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Abstract

Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called “prokaryotic pathway,” which

produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as

Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor

to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-

phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase

(LPAAT,AGPAT,orPlsC).Herewepresent comprehensivephylogenomicanalysisof theoriginsof variousacyltransferases involved in

the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes

involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous

report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were

separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with

anotherprevious report. These results indicate that the lipidbiosyntheticpathway in thechloroplastsorplastidsdidnotoriginate from

thecyanobacterial endosymbiontand isnot“prokaryotic” in thecontextofendosymbiotic theoryofplastidorigin.This isanother line

of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis.
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Introduction

Glycerolipid biosynthesis in the chloroplast, or more generally

plastids, starts by the synthesis of phosphatidate (PA) by two-

step reactions (see fig. 1 for the pathways). The initial

acylation of glycerol 3-phosphate (G3P) at its sn-1 position

is catalyzed by glycerol 3-phosphate acyltransferase, which

is called GPAT in plants and GPT in animals and yeasts. In

the chloroplasts, it is called ATS1. The second acylation,

namely, the acylation at the sn-2 position of lysophosphati-

date (LPA) or 1-acyl-glycerol-3-phosphate, the product of the

first acylation, is catalyzed by lysophosphatidate acyltransfer-

ase (LPAAT or LPAT in plants, ATS2 in chloroplasts) or 1-acyl-

glycerol-3-phosphate acyltransferase (AGPAT in animals).

Bacterial LPAAT is called PlsC. A part of PA will be used for

the synthesis of phosphatidylglycerol, whereas most of PA will

then be dephosphorylated by PA phosphatases, which are

members of a large family of lipid phosphate phosphatases

(LPPs). The product, diacylglycerol (DAG), will be used for the

synthesis of galactolipids and sulfolipid in the chloroplast.

There are two major galactolipids in the chloroplasts and cya-

nobacteria, namely, monogalactosyl diacylglycerol (MGDG)

and digalactosyl diacylglycerol (DGDG). The specificity of the

two acyltransferases determines the variety of molecular spe-

cies of initial products of galactolipid synthesis within the chlo-

roplast. The acyl groups may then be desaturated, exchanged

by lipid retailoring (or remodeling) processes, or degraded to

give the steady-state composition of lipid molecular species

found in the actual biological membranes.

In plants and algae, fatty acid synthesis is performed pre-

dominantly in the chloroplast (or the plastids in the nongreen
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tissues of plants or the algae of different colors) (Guschina and

Harwood 2006; Merchant et al. 2012; Hori et al. 2016; Li-

Beisson et al. 2015; Bates 2016; Mori et al. 2016; Zienkiewicz

et al. 2016). Mitochondria have a very minor activity of fatty

acid synthesis. Unlike animals and fungi, no cytosolic fatty acid

synthases are present in plants and algae (Archaeplastida).

The fatty acids synthesized within the chloroplasts are either

used for the synthesis of “prokaryotic” acyl lipids directly

within the chloroplasts or transported to the cytosol for the

subsequent synthesis of acyl lipids in the endoplasmic reticu-

lum (ER). The acyl groups are desaturated and/or elongated

there, and then a significant part of them return to the chlor-

oplasts for the synthesis of “eukaryotic” galactolipids. Here

the words “prokaryotic” and “eukaryotic” refer to the differ-

ent biosynthetic origins of lipids. This naming was originally

inspired by the fact that cyanobacterial lipids known at the

time comprised 1-C18-2-C16 species and were thought to be

similar to the molecular species of chloroplast lipids (Zepke

et al. 1978; Roughan and Slack 1982; Sato and Murata

1982). This is not true for all cyanobacteria (e.g.,

Prochlorococcus marinus contains C30 and C28 MGDG,

namely, C14/C16 and C14/C14 molecular species,

respectively; Sato 2015), but the lipids of model cyanobacte-

ria, such as Anabaena and Synechocystis, fit to the simplified

view. The words “prokaryotic” and “eukaryotic” are also

used symbolically to mean that chloroplasts originated from

prokaryotic (or cyanobacterial) endosymbiont (note that

Mereschkowsky 1905 was cited in Introduction of Zepke

et al. 1978 in p. 157), whereas the ER represents the eukary-

otic site of metabolism. This notion was then extended to the

two pathways of lipid biosynthesis: The “prokaryotic

pathway” produces PA within the chloroplasts, whereas the

“eukaryotic pathway” involves the complex traffic of fatty

acids from the chloroplast to the ER and then to the chloro-

plast again (Roughan and Slack 1982; Somerville and Browse

1991; Li-Beisson et al. 2015; Zienkiewicz et al. 2016), al-

though these pathway names were not used initially. In a

primitive red alga Cyanidioschyzon merolae, the synthesis of

a single molecule of MGDG required cooperation of both

pathways, and this was named specifically “cooperative

pathway” (Sato and Moriyama 2007).

The synthesis of specific molecular species of lipids in the

two pathways has been explained by the distinct specificities

of the two acyltransferases producing PA in the chloroplasts

and the ER, respectively. In the current understandings, the

names of the two pathways lost meanings for specific molec-

ular species, but they just indicate two distinct pathways for

the synthesis of plastid lipids. Several papers were published

on the evolution of biosynthesis of plastid lipids, especially

galactolipids (Petroutsos et al. 2014; Hori et al. 2016).

Unfortunately, no phylogenetic analysis was provided in the

study of Petroutsos et al. (2014), which presented comparison

of enzymes in different organisms. Hori et al. (2016) pre-

sented phylogenetic trees, but the number of taxa analyzed

was quite limited, and the bootstrap values of the major

branches were significantly low for deducing evolutionary
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FIG. 1.—Pathways of diacylglycerol synthesis in chloroplasts (A) and cyanobacteria (B). ACP, acyl carrier protein; PA, phosphatidic acid; PAP,

phosphatidate phosphatase; Pi, inorganic phosphate. PlsB, PlsX, PlsY, ATS1, and ATS2 are gene names.
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narratives. We need a more rigorous and convincing phylo-

genetic analysis to understand the origin of lipid biosynthetic

pathways in plastids.

The origin of acyltransferases in the plastids has been be-

lieved naı̈vely to be cyanobacterial enzymes. A report on the

phylogenetic analysis of LPAAT suggested that the chloroplast

LPAAT (ATS2) originated from the cyanobacterial PlsC (Körbes

et al. 2016), but the very limited taxon sampling made us

question this conclusion. The PA phosphatases of the chloro-

plast were characterized as prokaryotic in a previous report

(Nakamura et al. 2007). However, the presented phylogenetic

tree was not convincing to identify the chloroplast PA phos-

phatases as prokaryotic. We therefore exploited the custom-

made phylogenomic clusters obtained by the Gclust software

(Sato 2009) for the comprehensive analysis of acyltransferases

and PA phosphatases to find the origins of these enzymes in

detail. An advantage of using Gclust is its capability to explic-

itly detect the N-terminal extensions or transit peptides of

eukaryotic proteins having homologs in prokaryotes. We al-

ready exploited this advantage of Gclust clusters and suc-

ceeded in analyzing the vast protein families such as the

PsbP proteins (Sato 2010) and the protoporphyrin-IX oxidases

(Kobayashi et al. 2014), the cyanobacterial enzymes in the

galactolipid synthesis (Sato and Awai 2016), as well as the

enzymes in the chloroplast peptidoglycan synthesis (Sato and

Takano 2017).

In this study, we analyzed the phylogeny of the predomi-

nant acyltransferases and PA phosphatases in about 170

organisms encompassing prokaryotes and eukaryotes includ-

ing both photosynthetic and nonphotosynthetic organisms.

The results do not support the previous statements that the

chloroplast enzymes originated from a cyanobacterial endo-

symbiont. The chloroplast enzymes are basically part of con-

served eukaryotic enzymes, but could have diverse, distant

probable origins: Namely, the first acylation enzyme is related

to chlamydial enzymes, and the second acylation enzyme is

related to the homologs in green bacteria, whereas the phos-

phatase originated from eukaryotic enzymes. We will also

discuss the implications of this finding in the light of the theory

of the endosymbiotic origin of plastids.

Data and Methods

Sequence Data

We used the preformed homolog clusters in the Gclust data-

base (Sato 2009) as available in the web site http://gclust.c.u-

tokyo.ac.jp (data set 2012_42) to find clusters including

acyltransferases using known names of proteins. This data

set contained protein sequences of various photosynthetic

organisms (cyanobacteria, photosynthetic bacteria, algae,

and plants) as well as nonphotosynthetic organisms (various

bacteria, Archaea, fungi, protists, and animals). The sequen-

ces obtained from data set 2012_42 are marked by the cluster

number, which appears at the top of each protein ID. The

original sources of the sequences are described in the web

site. We did not detect acyltransferases in Archaea, maybe

because they do not have acyl lipids. To find homologs of red

algae and other organisms, we also used data set

Gclust2017R6, which was an enhanced version of data set

Gclust2016R (Sato and Moriyama 2017), which contained six

red algae and three diatoms as well as small number of other

phyla. Additional sequences in data set Gclust2017R6 were

two Paulinella chromatophore genomes (Nowack et al. 2008;

Lhee et al. 2017), Micromonas commoda RCC299

(MicpuN3v2_GeneCatalog_proteins_20160404, Joint

Genome Institute Genome Portal, Worden et al. 2009),

Micromonas pusilla CCMP1545 (MicpuC3v2_GeneCatalog_

proteins_20160125, Joint Genome Institute Genome Portal,

van Baren et al. 2016), Cyanophora paradoxa (protein

sequences 022111) from the Cyanophora Genome Project

(http://cyanophora.rutgers.edu/cyanophora/home.php, Price

et al. 2012), and Pseudo-nitzschia multiseries CLN-47

(Psemu1_GeneCatalog_proteins_20111011, Joint Genome

Institute Genome Portal). To obtain all available homologs

of ATS1, we performed a BLASTP search for the nr database

of National Center for Biotechnology Information (as of

September 29, 2017) and retrieved 100 homologs for each

of the 28 proteins of the phylogenetic tree in figure 3B. After

removing redundancy, about 350 sequences remained, com-

prising only Chlamydiae bacteria, plants, and algae.

Phylogenetic tree was constructed by the maximum likelihood

(ML) method. The validity of homology clustering by Gclust

was evaluated by calculating an identity score for each align-

ment by the “simtbl” command (enhanced in version 159.44)

of SISEQ (Sato 2000).

Phylogenetic Analysis

In the attempt of all-inclusive phylogenetic reconstruction, we

used all acyltransferase sequences as a whole to construct a

single large tree. The methods of alignment and phylogenetic

reconstruction were essentially identical to those used in a

previous paper on the phylogeny of peptidoglycan synthesiz-

ing enzymes (Sato and Takano 2017): Protein sequences were

aligned by the software Muscle version 3.8.31 (Edgar 2004).

The alignment was visualized by the software Clustal X ver-

sion 2 (Larkin et al. 2007). Distant sequences were removed,

and ill-aligned N- and C-terminal ends were trimmed by the

“getclu” command of the software SISEQ (Sato 2000). Only

the sites having gaps in less than 20% of the total sequences

were used for the calculation (“gap 0.2” option of “getclu”

command).

To validate alignments, the HoT (heads or tails) method

was applied (Landan and Graur 2007) by using the “rev”

option of the “getclu” command of SISEQ. In this procedure,

a multifasta file was reversed to obtain a “tails” fasta file,

which was then aligned by muscle, and then reversed again.
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After applying the “gap 0.2” command, the heads alignment

and the tails alignment were compared. For this purpose, the

order of sequences within the alignment was sorted (the

“sort_name” option of the “getclu” command), and then

all the site data were retrieved as a single file (the

“site_dump” option). After checking the divergent removal

of sites by the gap removal process, the two files were treated

as two sets of transposed sequences, and the differences

were counted on the file prepared by the “save column

scores” command of Clustal X. Only 1.9% of residues were

inconsistent in the two alignments (heads and tails) of ATS1.

In ATS2 and PlsC, about 90% of residues were consistent,

and only 7 sites within the total 167 sites (except 4 sites that

were differently removed in the heads and tails processing)

were significantly different. This did not affect significantly the

tails tree of ATS2 and PlsC (supplementary fig. S13,

Supplementary Material online). Essential similarity of the tails

tree with the heads tree (fig. 4) suggested the validity of the

sequence alignment and phylogenetic analysis. For LPP, the

conservation of heads and tails was inferior. We performed

GUIDANCE2 analysis (Sela et al. 2015) and selected 50% of

the total 165 sites to prepare an ML tree (supplementary fig.

S14, Supplementary Material online), which was essentially

similar to the tree in figure 6, although some mixing of taxa

occurred due to lower resolution resulting from smaller num-

ber of sites. The results supported the validity of the alignment

and phylogenetic tree of LPP.

Initial phylogenetic tree was constructed by the ML method

using the software PhyML version 3 (Guindon et al. 2010)

(options were: -d aa –m LG –s BEST –b -5). Then, removal

of distant sequences, trimming of both ends, realignment,

and ML calculation were repeated (about ten times) to obtain

a reasonably reproducible tree. The sequences in Cluster

33000 were very long, and therefore, only the homologous

region was identified and used in the alignment with all other

sequences. In the initial analysis, PlsX and PlsY were also in-

cluded with all other acyltransferases, but inclusion of these

distant sequences prevented construction of reliable trees: the

positions of various clusters changed with trials. That is why

PlsX and PlsY were not included in the comprehensive phylo-

genetic reconstruction, but they were analyzed individually.

According to the result of all-inclusive phylogenetic tree,

we selected closely related clusters, which were then analyzed

individually. In this case, Bayesian inference (BI) analysis was

also performed using the software MrBayes version 3.2.6

(Ronquist et al. 2012). LG model was used in both PhyML

and MrBayes calculations. Other parameters in MrBayes were

rates¼ invgamma (in some cases, gamma), ratepr¼ variable,

and ngen¼ 2,000,000 (up to 50,000,000). samplefreq and

burnin were appropriately set depending on the value of

ngen. The burnin values were set to remove a half of the

generated trees. All the calculation was performed in

the Linux and MacPro workstations in the laboratory or in

the supercomputer in the Human Genome Center, the

University of Tokyo. Graphical representation of the final trees

was prepared by the software FigTree version 1.4.2 (http://

tree.bio.ed.ac.uk/software/figtree/), followed by decoration

by Adobe Illustrator version CS6.

The position of the root in some important trees was esti-

mated using the R script of the MAD software (Tria et al.

2017).

In the main text, we show mainly collapsed versions of

phylogenetic trees for simplicity in many cases. The full ver-

sions of both BI and ML trees are presented in supplementary

figures, Supplementary Material online. The multiple align-

ments that were used for the phylogenetic calculations (after

removing ill-aligned N- and C-terminal ends and gap sites) are

also available as supplementary data, Supplementary Material

online.

Results

All-Inclusive, Global Analysis of Acyltransferases

We first collected various homologs of known acyltransferases

from the Gclust database (data set Gclust2012_42) containing

all proteins of 169 organisms. As we collected sequences, we

learned that some of the enzymes involved in the first acylation

andthesecondacylationarehomologs. Itwasalso true that the

plant LPAATs and GPATs were separated into several different

subclusters (table1). Wealso included sequences fromrecently

sequenced red algal genomes (data set Gclust2017R6). The

clusters of Gclust were “protein clusters” but not “domain

clusters.” Gclust is similar to other clustering tools such as

OrthoMCL (http://orthomcl.org/orthomcl/), but specialized

for comparing organellar and bacterial homologs (Sato

2009). Homologous proteins can be present in different clus-

ters depending on additional domains or short sequence

motifs. In the phylogenomic analysis that we attempted, all

these homologs had to be assembled. The situation is shown

in table 1. Each of the Gclust clusters contained homologs that

were characterized by a mean identity score, ranging from

about 0.25 to0.45. The identity score was higher in some small

clusters. As expected, large clusters had lower identity scores.

The values were roughly similar to or higher than those calcu-

lated for protein or domain clusters in the public databases

(lower rows of table 1). We collected as many clusters as pos-

sible foracyltransferasesandconstructeda largemultiplealign-

ment (supplementary data S1a, Supplementary Material

online). Weak homology was detected throughout the entire

acyltransferases (identity score¼ 0.240 6 0.130). Related clus-

ters of LPPs were also assembled. The identity score of each

group of sequences for a tree construction (acyltransferases

and phosphatases) ranged from 0.23 to 0.40, which justified

that the groups were indeed homologous, and relevant for

constructing phylogenetic trees.

Figure 2 shows a global phylogenetic tree showing the

overview of the acyltransferases. There were two major
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branches containing different InterPro motifs, IPR002123 and

IPR004299 (see the web site of European Bioinformatics

Institute: http://www.ebi.ac.uk/), which were supported by a

high confidence level. The IPR004299 motif included mostly

lysophospholipid acyltransferases (LPLAT). The bacterial PlsB,

such as the one known in Escherichia coli, is a very large en-

zyme, and this type of acyltransferase was only present in the

gamma-proteobacteria (the Cluster 33000). This cluster was

located within the group containing the IPR004299 motif, but

the reliability of the branching was not high. In fact, the po-

sition of this cluster changed with different sets of clusters

and, therefore, was no longer studied.

In the clade having the IPR002123 motif, a single major

cluster (Cluster 488) contained various LPAATs, such as the

bacterial PlsC, the chloroplast ATS2, and the animal AGPAT.

The GPAT clusters, namely, the Cluster 9855 including the

fungal GPT and the Cluster 7661 including the chloroplast

ATS1 and its chlamydial homologs, were found closely related

to the Cluster 488, although the confidence level of the

branching was not high. Various eukaryotic GPATs (Clusters

949, 5766, and 7815) and LPAATs (Clusters 4244 and 6202)

were also present in the large group containing IPR002123.

Because some major branches had low values of confidence,

we decided to perform phylogenetic analysis for smaller

clades as shown below. The full phylogenetic tree of figure 2,

too large to be presented as a single figure, can be visualized

by the FigTree software with the tree file supplied in supple-

mentary data S1b, Supplementary Material online.

Enzymes Involved in the First Acylation in the Chloroplasts
and Cyanobacteria

Figure 3 summarizes the phylogenetic trees of enzymes in-

volved in the first acylation, namely, G3P acyltransferases. In

Table 1

Sequence Similarity Within the Gclust Clusters and the Alignments for Trees

Tree Name Figure # Gclust2012 Gclust2017R6 Merge

Cluster # # of seq E-value Identity Cluster # # of seq E-value Identity Identity

ATS1 3B 7661 26 1.00E-80 0.452 6 0.131 2193 17 1.00E-45 0.360 6 0.103 0.405 6 0.117

PlsX 3A 1241 117 1.00E-31 0.405 6 0.131 not used n/a

PlsY 3C 937 141 1.00E-22 0.420 6 0.112 not used n/a

ATS2 & PlsC 4 488 190 1.00E-10 0.250 6 0.100 1090 26 1.00E-50 0.319 6 0.098 0.270 6 0.098

5855 7 1.00E-50 0.487 6 0.084

4242 42 1.00E-28 0.420 6 0.113 7159 6 1.00E-45 0.427 6 0.082

LPP 6 1284 113 1.00E-60 0.453 6 0.175 1174 25 1.00E-12 0.252 6 0.070 0.231 6 0.115

2041 76 1.00E-16 0.260 6 0.104

7867 25 1.00E-35 0.433 6 0.177

7879 25 1.00E-80 0.545 6 0.190

10402 19 1.00E-50 0.348 6 0.143

10903 18 1.00E-50 0.519 6 0.186

32991 5 1.00E-45 0.339 6 0.137

49241 3 1.00E-60 0.545 6 0.046

GPT4 S8 5749 33 1.00E-60 0.388 6 0.184 838 30 1.00E-50 0.246 6 0.091 0.260 6 0.113

6695 29 1.00E-45 0.247 6 0.129

16298 12 1.00E-25 0.639 6 0.314

LPAAT7 5 4244 42 1.00E-99 0.405 6 0.207 1066 26 1.00E-70 0.243 6 0.063 0.302 6 0.132

6202 31 1.00E-50 0.392 6 0.181

LPAAT9 S7 5766 33 1.00E-70 0.400 6 0.195 1492 21 1.00E-70 0.355 6 0.106 0.333 6 0.162

7815 25 1.00E-45 0.334 6 0.171

Reference clusters for comparison (acyltransferases)

NCBI CPDF cd07984 100 n/a 0.176 6 0.043

cd07989 100 n/a 0.173 6 0.050

InterPro IPR004552 100 n/a 0.371 6 0.255

100 n/a 0.264 6 0.122

1000 n/a 0.278 6 0.108

Pfam PF01553 100 n/a 0.156 6 0.056

100 n/a 0.150 6 0.050

Note.—The original clusters from Gclust2012 and Gclust2017R6 were individually aligned. The average identity6 standard deviation was calculated over all sequence pairs
within each cluster. “Merge” indicates the data for the actual sequence alignments used for the phylogenetic tree construction. Comparable data of homologous sequence family
were obtained from NCBI Cluster of Protein Domain, InterPro, and Pfam, and the average identity score was calculated in a similar way. “E-value” is the threshold of E-value. “n/a”
indicates not applicable. For Reference clusters, 100 or 1000 sequences were arbitrarily taken from the original data and analyzed.
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bacteria, this step consists of two reactions: PlsX catalyzes the

synthesis of acyl phosphate, whereas PlsY transfers this acyl

group to G3P (fig. 1). In the original report (Lu et al. 2006),

PlsX and PlsY were discovered in pathogenic Gram-positive

bacteria, but most bacteria, including cyanobacteria, contain

both PlsX and PlsY (fig. 3A and C). The chromatophore

genomes of the two species of Paulinella (Nowack et al.

2008; Lhee et al. 2017) also encode plsX and plsY genes.

This is consistent with the idea that the chromatophores of

Paulinella originate from a recent endosymbiosis, which is dis-

tinct from the plastid endosymbiosis. None of the plants and

algae contained these genes.

The acylation of G3P is catalyzed by ATS1 in the chlor-

oplasts (fig. 3B). Curiously, the genomes of two chlamyd-

ial species (we used only two representative chlamydial

species in the Gclust database) also encode homologs of

the ATS1 gene named plsB, although they also encode

plsX but not plsY. No homologs of chloroplast ATS1 are

present in bacteria except these chlamydial sequences

within the Gclust databases. To complement the results,

we obtained all available homologs from the nr database

of NCBI. We found homologs in only Chlamydiae bacteria,

plants and algae. Some sequences of Apicomplexa were

also found, but they have a long N-terminal domain, and

might not be orthologs. The phylogenetic tree of all these

sequences (fig. 3D) was consistent with the tree in

figure 3B. The branching of diatom sequences (shown in

yellowish orange) was different in figure 3B and D, but the

reliability of the branching was 1.0 for both the

Chlamydiae clade and the plants/algae clade. According

to the rooting with the MAD software (Tria et al. 2017) as

shown in figure 3D, we can imagine that Chlamydiae ac-

quired ATS2 from algae, not vice versa. This point should

be studied further. These results indicate that the G3P

acylation is catalyzed by completely different enzymes in

the chloroplasts and cyanobacteria. The original align-

ments of PlsX, ATS1, and PlsY are provided as supplemen-

tary data S2–S4, Supplementary Material online,

respectively. The detailed phylogenetic trees of PlsX are

provided as supplementary figures S1 (BI method) and S2

(ML method), Supplementary Material online, whereas

the trees of PlsY are found in supplementary figures S3

(BI method) and S4 (ML method), Supplementary Material

online. Uncollapsed ML tree of figure 3D is shown in sup-

plementary figure S5, Supplementary Material online.

Enzymes Involved in the Second Acylation in the
Chloroplasts and Cyanobacteria

Figure 4 shows a phylogenetic tree of all members of Clusters

488 and 4242. Each cyanobacterium contains two PlsC, one

in Cluster 488 and the other in Cluster 4242. Cluster 4242 is

not very different from Cluster 488 in overall alignment (sup-

plementary data S6, Supplementary Material online: note that

both N- and C-terminal ends were removed), but two short

additional sequences are inserted. For example, a member of

Cluster 4242, Sll1752 of Synechocystis sp. PCC 6803, con-

tains two insertions: AGRGVTG after the position 39 (be-

tween ILLSLA and RDLRFM) in the alignment (note that this

is a de-gapped alignment) and CKQNPNT from the position

119 (between IAMEV and DIKVI). Another copy of PlsC in

Synechocystis sp. PCC 6803, Sll1848, is a member of Cluster

488. In the phylogenetic tree, the chloroplast homologs of

bacterial PlsC, named ATS2, were clearly separated from the

two cyanobacterial PlsC homologs. The clade containing

enzymes of mostly cyanobacteria, actinobacteria, Firmicutes,

and chlamydia was supported by a high value of confidence.

The values shown in figure 4 was 0.96/– for BI/ML, but close

examination of the original ML tree (supplementary fig. S7,

Supplementary Material online) indicated that the clade con-

taining the two cyanobacterial clades and various bacteria

(actinobacteria, chlamydia, green bacteria, or Firmicutes)

was also supported by the value 1.0. On the other hand,

the clade containing all the eukaryotes and some bacteria

was supported by high confidence (0.98/1 for BI/ML) in figure

4, although some differences in internal branching were noted

in BI and ML trees. Figure 4 was rooted using the MAD soft-

ware, and this position of the root seemed to be reasonable.

These results indicate that the two cyanobacterial clades and

the plants/algae clade were clearly separated as distant clades,

despite small differences in the position of some bacterial

sequences with respect to the cyanobacterial clades.

Arabidopsis thaliana has only a single ATS2, whereas some

other plants such as rice contains another enzyme, which was

closely related to the PlsC of gamma-proteobacteria (fig. 4

and see supplementary figs. S6 and S7, Supplementary

Material online for details). These enzymes were predicted

to be targeted to mitochondria. Animal AGPAT and fungal

SLC1 (these are microsomal enzymes) were their sister

groups. The chloroplast ATS2 of plants and algae (including

the red algae and the glaucophyte) formed a single clade,

which was sister to the clade of green bacterial PlsC, which

was also sister to a small clade of diatom homologs. We

noted, however, that the initial tree constructed with the

Gclust 2012_42 data set, namely, before adding the enzymes

of diatoms, red algae, and Paulinella (see Data and Methods),

the green bacterial clade was located entirely outside the eu-

karyotic clade (supplementary fig. S8, Supplementary Material

online). Addition of sequences of diatoms, secondary endo-

symbionts, could have modified the branching pattern. The

rooting using the MAD method was somewhat different in

the BI tree and the ML tree (indicated as an alternative root),

but the estimated positions of the root in figure 4 and sup-

plementary figure S8, Supplementary Material online, were

always between the clade containing the cyanobacterial

sequences and the clade containing the eukaryotic sequen-

ces. The support values of the clade consisting of green bac-

teria, eukaryotes, and gamma-proteobacteria were high in
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both figure 4 and supplementary figure S8, Supplementary

Material online, indicating a close relationship of the green

bacterial sequences with the eukaryotic sequences. The pres-

ence of some gamma-proteobacterial sequences (only enter-

obacteria) in a position close to the eukaryotic sequences is

difficult to explain, but they could be acquired from the eukar-

yotes. These results did not agree with the previous claim that

chloroplast ATS2 originates from cyanobacterial PlsC (Körbes

et al. 2016). Chloroplast ATS2 (and eukaryotic homologs)

might have originated from the green bacterial PlsC, but we

need further studies.

Acyltransferases in the ER

Acyltransferases are also present in the ER. Although these

enzymes are not primary focus of this study, we suspected if

some of these originate from cyanobacteria. Many eukaryotic

GPAT enzymes are found in Cluster 5766 (supplementary fig.

S9, Supplementary Material online: alignment is in supple-

mentary data S8, Supplementary Material online). They

were divided into the clades of plants/algae and animals.

This cluster was sisters to the putative LPAT or LPCAT in

Cluster 7815. No cyanobacterial or prokaryote sequences

were present in these clusters.

The enzymes of LPA acylation were also found in Clusters

4244 (including plant LPAT2/3) and 6202 (including plant

LPAT4/5) (fig. 5: alignment is in supplementary data S7,

Supplementary Material online). Enzymes of plants and ani-

mals were present in these two clusters, whereas fungal

CST26 (in Cluster 4244) was related to Cluster 6202 of ani-

mals and plants. Red algal and glaucophyte enzymes were

found only in the clade related to Cluster 4244, but curiously,

they were not sister to the plant LPAT2/3. Note that the hu-

man enzyme in Cluster 6202 is annotated as lysocardiolipin

acyltransferase. The three human enzymes in Cluster 4244

are annotated as AGPAT. No cyanobacterial or prokaryote

homologs were found in these clusters.

The phylogenetic tree of enzymes having the InterPro motif

IPR004299 is shown in supplementary figure S10 (alignment

in supplementary data S9), Supplementary Material online.

They included Clusters 5749 (membrane-bound acyl trans-

ferases or LPLAT), 6695 (mostly protist enzymes), and

16298 (protein-serine O-palmitoyltransferase: porcupine or

PORCN). The red algal and diatom enzymes were not clus-

tered with the plant and green algal enzymes, but with the

protist enzymes. One of the two glaucophyte enzymes was

found in the animal clade, and the other was related to the

plant and green algal enzymes. These results showed that

there is no acyltransferase of cyanobacterial origin in the en-

tire lipid biosynthetic pathways in plants and algae.

Phylogenetic Analysis of PA Phosphatases

PA phosphatases are very diverse enzymes found in both

prokaryotes and eukaryotes. They are dispersed in many

clusters in the Gclust database (data set Gclust2012_42):

We found Clusters 1284, 7867, 7879, 10402, 10903,

32991, and 49241, as well as some singletons for eukaryotic

LPPs. We also found Cluster 2041 for various prokaryotic and

some algal enzymes. In addition, we have collected homologs

from the data set Gclust2017R6 for red algal, glaucophyte,

and diatom sequences (Cluster 1174). All these sequences

were homologs as evidenced by the average identity values

in table 1. Figure 6 shows a simplified (collapsed) phylogenetic

tree of all these enzymes (alignment is in supplementary data

S10, Supplementary Material online). It is clear that they were

simply separated into eukaryotic and prokaryotic clades, ex-

cept one of the two clades of green bacterial enzymes, which

was found within the eukaryotic clade. This dichotomy was

consistent with the rooting with the MAD software. The con-

fidence values of this major dichotomy were not high in BI

analysis, because the position of this green bacterial clade was

variable depending on calculations. Apart from such ambigu-

ity, the separation of prokaryotic enzymes and eukaryotic

enzymes was nearly complete. This was also supported by

the tree constructed from reliable sites estimated by the

GUIDANCE2 software (supplementary fig. S14,

Supplementary Material online). This situation is very different

from the phylogenetic tree presented in the work of

Nakamura et al. (2007), stating that chloroplast enzymes

were prokaryotic and possibly originated from cyanobacteria.

This difference could be a result of large differences in taxon

sampling and methods of phylogenetic reconstruction.

In the present tree of PA phosphatases, eukaryotic clades

consisted of the a–b subclade and d–c–e subclade. The latter

was subdivided into the d group and the c–e group. Except for

the d group, each group consisted of both plant and animal/

fungal enzymes, suggesting an ancient origin of these five

groups. The chloroplast-localized isozymes, LPPc
(AT5G03080), LPPe1 (AT3G50920), and LPPe2
(AT5G66450), were found within the eukaryotic c–e sub-

clade. If we divide all the enzymes into (prokaryotic clade

plus d–c–e subclade) and a–b subclade (see the ML tree in

supplementary fig. S12, Supplementary Material online), this

corresponds roughly to the phylogenetic tree shown in the

work of Nakamura et al. (2007). Even in this case, the pres-

ence of both plant and animal/fungal enzymes within each

group, a, b, c, and e, was not compatible with the idea that

the chloroplast enzymes originated from a cyanobacterial

endosymbiont.

Discussion

Non-Cyanobacterial Nature of the “Prokaryotic Pathway”

The pathway of lipid biosynthesis within the chloroplast has

been called “prokaryotic pathway” since the 1980s. This no-

tion evoked that the lipid biosynthetic capacity of the chloro-

plast was acquired from a cyanobacterial endosymbiont.

Galactolipids such as MGDG and DGDG are common basic
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constituents of the thylakoid membranes of chloroplasts and

cyanobacteria. It is now established that these galactolipids

are synthesized by entirely different, independent pathways in

chloroplasts and cyanobacteria (Sato and Murata 1982; Awai

et al. 2006, 2007; Sakurai et al. 2007; Awai et al. 2014; Sato

and Awai 2016). This study adds further evidence for the
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differences in the pathways of lipid biosynthesis in the chlor-

oplasts and the cyanobacteria.

DAG, a direct precursor for the synthesis of galactoli-

pids, is produced by dephosphorylation of PA. As summa-

rized in figure 1, the acylation of G3P, the initial step of PA

synthesis, is catalyzed by entirely different pathways in

cyanobacteria and chloroplasts. Cyanobacteria use PlsX

and PlsY, whereas chloroplasts use ATS1, an enzyme

unique to photosynthetic eukaryotes, but probably re-

lated to chlamydial PlsB. A large family of LPAAT enzymes

are involved in the second acylation step in bacteria and

eukaryotes: Cyanobacteria use two types of PlsC

enzymes, as in many other bacteria (having one or two

copies of PlsC), whereas chloroplasts use ATS2, which is

distinct from the cyanobacterial PlsC within the LPAAT

family. The closest prokaryotic relative of the chloroplast

ATS2 is the PlsC of green bacteria, but the results of sup-

plementary figure S8, Supplementary Material online,

rather suggested that all of the eukaryotic ATS2/LPAAT

enzymes are distinct from the prokaryotic enzymes from

the origin of eukaryotes (i.e., not a product of horizontal

gene transfer).

It appears that the dephosphorylation of PA is catalyzed by

various different enzymes in bacteria and chloroplasts.

Enzymatic activity of a cyanobacterial PA phosphatase

(Sll0545) demonstrated in yeast transformants (Nakamura

et al. 2007). In plants, various phosphatases belonging to

the LPP family have been known to act as PA phosphatases

(Nakamura et al. 2007). Among them, LPPc, LPPe1, and LPPe2
were considered as the chloroplast-localized PA phospha-

tases. PA phosphatases might be quite variable depending

on organisms. In the red alga C. merolae, CMT106C was

targeted to the cytosol, whereas all other PA phosphatases

identified by homology were localized to the ER (Mori et al.

2016). No PA phosphatase has yet been localized to the plas-

tid in C. merolae.

It is also noted that not all bacterial species appeared in the

LPP tree (fig. 6), even though we used a comprehensive com-

parative genome database including many prokaryotes from

representative phyla. This could indicate that many bacteria

do not possess this enzyme (DAG is not necessary for bacterial

phospholipid biosynthesis in general). However, some

enzymes must still have escaped identification. For example,

we did not identify PA phosphatase homologs in various

strains of P. marinus, a vast group of marine cyanobacteria,

which also contain galactolipids as major membrane lipids

(see, e.g., Sato 2015). Obviously, various phosphatases are

encoded by the genomes of Prochlorococcus, and we will

have to specify putative PA phosphatase in the future. To

this end, we detected putative phosphatases (HAD-like

phosphatases like eukaryotic PAH1/2) in the chromatophore

genome of Paulinella, which have homologs in cyanobacteria

and other prokaryotes (Clusters 4706 and 7215 in

Gclust2017R6), and could be involved in the

dephosphorylation of PA or phosphatidylglycerol phosphate.

This is a strategy that we took in identifying the epimerase

gene mgdE in cyanobacteria (Awai et al. 2014). The chro-

matophore genome of Paulinella conserves various essential

genes for the synthesis of lipid synthesis within the chromato-

phore, and this fact provides a convenient method of identi-

fying cyanobacterial homologs. In any case, these are

prokaryotic enzymes and different from eukaryotic LPPs.

Based on these results, we can conclude that the pathway

of DAG synthesis in the chloroplast did not originate from the

corresponding pathway in cyanobacteria.

Taken together, the pathway of lipid biosynthesis starting

from G3P until DGDG is fundamentally different in cyanobac-

teria and chloroplasts except DgdA in C. merolae that we

identified before (Awai et al. 2007; Sakurai et al. 2007). In

other words, the “prokaryotic pathway” of chloroplast lipid

biosynthesis did not originate from cyanobacteria and was not

a result of endosymbiosis, even if the chloroplasts are sup-

posed to be a descendant of a cyanobacterial endosymbiont

(Archibald 2015; Sato 2016).

Revision of Previous Phylogenetic Analyses

Körbes et al. (2016) showed a close relationship between the

cyanobacterial PlsC and the chloroplast ATS2. They used only

the PlsC domain (125 amino acid residues in the final align-

ment) of a very limited number of related taxa (208 sequences

of 44 species) in constructing a phylogenetic tree of all LPAATs

(namely, prokaryotic, eukaryotic, and organellar ones). This

could account for the sister relationship of cyanobacterial

and chloroplast LPAATs, which they showed in the paper. In

contrast, we used a fairly large number of bacterial PlsC in

inferring phylogenetic relationship between the plant and

cyanobacterial homologs. The region of sequence analysis in-

cluded the domain used by Körbes et al. (2016), but was

larger (325 and 171 amino acid residues, before and after

gap removal, respectively). We subdivided the phylogenetic

analysis into closely related sequences according to the initial

classification (fig. 2). The fact that the selection of homologs

was based on the rational clustering by the Gclust made it

easy to construct these subdivided phylogenetic trees. As a

result, we found many taxa between the clade of cyanobac-

terial PlsC and the clade of chloroplast ATS2 (figs. 2 and 4),

which clearly indicated that the chloroplast ATS2 did not orig-

inate from cyanobacterial PlsC.

The phylogenetic tree of PA phosphatases in this study is an

alternative to the previously published one (Nakamura et al.

2007). We already discussed this discrepancy with the authors

of the paper, who are, in fact, collaborators in our different

projects. We are sure that they will agree with us that we will

no longer be able to use the notation “prokaryotic” (this

appeared in the title of the paper) for the chloroplast-

localized phosphatases, which were identified as eukaryotic

as described above.
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Non-Cyanobacterial Origin of Chloroplast Membranes

The results of this study suggest that the pathway of galacto-

lipid synthesis is different in the chloroplasts and cyanobacte-

ria (fig. 7). None of the enzymes involved in the synthesis of

MGDG and DGDG are shared by cyanobacteria (blue) and

chloroplasts (green). Similar 1-C18-2-C16 species of these

lipids are synthesized in both cyanobacteria and chloroplasts,

but this is not a result of the working of “prokaryotic

pathway” in the chloroplasts. We might call the plastid-

localized pathway of lipid biosynthesis “plastid pathway” in-

stead of “prokaryotic pathway.” As a corollary, it might be

better to call the pathway in the ER “ER pathway” rather than

“eukaryotic pathway.” Nevertheless, because this is a com-

plex pathway involving both ER and plastid envelope, the

eukaryotic pathway could still be used. The pathway localized

in the ER membrane (red) is essentially shared by all eukar-

yotes, including plants, algae, protists, fungi, and animals. The

“eukaryotic lipid” such as the 1-C18-2-C18 species might be

specific to the plants and algae, because the animals and

fungi typically contain 1-saturated-2-unsaturated species. In

marine red algae, the 1-C20-2-C20 species of MGDG and

DGDG (Sato et al. 2017) are typically produced as a result

of transport of precursor lipid from the ER to the chloroplasts.

Therefore, the meaning of “eukaryotic lipid” is ambiguous.

Only the pathway is important.

In many popular drawings of the theory of the endo-

symbiotic origin of chloroplasts (e.g., fig. 1 of Archibald

2015), a cyanobacterial cell is engulfed by a host cell, giv-

ing a symbiotic cell. The resultant chloroplast possesses

two envelope membranes and numerous thylakoid mem-

branes, which are typically colored like the cytoplasmic

membranes and thylakoid membranes of the cyanobacte-

rial progenitor (such as fig. 2 of Petroutsos et al. 2014).

Such picturesque view on the endosymbiotic origin of

chloroplasts might be misleading, because all membranes

of chloroplasts contain galactolipids that are synthesized

by the enzymes that did not originate from cyanobacteria. If

the membranes of chloroplasts did not originate from cya-

nobacteria, then it will be difficult to draw the chloroplasts,

in such figures, as the cyanobacteria living in a plant cell. In

other words, the popularized visual image of the endosym-

biosis has been collapsed. As proposed already (Sato 2001;

Moriyama and Sato 2014; Sato 2016), there is a clear dis-

continuity in the genomic machinery of chloroplasts, al-

though the chloroplast genome itself is likely a descendent

of some ancestral cyanobacterial genome.

We could imagine that ATS1 originated from Chlamydiae,

because Chlamydia and Parachlamydia (and some related spe-

cies) were the only bacterial phyla that have ATS1 homologs

(fig. 3D). However, a tentative estimation of the root of the

tree suggested that Chlamydiae acquired ATS1 from the al-

gae, but not the other way. It is interesting to note that an

involvement of a chlamydial cell during the establishment of

plastid endosymbiosis was proposed (Ball et al. 2011; Cenci

et al. 2017). These authors hypothesized that the host cell

starved by the damage of pathogen infection could be res-

cued by photosynthesis by cyanobacterial endosymbiont. A

detailed analysis of glycogen-related metabolic enzymes con-

cluded, however, that there is no compelling evidence that

chlamydia played an important role in plastid establishment

(Domman et al. 2015). A critical argument was also given by

Dagan et al. (2013), stating that “only one endosymbiosis

with many lateral gene transfers.”

It should also be noted that several papers described that a

significant part of the chloroplast proteome consists of

enzymes that originated from various prokaryotes other

than cyanobacteria (Qiu et al. 2013; Ku et al. 2015). This is

essentially in line with the results of this study. The analyses in

the two papers, however, relied on the comparison of homo-

logs. As shown in this study, a single reaction could be cata-

lyzed by nonhomologous enzymes of different origins. To find

such evolutionary replacement, it will be necessary to analyze

each reaction one by one.

Another paper (Pittis and Gabald�on 2016) presented evi-

dence that the mitochondrial proteins of alpha-proteobacte-

rial origin showed shorter phylogenetic distance to their

closest prokaryotic relatives, compared with proteins of differ-

ent prokaryotic origin, stating that the horizontal gene trans-

fer resulting in the latter occurred before the mitochondrial

acquisition. We have examined whether this method can be

useful in our study. This can only be applied to ATS2 (fig. 4),

because the chloroplast ATS1 is present mostly in eukaryotic

plants and algae and that the chloroplast LPP is derived from

eukaryotic LPP. We calculated the stem length of eukaryotic

lineage (the length between the separation from the green

bacterial lineage and the diversification of green, red, and

glaucophyte lineages) relative to the median of the distances

of green lineage (rather than the whole eukaryotic lineage as

used in the original). The use of the distance of green lineage

for normalization was justified, because red and glaucophyte

lineages are not always available for comparison, depending

on the proteins/genes to be compared. The results were 0.31

and 0.26 for ATS2 and plastid rRNA, respectively. The time of

acquisition of ATS2 might be similar to the time of the primary

endosymbiosis. However, an alternative tree (supplementary

fig. S8, Supplementary Material online) suggested that ATS2

was a member of eukaryotic LPAATs. In this case, ATS2 was

not a product of horizontal gene transfer. Obviously, we will

have to work more on this subject by examining a more plau-

sible phylogenetic tree and assessing the evolutionary rates of

the different lineages. This will be the next project involving a

larger number of chloroplast proteins.

In this analysis, only diatoms were used as the secondary

endosymbionts, which are thought to be the results of endo-

symbiosis of a red algal cell. The ancestry of red algal sequen-

ces with respect to the diatom sequences is expected for the

plastid proteins of endosymbiont origin, but this is not always
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FIG. 7.—Comparison of lipid biosynthetic pathways in plastids (top) and cyanobacteria (bottom). All enzymes are color-coded: blue, cyano-

bacterial or prokaryotic enzymes; green, plastid-localized enzymes; red, ER-localized enzymes. The latter two categories of enzymes are eukaryotic enzymes

(of eukaryotic origin), except the TGD complex components that are of cyanobacterial origin (see, e.g., Hori et al. 2016). In plants and green algae, stearoyl-

ACP desaturase (FAB2) catalyzes the conversion of 18:0 to 18:1 within the plastid, whereas in red algae, this enzyme is not present, and the final product of

fatty acid synthesis within the plastid is 18:0. The C18 acids are transported out of the plastids and used to synthesize the 1-C18-2-C18 lipids in the ER.

Desaturation occurs on these lipids, but this is not shown explicitly. The PA or DAG portion of phosphatidylcholine comes back to the plastids and used for the

synthesis of the galactolipids. The pathway via ER is a very simplified sketch, because it is not the main topic of this study. Within the plastids (plastid

pathway), the 1-C18-2-C16 lipids (sometimes called “prokaryotic lipids”) are synthesized by ATS1 and ATS2, which are not of cyanobacterial origin. MGDG

is synthesized by galactosylation of DAG catalyzed by MGD1, and DGDG by galactosylation of MGDG catalyzed by DGD1. In the red algae, C. merolae and

Galdieria sulphuraria, the last step is catalyzed by DgdA (or Ycf82), a cyanobacterial enzyme encoded by the plastid genome. Other red algae possess DGD1

but not DgdA. In cyanobacteria, MGDG is synthesized by the epimerization (catalyzed by MgdE) of GlcDG, which is synthesized by the glucosylation of DAG

catalyzed by MgdA. DgdA is the sole enzyme catalyzing the production of DGDG in cyanobacteria. ACP, acyl carrier protein; CoA, coenzyme A; FAS, fatty

acid synthase; GlcDG, monoglucosyl diacylglycerol; UDP-glc, uridine diphosphate glucose; UDP-gal, uridine diphosphate galactose.
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the case in most analyses in this study. Inclusion of diatom

sequences might have modified the branching patterns in

some analyses. We need further studies to obtain a reliable

phylogenetic position of diatom sequences.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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