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The core/shell structure nanofiber membrane loaded with curcumin and silver
nanoparticles was prepared by coaxial electrospinning technology, which is a high-
efficiency combined antibacterial material composed of photodynamic antibacterial
agent and metal nanoparticle. As a photosensitizer, curcumin could generate singlet
oxygen under laser irradiation. Silver nanoparticles have antibacterial properties, and could
also enhance the singlet oxygen production of curcumin due to themetal-enhanced singlet
oxygen effect, thereby producing a synergistic antibacterial effect. Compared with the
antibacterial rate of uniaxial curcumin fiber membrane (45.65%) and uniaxial silver
nanoparticle-loaded fiber membrane (66.96%), the antibacterial rate of curcumin@Ag
core/shell structure fiber membrane against Staphylococcus aureus is as high as 93.04%.
In addition, the antibacterial experiments show that the core/shell fiber membrane also has
excellent antibacterial effects on Escherichia coli.
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INTRODUCTION

The overuse of antibiotics has led to acquired resistance of bacteria to most antibiotics, so there is an
urgency to find new antibacterial methods or alternative strategies (Farhat et al., 2020; Yu et al., 2021;
Zhao et al., 2021). There are mainly two approaches among the new antibacterial strategies. One is
photodynamic antibacterial therapy (Wu et al., 2021), and the other is the use of metal nanoparticles
(Godoy-Gallardo et al., 2021) or antimicrobial peptides (Qiu et al., 2021) to replace antibiotics.
Photodynamic antimicrobial chemotherapy (PACT) kills bacteria through the combined action of
light and photosensitizers (Liu et al., 2020; Sun et al., 2021). The mechanism of PACT is that the
chromophore of the photosensitizer generates singlet oxygen and other reactive oxygen species
(ROS) under light irradiation (Im et al., 2021; Xiao et al., 2021). ROS chemically attacks bacteria, and
while bacteria at one site are naturally resistant to ROS attack, another site may be susceptible to the
attack (Lyutakov et al., 2014).

The photosensitizer is the core and the key factor affecting the antibacterial effect of PACT (Wu
et al., 2020). Natural photosensitizers with low toxicity and side effects are the hotspot of PACT
research. Curcumin is a natural polyphenol found in plant rhizomes, which possesses a wide range of
biological activities such as antioxidant (Hou et al., 2022), anti-inflammatory (Pontes-Quero et al.,
2021), antitumor (Chen et al., 2021), antibacterial (Barros et al., 2021), antiviral (Dourado et al.,
2021), and photosensitizing activities (Li et al., 2020). As a natural photosensitizer, curcumin can be
activated by light at 400–500 nm to generate singlet oxygen to exert antibacterial effects (Hu et al.,
2018). Feng et al. obtained a tough and biodegradable polyurethane-curcumin (PU-Cur) hydrogel
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with strongly antioxidant properties by in-situ copolymerization
of Cur and PU. Under laser irradiation, the PU-Cur degradation
solution can improve the inhibition rate of Staphylococcus aureus,
which can promote wound healing (Feng et al., 2021). However,
the singlet oxygen quantum yield of curcumin is relatively low,
which makes it difficult to achieve the desired antibacterial effect.
Combining curcumin with metal nanoparticles can improve the
photosensitizer quantum yield by triggering the metal-enhanced
singlet oxygen generation (MEO) effect (Mooi and Heyne, 2014).
Among metal nanoparticles, silver nanoparticles (Ag NPs) are
considered potential antibacterial agents because they can disrupt
bacterial wall integrity (Fu et al., 2021; Wu et al., 2022), interfere
with DNA replication (Li et al., 2011; Dhanalekshmi and Meena,
2016), and block adenosine triphosphate (ATP) synthesis in
bacteria (Wang et al., 2018; Tong et al., 2020). Cao et al. used
plant extract lignin as a reducing agent to synthesize Ag NPs
(L-Ag NPs) with uniform size distribution by using one-step
method, and found that L-Ag NPs have good antibacterial
properties against gram-positive Candida albicans and gram-
negative Escherichia coli (Cao et al., 2021). Ag NPs can enter
the interior of bacteria to destroy the bacterial structure and exert
antibacterial effects (Khalandi et al., 2017). The particle size and
concentration of Ag NPs are the key factors affecting their
antibacterial properties. Within a certain concentration range,
the higher the concentration of Ag NPs, the better the
antibacterial effect (Chen et al., 2019). However, too high
concentration will cause Ag NPs to agglomerate and reduce
their antibacterial properties (Zhang et al., 2022). Achieving
uniform dispersion of Ag NPs at high concentrations is the
premise to ensure their high-efficiency antibacterial properties.

Electrospinning is a technique of spraying a solution into a
nanofiber membrane under a high-voltage electric field (Sun
et al., 2019). Among them, uniaxial electrospinning, which is
more commonly used, refers to electrospinning the drug solution
through a single nozzle. He et al successfully prepared
ciprofloxacin-loaded fibrous mats composed of different ratios
of poly-ε-caprolactone (PCL) and polyethylene glycol (PEG) for
wound healing by uniaxial electrospinning. The drug release
could be controlled by changing the PEG ratio and the fiber
mat geometry. The antibacterial effect of different fiber mats on
gram-positive Staphylococcus aureus and gram-negative
Escherichia coli was tested by the agar diffusion method. The
experimental results showed that when the proportion of PEG
was 10%, the fiber mat consisting of grids with a spacing of
0.8 mm had obvious inhibition zone (He et al., 2019). Pisani et al.
loaded gentamycin sulfate (GS) into polylactic acid-co-
polycaprolactone (PLA-PCL) electrospinning nanofibers for
local drug delivery. Controlled drug release could reduce the
side effects of GS and prolong the treatment effect. In-vitro
antibacterial experiments showed that GS-loaded fiber mats
had good antibacterial effects on both Staphylococcus aureus
and Escherichia coli (Pisani et al., 2019). Wang et al.
successfully prepared Cur-loaded zein fibers (zein-Cur) with
encapsulation efficiency close to 100% using uniaxial
electrospinning technology. When the content of Cur is 40%
based on the weight of zein, the antibacterial rate of fiber against
Staphylococcus aureus and Escherichia coli can reach 90%, and the

antibacterial activity of zein-Cur fiber against Staphylococcus
aureus is better than that of Escherichia coli (Wang et al.,
2017). Uniaxial electrospinning is used for drug loading with
the advantages of various types of loaded drugs or active
ingredients and easy adjustment of the fiber structure (Li
et al., 2021). When using uniaxial electrospinning to prepare
electrospun antibacterial fibers co-loaded with multiple drugs or
active ingredients, it is necessary to homogeneously mix multiple
drug solutions or active ingredient solutions, which has relatively
high requirements for electrospinning system. Coaxial
electrospinning, one of the electrospinning technologies, is a
technology in which two electrospinning solutions are put into
different syringes and sprayed through a concentric needle device
to obtain nanofibers with a core/shell structure (Rathore and
Schiffman, 2021). The multi-component could be easily co-
loaded by coaxial electrospinning. The active pharmaceutical
ingredients that are unstable, require sustained release, and
have poor spinnability can be used as the fiber core layer,
while the shielding effect established by the core/shell
structure can act to protect the active pharmaceutical
ingredient (Luraghi et al., 2021).

Here, curcumin@Ag (Cur@Ag) core/shell nanofibers co-
loaded with curcumin and Ag NPs were fabricated by coaxial
electrospinning using polycaprolactone (PCL) and
polyvinylpyrrolidone (PVP) solutions containing curcumin as
the core layer electrospinning solution, and the PVP solution of
Ag NPs as the shell layer electrospinning solution. The prepared
nanofibrous membrane can achieve uniform loading of curcumin
and Ag NPs. The photosensitizer curcumin generates singlet
oxygen under 405 nm light irradiation, and Ag NPs improve
the singlet oxygen quantum yield of curcumin through the metal-
enhanced singlet oxygen generation effect, combined with the
antibacterial effect of Ag NPs, thereby achieving a synergistic
antibacterial effect. The as-prepared core/shell structured fibrous
membrane has good antibacterial effect against Staphylococcus
aureus, Escherichia coli, and methicillin-resistant Staphylococcus
aureus.

EXPERIMENTAL SECTION

Materials
Silver nitrate, sodium chloride, and N, N-dimethylformamide
(DMF) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. Curcumin (Cur), polycaprolactone (PCL, Mw = 8×104), and
polyvinylpyrrolidone K-90 (PVP, Mw = 1.3×106) were obtained
fromDalianMeilun Biological Co., Ltd. Chloroform (CHCl3) was
bought from Laiyang Kangde Chemical Co., Ltd., and ethanol
(C2H5OH) was purchased from Tianjin Fuyu Fine Chemical Co.,
Ltd. Beef extract was obtained from Beijing Obosing
Biotechnology Company. Tryptone was bought from OXOID,
and agar powder was purchased from Solarbio. Staphylococcus
aureus and Escherichia coli were obtained from Beijing Beina
Chuanglian Institute of Biotechnology. Methicillin-resistant
Staphylococcus aureus was purchased from Shanghai
Biotechnology Center, and 2, 2, 6, 6-Tetramethylpiperidine
(TEMP) was bought from Tongren Institute of Chemistry.
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Preparation of PCL/PVP@Cur Electrospun
Fiber Membranes
Briefly, PCL/PVP (w/w, 0.6 g:0.4 g) was added in the mixture
solvent of CHCl3/DMF (v/v, 8 ml:2 ml), and stirred at room
temperature for 1.5 h until completely dissolved. Then, 0.15 g
(15 wt% of the total polymer mass) curcumin was introduced
and stirred at room temperature for 1 h in the dark to obtain a
yellow homogeneous electrospinning solution C1. Similarly,
10 wt% of curcumin, 20 wt% of curcumin, and no curcumin
were added to prepare electrospinning solutions C2, C3, and C4,
according to the aforementioned method. Finally, the
electrospinning solutions C1, C2, C3, and C4 were
electrospun with a single nozzle by uniaxial electrospinning.
The electrospinning process was performed at a constant flow
rate of 0.2 mm/min under the conditions of 25°C temperature
and 30% humidity by applying 20 kV voltage, and the
nanofibers were collected on aluminum foil at a distance of
15 cm. The collected fiber membranes were dried at 50°C in the
dark for 24 h to obtain electrospun fiber membranes CF1, CF2,
and CF3 with single-loaded curcumin and a blank matrix fiber
membrane CF4.

Preparation of PVP@Ag Electrospun Fiber
Membranes
First, 1.5 g of PVP was dissolved in the mixture solvent of
C2H5OH/DMF (v/v, 7 ml:3 ml), and stirred at room
temperature to reach uniformity. Then, 0.12 g (8 wt% of PVP
mass) silver nitrate was added and stirred at room temperature in
the dark to obtain a light yellow and transparent electrospinning
solution S1. Similarly, 6 wt% and 10 wt% of silver nitrate were
added to prepare electrospinning solutions S2 and S3,
respectively, according to the aforementioned method. Finally,
the electrospinning solutions S1, S2, and S3 were electrospun with
a single nozzle. The electrospinning process was performed at a
constant flow rate of 0.2 mm/min under the conditions of 25°C
temperature and 30% humidity by applying 20 kV voltage, and
the collect distance was 15 cm. The deposited fiber membranes
were cross-linked at 150°C for 3 h, and then irradiated under a
254 nm UV lamp for 1 h to obtain electrospun fiber membranes
SF1, SF2, and SF3 single-loaded with Ag NPs.

Preparation of Cur@Ag Core/Shell Fiber
Membranes
The electrospinning solutions C1 and S1 were used as core layer and
shell layer electrospinning solutions, respectively, and coaxial
electrospinning was conducted under the following
electrospinning conditions: 20 kV positive pressure, 0.05 kV
negative pressure, 25°C temperature, 30% humidity, the distance
between the needle and the receiving plate was 15 cm, and the flow
rate of electrospinning solution C1 and S1 was 0.2 mm/min and
0.4 mm/min, respectively. The deposited fiber membranes were
cross-linked at 150°C for 3 h, and then irradiated under a
254 nm UV lamp for 1 h to obtain the electrospun fiber
membrane CS co-loaded with Cur and Ag NPs.

Characterization
The morphologies of the fiber membranes were characterized by
field emission scanning electron microscopy (FE-SEM, JSM-
6700F). The distribution of Ag NPs in fiber membranes was
characterized by transmission electron microscopy (TEM, JEM-
1011). The distribution of curcumin in fibrous membranes PCL/
PVP@Cur was characterized by fluorescence microscopy
(OLYMPUS DP80). The fiber diameter distribution of fiber
membranes and the size distribution of Ag NPs in PVP@Ag
fibrous membranes were analyzed by Image J software. The
Fourier transform infrared (FTIR) analysis was performed with
a Fourier transform infrared spectrometer (PerkinElmer).

Electron paramagnetic resonance (EPR) spectrometer (Bruker
EMX PLUS) was used to measure the EPR signal intensity of 2, 2,
6, 6-tetramethylpiperidine oxide (TEMPO), which was formed
after singlet oxygen generated by fiber membrane CF1 and CS
was captured by 2, 2, 6, 6-tetramethylpiperidine (TEMP). The 3 ×
3 cm fiber membrane was dissolved in 4 ml of pure water and
sonicated for 5 min to obtain the sample solution, and then
100 μL of the sample solution was mixed with 200 μL of the
singlet oxygen capture agent TEMP. After 10 min of darkness or
light, the singlet oxygen was measured of the mixtures. Test
conditions: center field 3,502.00 G, sweep width 100.0 G, power
6.325 mW, power attenuation 15.0 dB, frequency mon 9.829482
GHz, sweep time 30.00 s, modulation amplitude 1.000 G, and
modulation frequency 100.00 kHz. The light source was a
mercury lamp (500W) with a 400 nm filter.

Antibacterial Test
Antibacterial Experiment of Electrospun Fiber
Membranes Against Staphylococcus aureus
In order to evaluate the antibacterial effect of PCL/PVP@Cur
electrospun fiber membranes CF1, CF2, and CF3, the
antibacterial study was carried out against gram-positive
Staphylococcus aureus by using the colony counting method
(Mahmud et al., 2020). First, a single colony of Staphylococcus
aureus was inoculated into beef extract peptone liquid medium
and placed in a shaker, which was cultured at 37°C and 220 rpm for
24 h to obtain the original bacterial solution. Then, the original
bacterial solution was diluted to 1.0–3.0 × 107 CFU/ml with sterile
pure water to obtain a diluent solution. The CF1, CF2, and CF3 fiber
membraneswere cut into discs with a diameter of 1 cm and placed in
eppendorf (EP) tubes containing 1 ml of diluent solution.
Subsequently, the EP tubes were irradiated under a 405 nm UV
lamp for 10 min and allowed to stand for 30 min to obtain the
treatment solution. The EP tube containing diluent solution without
fibermembrane was used as the blank group. 100 µl of the treatment
solution was diluted 105 times and spread evenly on a solid agar
plate, and then incubated in the incubator at 37°C for 24 h. The
number of viable colonies with samples was counted, and the
antibacterial rates were calculated using the following formula:

antibacterial rate � Nb −Nt

Nb
× 100% (1)

whereNb = number of colonies without sample, and Nt = number
of colonies with sample.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8706663

Wang et al. Curcumin@Ag Loaded Nanofiber

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


The PVP@Ag fiber membranes SF1, SF2, and SF3 were cut
into discs with a diameter of 1 cm and placed in EP tubes
containing 1 ml of diluent solution, and then allowed to stand
for 40 min to obtain the treatment solution. The EP tube
containing diluent solution without fiber membrane was used
as the blank group.

The Cur@Ag core/shell fiber membrane CS was cut into a disc
with a diameter of 1 cm and placed in an EP tube containing 1 ml
of diluent solution. Subsequently, the EP tube was irradiated
under a 405 nm UV lamp for 10 min and allowed to stand for
30 min to obtain the treatment solution. The EP tube containing
diluent solution without fiber membrane was used as the
blank group.

According to the antibacterial experimental method of PCL/
PVP@Cur, the antibacterial rates of PVP@Ag fiber membrane
and Cur@Ag core/shell fiber membrane were calculated to
characterize their antibacterial properties.

Antibacterial Experiment of Electrospun Fiber
Membranes CF1, SF1, and CSAgainst Escherichia coli
and Methicillin-Resistant Staphylococcus aureus
(MRSA)
The CF1, SF1, and CS fiber membranes were cut into discs with a
diameter of 1 cm and placed in EP tubes containing 1 ml of
Escherichia coli or MRSA dilutions, respectively. Then, the CF1
and CS fiber membranes were allowed to stand for 30 min after
being irradiated under a 405 nm UV lamp for 10 min to obtain
treatment solutions, and SF1 was left to stand for 40 min to obtain
a treatment solution. The EP tube containing diluent solution
without fiber membrane was used as the blank group. 100 µL of
the treatment solutions drawn from the four treatment solutions
were diluted 105 times and spread evenly on solid agar plates, and
then incubated in an incubator at 37°C for 24 h. The number of
viable colonies with samples was counted, and the antibacterial
rates of fiber membranes against Escherichia coli and MRSA,
respectively, were calculated, according to Formula (1).

RESULTS AND DISCUSSION

Characterization of PCL/PVP@Cur Fiber
Membranes
The SEM images of PCL/PVP@Cur electrospun fiber membranes
are shown in Figure 1, and it can be seen that the prepared
nanofibers were continuous. The surface of the fiber membranes
CF2 and CF1 prepared at a curcumin concentration of 10% and
15%, respectively, was smooth without obvious defects (Figures
1A,B). Differently, the fiber membrane CF3 prepared when the
concentration of curcumin was 20% had local fiber adhesion
phenomenon, and the local fiber thickness difference was obvious
(Figure 1C). The diameter distribution of the PCL/PVP@Cur
electrospun fiber membranes was analyzed with Image J software.
As shown in the insets of Figures 1A–C, the mean diameters of
the fiber membranes CF2, CF1, and CF3 were 0.78 ± 0.15 um,
0.88 ± 0.15 um, and 0.74 ± 0.19 um, respectively. That is, when

FIGURE 1 | SEM images of CF2 (A,D), CF1 (B,E), and CF3 (C,F); the insets in (A,B, and C) are the fiber diameter distribution graphs of CF2, CF1, and CF3; the
insets in (D,E, and F) are the fluorescence micrographs of CF2, CF1, and CF3.

FIGURE 2 | FTIR spectra of CF4, Cur, and CF1.
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the curcumin concentration was 10% and 15%, the fiber diameter
distribution was uniform and increased with the increase of
curcumin concentration, whereas when the curcumin
concentration increased to 20%, the fiber diameter distribution
was uneven due to the existence of finer fibers, and the average
diameter became smaller. Curcumin has fluorescent properties,
so its distribution in the fibrous membrane can be observed by
fluorescence microscopy. As shown in the insets of Figures
1D–F, a continuous strong fluorescence signal appeared
throughout the fiber length, indicating that curcumin was
uniformly distributed in the fibers (Tsekova et al., 2017).

The infrared spectra of blankmatrix fiber membranes CF4 and
Cur and fiber membrane CF1 are shown in Figure 2. The
absorption peak of curcumin at 3,505 cm−1 is attributed to the
stretching vibration of phenolic hydroxyl O-H, and the peak at
1,627 cm−1 is due to the C=O stretching vibration. The peak at
1,430 cm−1 corresponds to the bending vibration of = C-H, and
the absorption peak at 1,030 cm−1 is ascribed to the C-O-C
stretching vibration of aromatic hydrocarbons (Liu et al.,
2021). The peaks at 1729 cm−1 and 1,658 cm−1 in the CF4
fiber membrane correspond to the C=O stretching vibrations
in the polymer PCL and PVP, respectively. The absorption peaks
at 1,292 cm−1 and 1,174 cm−1 are assigned to the stretching
vibration of C-N in the polymer PVP and the stretching
vibration of C-O in polymer PCL, respectively. With the
disappearance of the peak (3,505 cm−1) from the phenolic
hydroxyl group of curcumin in the CF1 fiber membrane, the
C=O stretching vibration peak in the PCL structure changed from
1729 cm−1 to 1732 cm−1, and the C=O stretching vibration in the
PVP structure also changed from 1,658 cm−1 to 1,662 cm−1

(Yakub et al., 2020). It is speculated that the redshift of the
peaks are caused by the formation of hydrogen bonds between the
-OH in curcumin and the C=O structure in PCL and PVP,
indicating that curcumin was successfully loaded into the
fibers (Tsekova et al., 2017).

Characterization of PVP@Ag Fiber
Membranes
The SEM images (Figures 3A–C) of the PVP@Ag electrospun
fiber membranes showed that the prepared nanofibers were all
continuous. The surface of the fiber membranes SF2 and SF1
prepared with the silver nitrate concentration of 6–8% was
smooth and there was no slag ball (Figures 3A,B). Differently,
the fiber membrane SF3 prepared when the silver nitrate
concentration was 10% appeared as slag balls and ribbon
fibers (Figure 3C). The TEM images (Figures 3D–F) of SF2,
SF1, and SF3 indicated that Ag NPs obtained by silver nitrate
reduction were dispersed in the fibers. Image J software was used
to determine the fiber diameter distribution of the fiber
membranes SF2, SF1, and SF3 and the size distribution of Ag
NPs in the fibers. As shown in the insets of Figures 3A–C, the
fiber diameters of the fiber membranes SF2, SF1, and SF3 were
428 ± 146 nm, 336 ± 93 nm, and 467 ± 141 nm, respectively. As
shown in the insets of Figures 3D–F, the average sizes of Ag NPs
in the fiber membranes SF2, SF1, and SF3 were 10.05 ± 3.48 nm,
7.98 ± 3.04 nm, and 21.75 ± 5.34 nm, respectively. The specific

FIGURE 3 | SEM images of SF2 (A), SF1 (B), and SF3 (C); TEM images of SF2 (D), SF1 (E), and SF3 (F); the insets in (A,B,C) are the fiber diameter distribution
graphs of SF2, SF1, and SF3; the insets in (D,E,F) are the Ag NP size distribution graphs of SF2, SF1, and SF3.

TABLE 1 | Size specific distribution of Ag NPs.

Fiber membrane Ag NP size/nm Ag NP size ratio
(%)

SF1 4–8 72
8–16 25
16–28 3

SF2 4–8 36
8–16 57
16–24 7

SF3 8–16 19
16–28 72
28–36 9
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distribution of the size of Ag NPs is shown in Table 1. It can be
seen from Table 1 that the proportion of Ag NPs of 4–8 nm in
SF1 reaches 72%, and the smaller size was conducive to the
antibacterial effect of Ag NPs (Wu et al., 2018; Calabrese et al.,
2021). Based on the aforementioned analysis, when the silver
nitrate concentration increased from 6% to 8%, the average fiber
diameter and the average size of Ag NPs became smaller and
more uniformly distributed, and the Ag NPs were evenly
distributed in the fibers. However, when the silver nitrate
concentration increased to 10%, the average fiber diameter and
the average size of Ag NPs became larger and unevenly
distributed, which may be caused by the aggregation of some
Ag NPs into large particles.

Characterization of Cur@Ag Core/Shell
Fiber Membrane
As shown in Figure 4A, the Cur@Ag fibers are continuous, and
the fibers are randomly stacked and packed into a network
structure. It can be clearly seen that the Cur@Ag fiber
membrane has a core/shell structure from the mark in Figure 4B.

Antibacterial Results of PCL/PVP@Cur
Electrospun Fiber Membranes Against
Staphylococcus aureus
Curcumin generates singlet oxygen under irradiation at 405 nm
wavelength, which could cause significant structural damage to
the membrane structure of Staphylococcus aureus, thereby

increasing membrane permeability, leading to leakage of intra-
bacterial substances and bacterial death (Yang et al., 2020).
Figure 5 shows optical photographs of the antibacterial effect
of PCL/PVP@Cur electrospun fiber membranes single-loaded
with curcumin against Staphylococcus aureus for 24 h. It can be
seen from the figure that the number of surviving colonies in the
blank group and the group of fiber membranes CF2, CF1, and
CF3 were 230, 140, 125, and 176, respectively. The calculation
showed that the antibacterial rates of the CF2, CF1, and CF3 fiber
membranes loaded with curcumin were 39.13, 45.65, and 23.48%,
respectively. It can be seen from the antibacterial results that
among the electrospinning fibers single-loaded with curcumin,
the CF1 fiber membrane with a curcumin loading of 15% has the
best antibacterial effect. Compared with CF2, CF1 has higher
curcumin loading, so the antibacterial effect of CF1 is better than
that of CF2. Among the PCL/PVP@Cur fiber membranes single-
loaded with curcumin, CF3 has the highest curcumin loading, but
its antibacterial performance is low, which may be related to the
adhesion of its fibers and the obvious difference in local fiber
diameters (Figure 1C).

Antibacterial Results of PVP@Ag
Electrospun Fiber Membranes Against
Staphylococcus aureus
Figure 6 shows optical photographs of the antibacterial effect
of PVP@Ag electrospun fiber membranes single-loaded with
Ag NPs against Staphylococcus aureus. As shown in Figure 6,
the number of surviving colonies in the blank group and the
group of fiber membranes SF2, SF1, and SF3 were 230, 87, 76,
and 97, respectively. The calculation showed that the
antibacterial rates of the SF2, SF1, and SF3 fiber membranes
single-loaded with Ag NPs were 62.17, 66.96, and 57.83%,
respectively. The results exhibited that when the amount of
silver nitrate increased from 6 to 8%, the antibacterial effect of
the obtained SF1 fiber membrane was better than that of SF2,
but the antibacterial effect of the obtained SF3 fiber membrane
decreased when the concentration increased to 10%. It can be
seen from Figure 3 and Table 1 that the Ag NPs obtained after
the reduction of silver nitrate in the SF1 fiber membrane are
small in size and concentrated in 4–16 nm, which accounts for
97%, and is uniformly dispersed in the fiber. Small-sized
monodispersed Ag NPs attribute to the superior
antibacterial properties of SF1 (Marambio-Jones and Hoek,
2010; Zhou et al., 2022).

FIGURE 4 | (A) SEM images of CS fibers, the marker in (B) is the core-
shell structure of the fiber.

FIGURE 5 | Photographs of antibacterial test result against Staphylococcus aureus (A) blank group, (B) CF2, (C) CF1, and (D) CF3.
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Antibacterial Results of Cur@Ag Core/Shell
Fibrous Membrane Against Staphylococcus
aureus, Escherichia coli, and MRSA
Figure 7 shows optical photographs of the antibacterial effect of
Cur@Ag core/shell fiber membrane against Staphylococcus aureus.
As shown in Figure 7, the number of surviving colonies in the Cur@
Ag core/shell fiber membrane (CS) was 16, and its bacteriostatic rate
was as high as 93.04%. Compared with the antibacterial rate 45.65%
of the fiber membrane CF1 single-loaded with curcumin and the
antibacterial rate 66.96% of the fiber membrane SF1 single-loaded
with Ag NPs, the antibacterial rate of Cur@Ag core/shell fiber
membrane CS was significantly increased, indicating that
curcumin and Ag NPs in the Cur@Ag core/shell fibrous
membrane exhibited a clear synergistic inhibitory effect on
Staphylococcus aureus.

Figure 8 shows optical photographs of the antibacterial effect
of Cur@Ag core/shell fiber membrane against Escherichia coli. As
shown in Figure 8, the number of surviving colonies in the blank
group and the group of fiber membranes CF1, SF1, and CS were
209, 81, 101, and 15, respectively. The calculation showed that the

antibacterial rates of fiber membrane CF1, SF1, and CS were
61.24%, 51.67%, and 92.82%, respectively. Compared with the
antibacterial rate 61.24% of the fiber membrane CF1 single-
loaded with curcumin, and the antibacterial rate 51.67% of the
fiber membrane SF1 single-loaded with Ag NPs, the antibacterial
rate of Cur@Ag core/shell fiber membrane CS was significantly
increased, indicating that curcumin and Ag NPs could play an
obvious synergistic inhibitory effect on Escherichia coli.

Figure 9 shows optical photographs of the antibacterial effect of
Cur@Ag core/shell fiber membrane against MRSA. As shown in
Figure 9, the number of surviving colonies in the blank group and
the group of fiber membranes CF1, SF1, and CS were 108, 68, 66,
and 51, respectively. The calculation showed that the antibacterial
rates of fiber membrane CF1, SF1, and CS were 37.04, 38.89, and
52.78%, respectively. Compared with the antibacterial rate 37.04% of
the fiber membrane CF1 single-loaded with curcumin, and the
antibacterial rate 38.89% of the fiber membrane SF1 single-loaded
with Ag NPs, the antibacterial rate of Cur@Ag core/shell fiber
membrane CS was increased, indicating that curcumin and Ag
NPs could also play a synergistic inhibitory effect on MRSA.

FIGURE 6 | Photographs of antibacterial test result against Staphylococcus aureus (A) blank group, (B) SF2, (C) SF1, and (D) SF3.

FIGURE 7 | Photographs of antibacterial test result against Staphylococcus aureus (A) blank group, (B) CF1, (C) SF1, and (D) CS.

FIGURE 8 | Photographs of antibacterial test result against Escherichia coli (A) blank group, (B) CF1, (C) SF1, and (D) CS.
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The singlet oxygen test was performed on the fiber membranes
CF1 and CS to explore the synergistic antibacterial mechanism of
curcumin and Ag NPs. The test results are shown in Figure 10.

The singlet oxygen induced by the dispersion of fiber
membrane CF1 and fiber membrane CS in pure water can be
captured by TEMP and form stable 2, 2, 6, 6-
tetramethylpiperidine oxide (TEMPO). The ability of
curcumin to generate singlet oxygen in the fiber membrane
under different conditions can be known by analyzing the
electron paramagnetic resonance (EPR) signal intensity of
TEMPO. As shown in Figure 10, for CF1, no EPR signal of
TEMPO was detected under dark conditions, while three weak
EPR signals of TEMPO were observed under light conditions,
indicating that curcumin could be induced to produce singlet
oxygen under light conditions. Under light conditions, CS
detected the strong EPR signals, revealing that the presence of
Ag NPs can promote the generation of curcumin singlet oxygen.
Ag NPs exerted the metal-enhanced singlet oxygen production
effect and improved the singlet oxygen yield (Yu et al., 2020;
Wang et al., 2021), so that the antibacterial effect of fiber
membrane CS was better than that of CF1 and SF1, and the
combined inhibitory effect of Cur and Ag NPs on Staphylococcus
aureus, Escherichia coli, and MRSA was achieved.

CONCLUSION

In this study, the curcumin@Ag loaded core/shell nanofiber
membrane was constructed by coaxial electrospinning
technology. Cur and Ag NPs were uniformly distributed in the
core and shell layers of the fiber membrane, respectively. Ag NPs
improve the singlet oxygen yield of curcumin through the metal-
enhanced singlet oxygen generation effect. The antibacterial
experiments showed that compared with the fiber membranes
single-loaded with curcumin and Ag NPs, curcumin@Ag loaded
core/shell nanofiber membrane exhibited excellent antibacterial
effects on both Staphylococcus aureus and Escherichia coli, and
the antibacterial rates reached 93.04% and 92.82%, respectively.
At the same time, curcumin@Ag loaded core/shell nanofiber
membrane also has synergistic antibacterial effect on methicillin-
resistant Staphylococcus aureus. In the future, the elucidation of the
potential antibacterial mechanism by examining the morphological
changes andDNAdamage of bacterial cells, and the enhancement of
antibacterial effect against drug-resistant bacteria would further
favor the application of prepared core/shell nanofiber
antimicrobial materials in the field of synergistic antibacterials.
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FIGURE 9 | Photographs of antibacterial test result against MRSA (A) blank group, (B) CF1, (C) SF1, and (D) CS.

FIGURE 10 | EPR spectra of 1O2 captured by TEMP after CF1 was
dispersed in water under dark and light for 10 min, and CS was dispersed in
water under light for 10 min.
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