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ABSTRACT: Macrocyclic peptides are sought-after molecular
scaffolds for drug discovery, and new methods to access diverse
libraries are of increasing interest. Here, we report the enzymatic
synthesis of pyridine-based macrocyclic peptides (pyritides) from
linear precursor peptides. Pyritides are a recently described class of
ribosomally synthesized and post-translationally modified peptides
(RiPPs) and are related to the long-known thiopeptide natural
products. RiPP precursors typically contain an N-terminal leader
region that is physically engaged by the biosynthetic proteins that
catalyze modification of the C-terminal core region of the
precursor peptide. We demonstrate that pyritide-forming enzymes
recognize both the leader region and a C-terminal tripeptide motif,
with each contributing to site-selective substrate modification.
Substitutions in the core region were well-tolerated and facilitated the generation of a wide range of pyritide analogues, with
variations in macrocycle sequence and size. A combination of the pyritide biosynthetic pathway with azole-forming enzymes was
utilized to generate a thiazole-containing pyritide (historically known as a thiopeptide) with no similarity in sequence and
macrocycle size to the naturally encoded pyritides. The broad substrate scope of the pyritide biosynthetic enzymes serves as a future
platform for macrocyclic peptide lead discovery and optimization.

■ INTRODUCTION

Macrocyclic peptide natural products are a privileged class with
many members exhibiting potent antibacterial, antifungal,
antiviral, anticancer, and immunosuppressive activities.1,2

Compared to their linear counterparts, macrocyclic peptides
possess desired properties, such as proteolytic stability,
increased cell-membrane permeability, and conformational
restrictions, resulting in reduced entropy cost upon binding
biological targets.3,4 These features have increased interest in
accessing macrocyclic peptides through combinatorial display,5

epitope grafting,6 and cyclization of previously identified linear
peptides with activity against biological targets.7 These efforts
are greatly aided by versatile macrocyclization methods that
tolerate a wide variety of peptide sequences and that can be
executed with large-sized libraries.8−10

Ribosomally synthesized and post-translationally modified
peptides (RiPPs) routinely have macrocyclic structures.11

During RiPP biosynthesis, a gene-encoded precursor peptide
undergoes modification by enzymes encoded in a biosynthetic
gene cluster (BGC). RiPP precursor peptides are commonly
composed of an N-terminal leader region responsible for
recruiting biosynthetic proteins and a C-terminal core region
that undergoes conversion to the mature RiPP. The physical
separation of substrate binding from the site(s) of modification

is an attractive feature of RiPP biosynthesis, as it facilitates
access to a chemically diverse array of variants. Thus, libraries
based on RiPP macrocyclic peptides have been constructed to
yield analogues with reprogrammed bioactivity.12−16

Thiopeptides are macrocyclic RiPPs associated with several
enticing bioactivities of which potent inhibition of bacterial
protein translation is the best studied.17 Structural analysis of
thiopeptides reveals three universal functional groups: azole/
azoline heterocycles derived from the ATP-dependent back-
bone cyclodehydration of Cys, Ser, and Thr residues;18

dehydroalanine/dehydrobutyrine (Dha/Dhb) and their deriv-
atives resulting from the glutamylation and subsequent
elimination of Ser and Thr residues;19,20 and a class-defining,
six-membered nitrogenous heterocycle resulting from a formal
[4 + 2] cycloaddition of two Dha-like residues that coincide
with elimination of water and the leader peptide.21 Accessing
thiopeptide derivatives beyond single amino acid substitutions
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has been challenging because of the requirement of multiple
azoles in the peptide for downstream Dha formation and [4 +
2] cycloaddition.17,18,22−26 The only thiopeptide thus far
shown to be amenable to multisite variation is lactazole, for
which macrocyclization requires only two azoles and three Dha
residues.27

Recently, we reported a minimalistic, thiopeptide-like BGC
from Micromonospora rosaria that encodes two precursor
peptides without Cys residues. The BGC also lacks the genes
for azol(in)e formation28 and was predicted to produce a
pyridine-based macrocyclic peptide (i.e., pyritide, Figure 1).

Reasoning that the absence of thiazol(in)es would render the
pyritide biosynthetic pathway more tolerant of substitutions in
the core region, we investigated here the substrate selectivity of
pyritide biosynthesis to contribute to recent efforts to identify
macrocycle-forming biosynthetic enzymes with broad substrate
tolerance.11,13,14,29−36

■ RESULTS AND DISCUSSION
Reconstitution of Enzymatic Pyritide Production. In

previous work, native pyritides were accessed via total chemical
synthesis or enzymatic [4 + 2] cycloaddition using a substrate
peptide with chemically installed Dha residues.28 Here, to
facilitate understanding of the substrate scope of the entire
pathway, we focused on the complete enzymatic biosynthesis
of pyritides. We first reconstituted the activity of MroB and
MroC, a split LanB-like dehydratase pair that forms two Dha
residues in the MroA precursor peptides (Figure 1).19,20 Based

on membership in InterPro family IPR006827, which includes
both dehydratases and enzymes with other tRNA-dependent
a c t i v i t i e s , 3 7 MroB (NCBI acce s s i on iden t ifie r
WP_067368389.1) was expected to utilize Glu-tRNAGlu to
glutamylate the side chain of Ser residues. MroC (IPR023809,
WP_083978639.1) was expected to eliminate glutamate to
yield Dha. To test this hypothesis, the genes encoding MroB
and MroC were cloned and expressed in Escherichia coli with
maltose-binding protein (MBP) fused to the N-terminus of
each protein. MBP-MroB and MBP-MroC were purified using
affinity and size-exclusion chromatography (Supporting
Information, Figure S1). MBP-MroB was only successfully
purified after co-expression with Thermobispora bispora GluRS
and tRNAGlu(CUC) (Figure S1), which shares 91% sequence
identity with M. rosaria tRNAGlu(CUC) (Table S4). After
purification, the precursor peptides MroA1 and MroA2 were
reacted with MBP-MroB and MBP-MroC in the presence of
ATP, L-Glu, T. bispora GluRS, and tRNAGlu(CUC). Analysis
by matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) and high-resolution
electrospray ionization tandem mass spectrometry (HR-ESI-
MS/MS) indicated that Ser1 and Ser6/Ser7 (MroA1/MroA2)
were dehydrated (Figures S2−S5). Omission of MBP-MroC
showed the formation of diglutamylated intermediates of
MroA1 and MroA2 (Figures S2 and S3). Didehydrated MroA1
and MroA2 were then treated with MBP-MroD (like MroC, a
member of IPR023809; WP_067368384.1), yielding the
expected pyritides and elimination of the leader peptide as a
C-terminal carboxamide (leader-NH2, Figures S2, S3, S6, and
S7). The high-performance liquid chromatography and MS/
MS profiles of enzymatically prepared pyritide A1 and pyritide
A2 matched their corresponding standards whose structures
were previously verified by 1H NMR spectroscopy (Figures
S8−S11).28

Tolerance of the Pyritide Biosynthetic Machinery
toward Single-Site Variation. Having successfully recon-
stituted the enzymatic biosynthesis of pyritide A1/A2, we next
examined whether residues in the core region can be
substituted to generate analogues. We first varied each core
position of MroA2 with amino acids of different physicochem-
ical properties using in vitro transcription and translation,38

generating 52 single-site variants. These variants were
subjected to the treatment of MroBCD, and the reaction
outcomes were analyzed by MALDI-TOF-MS (Figures S12−
S21, Table S5). Only conservative substitutions were well
tolerated at Gly2 (G2A), Trp8 (W8Y and W8F), Leu9 (L9I in
MroA2), and Ile10 (I10L and I10V) (Figure 2) for the overall
pyritide biosynthesis. Other Trp8 (W8G, W8A, W8D, W8N,
and W8R) and Ile10 (I10G, I10A, I10N, I10D, and I10W)
variants resulted in inefficient dehydration and macrocycliza-
tion (Figures S15 and S22), while didehydrated peptides with
nonconservative substitutions at Gly2 (G2D, G2L, G2N,
G2W, and G2R) and Leu9 (L9D, L9R, L9G, L9W, and L9N)
were poor substrates for macrocyclization. In contrast, all
examined single substitutions of the ring positions (Phe3,
Phe4, Gly5, and Arg6) yielded the expected macrocycle.

Tolerance of the Biosynthetic Machinery toward
Multisite Variation and Ring Expansion and Contrac-
tion. Encouraged by the substrate flexibility in the ring, we
next expanded the size and sequence of the macrocycle by
inserting 56 different sequences varying in length from three to
six residues between the two Ser residues involved in pyridine
formation; Gly2 was retained (Figure 3, Table S6). These

Figure 1. Biosynthesis of pyritides. (A) BGC from Micromonospora
rosaria and sequences of precursor peptides. (B) Reactions catalyzed
by MroB and MroC. (C) Reaction catalyzed by the [4 + 2]
macrocyclase MroD. (D) Structure of pyritide A1 with the class-
defining pyridine shown in orange.
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substrate variants were treated with MroBCD, and the
products were analyzed by MALDI-TOF-MS (Figures S23−
S28) and HR-ESI-MS/MS (Figures S29−S37). All 56 variants
successfully yielded two Dha residues after treatment with
MroBC, illustrating the contrast of this enzyme pair compared
to dehydratases from thiopeptide BGCs that often require
prior introduction of specific azoles.24,27,39 Reactions including
MroD demonstrated that 44 out of 56 didehydrated substrates
were macrocyclized (Table S6). We did not observe trends
separating substrates and nonsubstrates of MroD in our data
set, except the fact that all variants containing Arg or Lys
immediately upstream of the C-terminal Dha (equivalent to
Arg6 in MroA2) were processed. Hence, positively charged

residues at this position are beneficial but not essential. To
examine whether an Arg residue at this position would turn
nonsubstrates into substrates, Arg was introduced in 11
peptides that previously were poor or nonsubstrates for
macrocyclization (Figure S38). Six were cyclized, showing
that Arg at this position contributes but is not sufficient to
render any sequence a substrate. We then examined whether
Thr at this position would be preferred due to its prevalence in
natural variants (Table S7). In all investigated substrates, this
Thr was bypassed as a site of MroBC-catalyzed dehydration,
and six out of ten didehydrated Thr-containing precursors
were poor or nonsubstrates for macrocyclization by MroD
(Figures S39−S42). Thus, unlike Arg, Thr preceding the
second Ser in the core peptide does not facilitate efficient
pyritide formation by MroBCD but may be preferable for
catalysis by other natural homologues. Further elucidation of
the substrate tolerance of MroD will require structural
information on core peptide binding. Nonetheless, our data
show that whereas some positions are intolerant to variation,
much of the precursor peptide tolerates a wide range of
substitution, including multiple positively or negatively charged
residues.
Pyritides A1 and A2 have 14- and 17-membered rings,

respectively. Our substrate engineering efforts show that
MroBCD can form 14−23-membered rings with diverse
sequences (Table S5). We examined next whether the ring

Figure 2. Substrate scope of MroBCD. Unless otherwise stated, all
peaks represent [M + H]+. (A) Summary of results from assays in
which MroA2 variants reacted with MroBCD (Figures S12−S21).
Highlighted in blue are residues tolerant of nonconservative
substitutions for pyritide maturation. MroBCD only accepted
conservative substitutions of residues highlighted in green. (B)
Representative MALDI-TOF-MS of MroA2 variants at Phe3, Phe4,
Gly5, and Arg6 processed by MroBCD. (C) Macrocycle formation
from substrates with conservative substitutions of Gly2, Trp8, Leu9,
and Ile10.

Figure 3. Panel of variant pyritides. Variations were made in regions
in blue. (A) MALDI-TOF-MS of representative multisite pyritide
variants. (B) MALDI-TOF-MS of a 68-membered pyritide macro-
cycle through substitution of Gly by (GlyAsn)9. (C) LC-HR-ESI-MS
of a pyritide containing four thiazoles and one thiazoline. Thiazol(in)e
residues are bolded in red and abbreviated as Thz. Additional
multisite variant data are shown in Tables S5 and S6 and Figures
S23−S38 and S44−S49.
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size can be further contracted or expanded. Two (Phe4 and
Gly5) and three residues (Phe3, Phe4, and Gly5) could be
deleted without effecting the dehydration by MroBC, but
MroD did not cyclize the dehydrated intermediates to form 8-
and 11-membered rings (Figure S43). Thus, the smallest ring
size achieved in our data set is a 14-membered ring.
Conversely, larger ring sizes were readily accessed including
a pyritide macrocycle of 68 atoms via a 17-residue insertion of
a Gly−Asn repeat, the longest attempted insertion (Figures
S44−S48). Gly−Asn repeats were initially chosen due to their
established usage as hydrophilic flexible linkers40 and were
preferred in this work over popular Gly−Ser repeats41−44 as
they may lead to extra dehydrations and potentially complicate
downstream data analysis. We subsequently examined whether
MroBCD tolerates large rings with sequences different from
Gly−Asn repeats through randomization (Supporting In-
formation). All investigated sequences successfully formed
62-membered macrocycles albeit didehydrated intermediates
were also detected (Figure S49).
Use of MroBCD and TbtEFG for Thiopeptide

Formation. We next investigated whether post-translational
modification can be performed on residues inside the pyritide
macrocycle. We chose thiazole formation from Cys residues to
assess the feasibility of using MroBCD as a platform for
thiopeptide engineering. Thus, we inserted the core sequence
of the thiomuracin macrocycle (with four C-terminal residues
deleted) between the MroA1 leader peptide and the three C-
terminal MroA residues (Trp−Leu−Ile) that were shown
above to be important for MroBCD activity. The resulting core
sequence shares no similarity with the wild-type sequence
(Figure S50). In addition, in the leader peptide of this non-
natural substrate, we incorporated residues previously identi-
fied as critical for the thiazole synthetase TbtEFG (NCBI
accession identifier TbtE WP_013130813.1, TbtF
WP_206207102.1, and TbtG WP_206207103.1).24 All Cys
residues in the designed substrate peptide were successfully
converted to thiazole/thiazoline residues after treatment with
TbtEFG, and the macrocycle was formed upon reaction with
MroBCD (Figures 3C, S50, and S51), opening possibilities to
access diverse chemical space of both thiopeptides and
pyritides.
Mechanism of Substrate Recognition. The broad

substrate tolerance, including the ability to significantly expand
the size of the macrocycle, combined with the observed
importance of the C-terminal tripeptide for catalysis, suggested
that MroBCD relies on both the leader region and the C-
terminal motif for substrate binding. We tested this hypothesis
through analysis of substrate binding to MroB and MroD.
Substrate binding to MroC was not investigated as glutamate
elimination activity was consistently observed with the
substrate variants, suggesting that elimination activity is not

limiting. This finding agrees with recent reports showing that
MroC homologues recognize glutamylated Ser/Thr rather than
a specific peptide sequence.39,45 Sequence alignment of
pyritide precursor peptides indicated that the first 12 residues
in the leader region are not conserved and thus are unlikely to
be critical for binding (Table S7). Indeed, a variant of MroA1
in which the first 12 residues were deleted (termed
Δ12MroA1) underwent full dehydration and macrocyclization
(Figure S52). Fluorescence polarization (FP) measurements
indicated that Δ12MroA1 N-terminally labeled with fluo-
rescein (fluorescein-Δ12MroA1) displayed high affinity toward
MBP-MroB and MBP-MroD (KD MroB ≈ 60 nM and KD
MroD ≈ 12 nM) (Figure S53). Neither the leader nor the core
regions efficiently displaced the labeled precursor peptide
(Table 1 and Figures S54 and S55), confirming that MroB and
MroD require both for avid binding. We also investigated a
panel of MroA1 variants by competition FP assays with
fluorescein-Δ12MroA1 (Table 1 and Figures S54 and S55).
The binding data with the variants also confirm the importance
of the C-terminal tripeptide for MroB (Trp7) and MroD
(Trp7, Val8, and Ile9) binding (Figures S56 and S57). To
determine if the C-terminal carboxylate is important, we
evaluated the binding of MroB to the methyl ester variant of
Δ12MroA1, which resulted in approximately eightfold loss in
binding affinity (Table 1 and Figure S56).46 Thus, both
binding and activity data point to recognition of the leader
peptide and the C-terminal tripeptide.
With the support for two-site recognition by MroB, we

investigated how each site contributed to the overall
dehydration of MroA1 and MroA2. MroBC assays followed
by LC−MS/MS analysis revealed that only Ser1 is
predominantly dehydrated in Δ12MroA1 W7G, while only
Ser6 is dehydrated in the GlyAla-MroA1 core peptide (Figure
4). These data suggest that the leader peptide is more
important for dehydration at Ser1 and the C-terminal
tripeptide is more important for dehydration at Ser6.
Analogously, the MroA2 variants S7G/W8G and S7G/I10G
were completely dehydrated at Ser1, whereas MroA2-S1G/
W8G and MroA2-S1G/W10G were inefficiently dehydrated at
Ser7 (Figure S60). Dehydration of both MroA2-S1G and
MroA2-S7G went to completion, indicating that the two
dehydrations are independent of one another.
In summary, we fully reconstituted enzymatic pyritide

biosynthesis in vitro, enabling in-depth characterization of the
substrate selectivity of the dehydratase MroBC and the [4 + 2]
cycloaddition enzyme MroD. The enzymatic macrocyclization
proved to be compatible with in vitro translation, presenting a
powerful platform for macrocyclic peptide library construction.
Our data support a model in which these enzymes recognize
both the leader peptide and the C-terminal tripeptide. The
leader peptide is more important for dehydration at the N-

Table 1. Binding of MroA1 Variants to MroB and MroDa

MroA1 variants sequence IC50 MroB (μM) IC50 MroD (μM)

Δ12MroA1 SDLDIVDLDLAVDEELAALSVGGLGNTEVGASGWLGSWVI 0.68 ± 0.04 0.09 ± 0.02
Δ12MroA1 leader SDLDIVDLDLAVDEELAALSVGGLGNTEVGA 19.4 ± 1.6 16.0 ± 4.4
GlyAla-MroA1 core Ac-GASGWLGSWVI 27.2 ± 1.9 40.9 ± 5.0
Δ12MroA1-W7G SDLDIVDLDLAVDEELAALSVGGLGNTEVGASGWLGSGVI 8.1 ± 3.9 2.4 ± 0.3
Δ12MroA1-V8G SDLDIVDLDLAVDEELAALSVGGLGNTEVGASGWLGSWGI 1.1 ± 0.2 1.7 ± 0.4
Δ12MroA1-I9G SDLDIVDLDLAVDEELAALSVGGLGNTEVGASGWLGSWVG 2.0 ± 0.6 0.91 ± 0.09
Δ12MroA1-COOMe SDLDIVDLDLAVDEELAALSVGGLGNTEVGASGWLGSWVI-COOMe 4.2 ± 1.7 0.40 ± 0.06

aFP traces and Ki values are shown in Supporting Information, Figures S53−S57. Ac = N-acetyl.
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terminal Ser in the core, whereas the C-terminal tripeptide is
more important for dehydration at Ser6/7. By keeping the
leader peptide and C-terminal residues invariant, we generated
pyritide analogues with diverse ring sequences and sizes (14−
68 membered). These data will facilitate future efforts in the
bioengineering of macrocyclic peptides with desirable proper-
ties.
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