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ABSTRACT

Alternative splicing (AS) is a widespread process
that increases structural transcript variation and pro-
teome diversity. Aberrant splicing patterns are fre-
quently observed in cancer initiation, progress, prog-
nosis and therapy. Increasing evidence has demon-
strated that AS events could undergo modulation by
genetic variants. The identification of splicing quan-
titative trait loci (sQTLs), genetic variants that affect
AS events, might represent an important step toward
fully understanding the contribution of genetic vari-
ants in disease development. However, no database
has yet been developed to systematically analyze
sQTLs across multiple cancer types. Using genotype
data from The Cancer Genome Atlas and correspond-
ing AS values calculated by TCGASpliceSeq, we de-
veloped a computational pipeline to identify sQTLs
from 9 026 tumor samples in 33 cancer types. We
totally identified 4 599 598 sQTLs across all cancer
types. We further performed survival analyses and
identified 17 072 sQTLs associated with patient over-
all survival times. Furthermore, using genome-wide
association study (GWAS) catalog data, we identified
1 180 132 sQTLs overlapping with known GWAS link-
age disequilibrium regions. Finally, we constructed
a user-friendly database, CancerSplicingQTL (http:
//www.cancersplicingqtl-hust.com/) for users to con-
veniently browse, search and download data of in-

terest. This database provides an informative sQTL
resource for further characterizing the potential func-
tional roles of SNPs that control transcript isoforms
in human cancer.

INTRODUCTION

Single nucleotide polymorphisms (SNPs) are the most fre-
quent genetic variants in humans and represent a valu-
able resource for investigating the genetic basis of diseases
(1). Genome-wide association studies (GWAS) have found
abundant SNPs associated with various traits and diseases,
but most of risk loci lack clear molecular mechanisms (2,3).
Expression quantitative trait locus (eQTL) studies have
been employed to identify SNPs that may influence the ex-
pression levels of genes, thereby contributing to the pheno-
type outcome (4–6). However, only a moderate proportion
of GWAS-identified loci are strong eQTLs (7), which might
be partly due to the small sample sizes, the tissues studied,
and a focus on overall gene level expression measurements
without consideration of transcript isoforms (8).

Alternative splicing (AS) is a molecular mechanism that
produces multiple distinct transcript isoforms from a single
gene. The invention of RNA sequencing greatly facilitated
the identification of AS on a genomic scale (9). In human,
AS can occur in ∼90% of genes in a cell type-, condition-
or species-specific manner, which is thought to extensively
increase the number of proteins over the number of genes
in a genome (10,11). In cancer, aberrant splicing patterns
are frequently observed and known to contribute to car-
cinogenesis, de-differentiation and metastasis (12). Many
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cancer-specific transcript isoforms have been identified (13).
For example, an alternatively spliced transcript isoform of
the gene encoding spleen tyrosine kinase is frequently ex-
pressed in breast cancer cells but never in matched nor-
mal tissues (14). Available evidence reveals that at least 20%
of disease-causing single base-pair mutations affect splicing
(15). Common genetic variation that affects splicing regula-
tion, referred to as splicing quantitative trait loci (sQTLs),
can lead to differences in alternative splicing between in-
dividuals, consequently influence disease susceptibility and
drug response (16). Thus, the identification of sQTLs, espe-
cially in cancer tissues, might represent an important step
toward fully understanding the contribution of genetic vari-
ants in tumorigenesis and development.

Because of the significance of sQTLs, several studies
have performed genome-wide sQTL identifications on dif-
ferent human tissues, such as whole blood and brain (8,17–
19). These large-scale transcriptome studies using high-
throughput genotyping method and deep RNA sequencing
have revealed widespread sQTLs throughout the genome.
However, no database comprehensively provides sQTLs for
a large number of cancer samples. To bridge this gap, we
have developed a computational pipeline to systematically
identify sQTLs in 33 cancer types incorporating 9026 tu-
mor samples from The Cancer Genome Atlas (TCGA).
We identified millions of sQTLs across cancer types, and
constructed a user-friendly database, CancerSplicingQTL
(http://www.cancersplicingqtl-hust.com/) for users to con-
veniently browse, search and download data of interest.

DATA COLLECTION AND PROCESSING

Values of splicing events collection and processing

Percent Spliced In (PSI) values of each AS event were down-
loaded from the TCGASpliceSeq (http://projects.insilico.us.
com/TCGASpliceSeq/PSIdownload.jsp) with default pa-
rameter (20). PSI value is a common, intuitive ratio for
quantifying splicing events (11). The value is calculated by
the transcript element present divided by the total number
of reads covering the splicing event (Figure 1A). Six types
of AS events were analyzed in CancerSplicingQTL, includ-
ing skipped exon, retained intron, alternative donor sites, al-
ternative acceptor sites, alternate terminator and alternate
promoter (Figure 1B). For each cancer type, probes were
filtered using the following criteria: (i) the rate of missing
PSI value >0.1, (ii) mapping to locations on sex chromo-
some (Figure 1E). Finally, an average of 34 942 AS events
per cancer type were used for analyses. To minimize the ef-
fects of outliers on the regression scores (21–23), the values
for each probe across samples per cancer type were trans-
formed into a standard normal distribution based on rank.

Genotype data collection, imputation and processing

We downloaded genotype data (level 2) of 10 944 tu-
mor samples from the TCGA data portal (https://portal.
gdc.cancer.gov/), which detected the genotypes using
Affymetrix SNP Array 6.0 containing 898 620 SNPs for
each sample. Of these samples, 9026 samples were available
with PSI data. To increase the power for sQTL discovery, we
imputed autosomal variants for all samples in each cancer

type using IMPUTE2, with 1000 Genomes Phase 3 as the
reference panel as described in our previous study (24). To
improve computation efficiency, we used the two-step pro-
cedure of IMPUTE2, which includes pre-phasing and the
imputation of the phased data. Following criteria were used
to exclude SNPs: (i) imputation confidence score, INFO <
0.4, (ii) minor allele frequency (MAF) < 5%, (iii) SNP miss-
ing rate ≥ 5% for best-guessed genotypes at posterior prob-
ability ≥ 0.9 and (iv) Hardy–Weinberg Equilibrium P-value
< 1 × 10−6 estimated by Hardy–Weinberg R package (Fig-
ure 1C). After imputation and quality filtering, an average
of 4 516 897 genotypes per cancer type were remained in the
sQTL analyses.

Covariates

In QTL analyses, covariates are often included to correct
for the known and unknown confounders and increase the
sensitivity of analyses (25). The top five principal compo-
nents (PC) calculated by smartPCA in the EIGENSOFT
program (26) were included to control for ethnicity differ-
ences, as they account for 10% of the variation explained
with diminishing returns (0.5% or smaller contribution) for
subsequent PCs, which are sufficient to represent the ma-
jor population structure found in the TCGA dataset. Fur-
thermore, to remove the hidden batch effects and other con-
founders from the AS data, we used PEER software (27) to
infer hidden determinants, and selected the first 15 PEER
factors from the AS data as covariates. The hidden batch
effects and ethnic differences respectively accounted for an
average of 19.9% and 1.19% of contribution to PSI variance
in all cancers, which were described in details at the Supple-
mentary Table S1. Other common confounders, specifically
age, sex, and tumor stage, were included as additional co-
variates (22,28,29) (Figure 1D).

Identification of sQTLs

For each cancer type, the effects of genetic variation
on AS events were evaluated by linear regression
using MatrixEQTL (30) (Figure 1F). Pairwise asso-
ciations between each SNP and its splicing events
around ±100 kb were calculated. The location (hg19)
of splicing events was downloaded from TCGAS-
pliceSeq database (http://projects.insilico.us.com/
TCGASpliceSeq/TCGA SpliceSeq Gene Structure.zip),
and the SNP location (hg19) was obtained from db-
SNP (https://www.ncbi.nlm.nih.gov/projects/SNP/). SNPs
with false discovery rates (FDR) < 0.05 calculated by
MatrixEQTL were defined as sQTLs (17).

Identification of survival-associated sQTLs

As many AS are involved in cancer prognosis (31), sQTLs
may alter gene splicing and thereby influence the progno-
sis. To prioritize promising sQTLs, we additionally identi-
fied sQTLs that might be associated with patient survival
times. For each sQTL, we examined the associations be-
tween the sQTL and patient overall survival times. For
each sQTL, samples were classified into three groups: ho-
mozygous genotype AA, heterozygous genotype Aa and
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Figure 1. Identification of sQTLs in the CancerSplicingQTL database. (A) The definition of Percent Spliced In values (20). PSI is the ratio of reads
indicating the presence of a transcript element versus the total reads covering the event. In this example, the PSI value is 0.6, indicating that the exon 2 is
included in approximately 60% of the transcripts in the sample. (B) The types of splice events analyzed in SplicingQTL. (C) Genotype data collection and
processing. (D) Covariates included in sQTL mapping. (E) The values of splice events collection and processing. (F) sQTLs, survival-associated sQTLs and
GWAS-related sQTLs identification.

homozygous genotype aa (A and a represent two alleles of
one SNP). The log-rank test was used to examine the dif-
ferences in survival time, and Kaplan–Meier (KM) curves
were plotted to represent the survival times for each group.
sQTLs with FDR < 0.05 were defined as survival-associated
sQTLs.

Identification of GWAS-associated sQTLs

The identification of causal variants is a major chal-
lenge for post GWAS studies (32). Thus we integrated the
sQTLs with known GWAS risk loci to facilitate interpreta-
tion of the function of genomic variants. We downloaded
all the known risk tag SNPs identified in GWAS stud-
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Figure 2. sQTL statistics. (A) The cancer types included in the study. (B) The positive correlation between the number of sQTLs and the sample size. (C)
The distribution of sQTLs. Each cyan dot indicates a sQTL plotted according to its distance from the corresponding AS event and statistical significance
of its association with AS (–log10 P-value). Red line indicates density of sQTLs according to their distance from the corresponding AS event. (D) Bar
plot indicates proportions of sQTLs affecting different AS type (AA: alternative acceptor sites, AD: alternative donor sites, AP: alternate promoter, AT:
alternate terminator, ES: skipped exon and RI: retained intron).

ies from the National Human Genome Research Institute
(NHGRI) GWAS catalog (http://www.ebi.ac.uk/gwas/, ac-
cessed by 1 March 2018) (2). Then we obtained GWAS
linkage disequilibrium (LD) regions of these risk tag SNPs
from SNAP (https://personal.broadinstitute.org/plin/snap/
ldsearch.php) (33) with parameters (SNP data set: 1000
Genomes; r2 (the square of the Pearson correlation coef-
ficient of linkage disequilibrium) threshold: 0.5; population
panel: CEU (Utah Residents with Northern and Western
European Ancestry), and distance limit: 100 kb). sQTLs
that overlapped with GWAS tag SNPs and LD SNPs were
defined as GWAS-related sQTLs.

DATABASE CONTENT

Samples in CancerSplicingQTL

In total, CancerSplicingQTL included 9026 tumor samples
with both genotype data and PSI data available for 33 can-
cer types (Figure 2A). The sample size for each cancer type
ranged from 36 for cholangiocarcinoma (CHOL) to 1090
for invasive breast carcinoma (BRCA) (Table 1). After im-
putation and quality control of the genotype data, an av-
erage of 4 516 897 SNPs per each cancer type were used
for analyses, ranging from 2746 175 for BRCA to 5 120
270 for acute myeloid leukemia (LAML). After removing
AS events with a rate of missing PSI beta value > 0.1 or
mapping to sex chromosome, an average of 34 942 splicing
events per cancer type were used for analyses, ranging from
24 707 for uterine corpus endometrial carcinoma (UCEC)
to 43 937 for esophageal carcinoma (ESCA).

sQTLs in CancerSplicingQTL

The CancerSplicingQTL mainly contains three datasets
that are sQTLs, survival-sQTLs and GWAS-sQTLs. In the
sQTL analysis, the associations between each SNP and AS
events within the ±100 kb window around the SNP were an-
alyzed for sQTL mapping by linear regression. We totally
identified 7 945 857 sQTL-AS pairs at a per-tissue FDR
< 0.05 in 33 cancer types. In total, there are 4 599 598 sQTLs
across cancer types, ranging from 64 in CHOL to 574 577
in thyroid carcinoma (THCA), with a median of 124 542
sQTLs per cancer type (Table 1). The number of sQTLs was
significantly correlated with the number of samples (Spear-
man correlation Rs = 0.96, P-value = 1.44 × 10−18, Figure
2B). These sQTLs affect a median of 4847 AS events of 2857
unique genes per cancer type. Most of sQTLs were centered
on AS events and 50% of sQTLs located at ±31 kb region
flanking the AS events (Figure 2C). 42.8% of sQTLs were
associated with multiple AS events, and of these affected AS
events, 33.6%, 27.3% and 18.7% were alternate terminator
(AT), exon skip (ES) and alternate promoter (AP), respec-
tively (Figure 2D).

The germline variants derived from genotype imputation
accounted for an average of 88.5% of sQTLs in all cancer
types, ranging from 84.1% in BRCA to 90.1% in LAML
(Supplementary Table S2). Additionally, we calculated the
replication ratio of sQTL-splicing pairs in one cancer across
other cancer types, finding an average of 45.9% of sQTL-
splicing pairs replicate across other cancer types (Supple-
mentary Figure S1). To compare the difference between be-
fore and after the correction of the batch effects, we respec-
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Table 1. Overview of sQTLs in each cancer type included in SplicingQTL

Cancer
type Disease full name

No. of
Sample

No. of
genotype

No. of
splicing sQTLs

Affected
splicing sQTL pairs

Survival
sQTLs

GWAS
sQTLs

ACC Adrenocortical carcinoma 77 3567953 26620 17752 913 24950 7 4930
BLCA Bladder urothelial carcinoma 406 4183896 32125 168597 6180 289420 157 44333
BRCA Breast invasive carcinoma 1090 2746175 38428 253767 11961 506672 64 64008
CESC Cervical squamous cell carcinoma

and endocervical adenocarcinoma
250 4272427 33443 118989 4847 190429 412 31143

CHOL Cholangiocarcinoma 36 4012151 31208 64 9 64 0 5
COAD Colon adenocarcinoma 285 4491421 27466 152518 6048 255470 294 39233
DLBC Lymphoid neoplasm diffuse large

B-cell lymphoma
48 4845460 26277 4445 206 5641 0 1254

ESCA Esophageal carcinoma 180 4463210 43937 138960 5324 214082 764 36443
GBM Glioblastoma multiforme 150 4556997 38904 126023 4724 197274 817 33604
HNSC Head and neck squamous cell

carcinoma
499 4247759 35648 236904 8109 418356 698 60692

KICH Kidney chromophobe 66 3771773 39171 25251 1329 34571 388 6542
KIRC Kidney renal clear cell carcinoma 527 4579516 39696 325766 10887 600508 493 80279
KIRP Kidney renal papillary cell

carcinoma
290 4894174 33438 162228 6001 264080 1115 41681

LAML Acute myeloid leukemia 122 5120270 29804 35478 1348 51024 152 11042
LGG Lower grade glioma 514 4632416 41896 354837 11254 675128 1062 85201
LIHC Liver hepatocellular carcinoma 369 4156507 26210 119209 4407 194309 229 30134
LUAD Lung adenocarcinoma 512 4383840 37236 255517 8777 455348 147 67226
LUSC Lung squamous cell carcinoma 500 3742393 39640 242335 9123 437645 65 62268
MESO Mesothelioma 87 4784881 36010 49305 1734 68126 809 13856
OV Ovarian serous cystadenocarcinoma 293 2975439 41415 149571 6769 254127 133 39361
PAAD Pancreatic adenocarcinoma 176 4985375 39104 140937 4946 224001 771 37996
PCPG Pheochromocytoma and

Paraganglioma
168 4707250 34321 112116 4400 180122 1156 29132

PRAD Prostate adenocarcinoma 485 4823458 37654 313993 10268 581617 1643 75506
READ Rectum adenocarcinoma 93 4516897 29274 52896 2064 76387 204 14965
SARC Sarcoma 248 4081096 33922 124542 4944 202118 737 33246
SKCM Skin cutaneous melanoma 101 4865378 34942 53912 2014 74913 280 15180
STAD Stomach adenocarcinoma 408 4306085 41433 207947 7311 338590 280 53307
TGCT Testicular germ cell tumors 144 4791125 35758 107451 3815 166457 305 28328
THCA Thyroid carcinoma 493 4870332 39754 359916 11265 683697 1842 86793
THYM Thymoma 107 4892278 33234 85317 3203 132081 935 23473
UCEC Uterine corpus endometrial

carcinoma
166 4941208 24707 61884 2773 92641 372 16929

UCS Uterine carcinosarcoma 56 3888384 32022 6586 393 8485 25 1729
UVM Uveal melanoma 80 4737551 32067 34585 1348 47524 716 10313

tively calculated the sQTLs between before and after the
correction. We found that there were an average of 23.5%
of sQTLs loss and 26.6% of sQTLs gain in all cancers, be-
tween before and after the correction of the batch effects
(Supplementary Table S3).

To prioritize promising sQTLs, we linked sQTLs to pa-
tient survival times and known GWAS loci. We found 17
072 sQTLs associated with patient overall survival times
across different cancer types at FDR < 0.05. The number
of survival-sQTLs ranged from 0 in CHOL and lymphoid
neoplasm diffuse large B-cell lymphoma (DLBC) to 1643
in prostate adenocarcinoma (PRAD). We also linked sQTL
results to NHGRI GWAS Catalog data and found 1 180 132
sQTLs that overlapped with GWAS linkage disequilibrium
(LD) regions of one or multiple traits.

DATABASE ORGANIZATION AND WEB INTERFACE

CancerSplicingQTL was built based on the NodeJS 8.10.0
(https://nodejs.org/en/) framework with MongoDB 3.6.5
(https://www.mongodb.com/) as its database engine. It runs
on a Linux-based Nginx Web server, while ReactJS (https:
//reactjs.org/), a modern JavaScript library, is used for
building user interfaces. We have tested it on Google

Chrome (preferred), Firefox or Apple Safari browsers.
The SplicingQTL website is available online (http://www.
cancersplicingqtl-hust.com/) and requires no registration.

We provided a user-friendly web interface that facilitates
searching, browsing and downloading the three datasets.
Users can enter the ‘sQTL/survival-sQTL/GWAS-sQTL’
pages by clicking on the corresponding button in the
browser bar (Figure 3A) or on hyperlinks embedded in
the corresponding images in the ‘Modules’ section on
the ‘home’ page (Figure 3C). Two query sections ‘Single
Search’ and ‘Batch Search’ are provided for comprehensive
queries across all three datasets (Figure 3B). In the ‘Single
Search’ section, users can select a specific cancer type (e.g.
BRCA) and input an SNP ID (e.g. rs936227), gene sym-
bol (e.g. ULK3) or genomic region (e.g. chr15:75 100 000–
75 200 000) to search sQTLs across all datasets. If users do
not select cancer type, it will return results for all cancer
types. The ‘Batch Search’ section allows users to input mul-
tiple cancer types, SNPs, genes or genomic regions of in-
terest. For instance, inputting ‘rs936227’ and ‘rs9989230’ in
the ‘SNP ID’ box, will return a complete list of matched
entries across cancer types. In addition, a summary of the
sample size, sQTL number and AS type distribution is also
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Figure 3. Overview of the CancerSplicingQTL database. (A) Browser bar in SplicingQTL. (B) The single and batch search boxes in SplicingQTL. (C) Three
modules in SplicingQTL, including sQTLs, survival-associated sQTLs, and GWAS-related sQTLs. (D) An example of sQTL results on the ‘sQTL’ page. (E)
An example of survival-sQTL results in ‘survival-sQTL’ page. (F) An example of a sQTL boxplot on the ‘sQTL’ page. (G) An example of a Kaplan–Meier
plot on the ‘survival-sQTL’ page.
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shown on the ‘home’ page. Putting the cursor over a can-
cer name on the-hand side human anatomy diagram, the
matched results will show on the right-hand side figures. All
data in the database can be downloaded from the ‘Down-
load’ page. A detailed tutorial showing how the data were
collected and processed is available on the ‘Help’ page. Can-
cerSplicingQTL welcomes any feedback by email via the
‘Contact’ page.

Query on the ‘sQTLs’ page

To query sQTLs, CancerSplicingQTL allows users to search
by selecting a cancer type from a pull-down menu, or by
entering a SNP ID or gene symbol. After users click the
‘Search’ button, the query results are displayed in a ta-
ble showing SNP ID, SNP genomic position, SNP alleles,
related gene symbol, splicing type, splicing exon, splicing
ID (the same as TCGASpliceSeq annotation), splice posi-
tion, beta value (effect size of SNP on PSI value), r value
(correlation coefficient) and P-value of sQTL (Figure 3D).
By clicking the hyperlink ‘Box Plot’ on the right of each
record, a vector diagram of a boxplot will display the asso-
ciation between SNP genotypes and normalized PSI values.
For example, our analysis showed that at XPNPEP3 first
exon, the PSI values of individuals carrying the homozygote
rs5758123 aa is significantly higher than that of individuals
carrying the homozygote rs5758123 AA and heterozygous
rs5758123 Aa in stomach adenocarcinoma (P-value = 1.34
× 10−53, Figure 3G).

Query on the ‘survival-sQTLs’ page

A table with SNP ID, SNP genomic position, SNP alleles,
Log-rank test P-value, and median survival time for each
genotype group is displayed on the survival-sQTLs page
(Figure 3E). Search boxes are designed to retrieve specific
cancer types and SNPs. If users select a specific cancer type
or input a gene or SNP ID, the table will be reconstructed
to display the results of the query. Each record embeds a
hyperlink ‘KM Plot’, showing the association between SNP
genotypes and overall survival times. For example, our anal-
ysis showed that patients with rs7597845 AA allele have a
better prognosis than other patients with breast cancer (P-
value = 9.09 × 10−6, Figure 3F).

Query on the ‘GWAS-sQTLs’ page

A complete list of the SNP information, regulated splice
site, related gene information and related GWAS-traits are
provided on the ‘GWAS-sQTL’ page. Search boxes are de-
signed to retrieve a specific cancer type, phenotype or SNP.
In addition, users can select a different LD threshold from
the ‘LD’ dropdown box to prioritize SNPs. For example, the
GWAS-catalog has collected 263 tag SNPs of breast cancer
risk loci. We found that 83 tag SNPs have 1402 sQTLs in
their LD regions (r2 ≥ 0.5) affecting the splicing events of
100 genes. Causal variants of breast cancer could be existed
among these sQTLs.

SUMMARY AND FUTURE DIRECTIONS

In summary, CancerSplicingQTL is a comprehensive sQTL
resource that uses large cancer samples to evaluate the ef-

fects of genetic variants on gene splicing. It provides a user-
friendly interface for users to query, browse, and down-
load sQTLs. To the best of our knowledge, CancerSplic-
ingQTL is the first public database focusing on cancer-
specific sQTLs. Millions of vector diagrams of sQTL box
plots and KM plots are provided for scientific usage. We
also identified numerous sQTLs associated with patient sur-
vival times or located in known GWAS loci that will be
promising candidates for genetic research. Biologists can
download entire datasets for further integrative studies.

Cancer genomics studies are developing rapidly (34,35),
and we expect the number of cancer samples with genotype
and splicing profiles to increase dramatically. In the future,
we will continue to update CancerSplicingQTL to include
more cancer samples and maintain it as a useful resource for
the research community. We will add more genetic and splic-
ing information into the database. We believe that Cancer-
SplicingQTL will be an important resource for human can-
cer genetics, providing opportunities to bridge the knowl-
edge gap from variants in sequence to phenotypes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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