 5 years OS of HCC patients. (B)Calibration plots for 1-, 3-, and 5-years survival predictions (C–H) Subgroup survival analysis in
the high- and low-risk groups, (C) Age ≤65 (D) Age > 65 (E) Male patients (F) Female patients (G) Stage Ⅰ-Ⅱ (H) Stage Ⅲ-Ⅳ.
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Recent studies show that cuproptosis is a promising new target for

cancer treatment. Copper ionophores have shown promising

applications in overcoming drug resistance of cancer cells and

targeting cancer stem cells. This is due to the intrinsic selectivity of

copper ionophores in preferential induction of cancer cell clusters

compared with normal cells (Oliveri, 2022). Another study by Voli

et al. showed that copper supplementation promotes PDL1 expression

and intratumor copper levels might enhance immunotherapy

response (Voli et al., 2020). Our study and previous studies

indicate that copper plays an important role in antitumor

treatment and immunotherapy. FDX1 is the key regulators of

copper ionophore–induced cell death, which encodes a reductase

known to reduce Cu2+ to its more toxic form, Cu1+, and is adirect

target of elesclomol (Tsvetkov et al., 2019; Tsvetkov et al., 2022).

Recent pan-cancer analysis revealed that FDX1 could be a novel

biomarker in the prognosis and immunotherapy in human tumors,

which could provide a basis for drug use in certain tumors (Ma et al.,

2022; Zhang et al., 2022).

FIGURE 5
Gene enrichment and TMB in high- and low-risk groups (A)GO enrichment analysis (B) KEGG enrichment analysis (C)Waterfall plots displaying
the mutation landscapes of the low-risk group. (D) Waterfall plots displaying the mutation landscapes of the high-risk group. TMB, tumor mutation
burden; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological process; CC, Cellular component; MF Molecular
function.
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The current study had several limitations. First, we constructed

and validate the prognostic model with a single retrospective data

source. Second, some well-known prognostic factors for HCC such as

AFP and microvessel invasion were not involved in the nomogram

because of incomplete data for these parameters. Thus, a prospective

study is needed to verify the predictive value of the signature. In

addition, functional biological experiments should be carried out to

further validate the results.

In summary, the cuproptosis-related lncRNA signature

could effectively predict the prognosis and immunotherapy

response of HCC patients. Immune analysis verified the

association between the risk score and tumor

microenvironment. Thus, our results offer a reasonable

explanation for the distinct prognoses of patients and

provide a rationale for exploring biomarkers and

antitumor treatment strategies.

FIGURE 6
Immune related analysis in high- and low-risk groups (A) Differences in the infiltration of immune cells between the high- and low-risk groups.
(B–C)Comparison of immune score (B), and stromal score (C) between the high- and low-risk groups (D) The correlation between the signature and
13 immune-related functions. (E) Differential expression of immune checkpoint genes between the high- and low-risk groups (F–I) IPS values of
patients categorized according to risk score of four subtypes [IPS-CTLA4-neg-PD1-neg (F), IPS-CTLA4-neg-PD1-pos (G), IPS-CTLA4-pos-
PD1-neg (H), IPS-CTLA4-pos-PD1-pos (I)]. IPS, Immunophenoscore. *p < 0.05, **p < 0.01, ***p < 0.001.
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