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ABSTRACT
Background: Many statistical methods are available to model longitudinal growth data and relate
derived summary measures to later outcomes.
Aim: To apply and compare commonly used methods to a realistic scenario including pre- and post-
natal data, missing data, and confounders.
Subjects and methods: Data were collected from 753 offspring in the Southampton Women’s Survey
with measurements of bone mineral content (BMC) at age 6 years. Ultrasound measures included
crown-rump length (11 weeks’ gestation) and femur length (19 and 34 weeks’ gestation); postnatally,
infant length (birth, 6 and 12months) and height (2 and 3 years) were measured. A residual growth
model, two-stage multilevel linear spline model, joint multilevel linear spline model, SITAR and a
growth mixture model were used to relate growth to 6-year BMC.
Results: Results from the residual growth, two-stage and joint multilevel linear spline models were
most comparable: an increase in length at all ages was positively associated with BMC, the strongest
association being with later growth. Both SITAR and the growth mixture model demonstrated that
length was positively associated with BMC.
Conclusions: Similarities and differences in results from a variety of analytic strategies need to be
understood in the context of each statistical methodology.
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Introduction

There is increasing interest in modelling longitudinal data
and determining relationships with a future outcome. For
example, a hypothesis that has been widely explored is the
association between birth size, childhood growth and health
outcomes in later life such as blood pressure. Various meth-
ods are available for examining such associations, but there
has been limited work comparing their advantages and dis-
advantages; it is unclear whether the methods provide simi-
lar results, and there is little information describing which
methods are most appropriate in particular situations.

Studies previously comparing methods include Tu et al.
(2013), who analysed data on repeated weights from ages
1–19 years in relation to blood pressure at 19 years using
methods including z-score plots, life course models, path
analysis, conditional models, and latent variable models;
there were no missing data, and no confounders were con-
sidered. De Stavola et al. (2006) compared conditional and

joint models using two examples: maternal and grand-mater-
nal influences on offspring size at birth, and the influence of
childhood height on adult leg length. The examples had
missing data, but did not adjust for confounders. Both
papers concluded that more than one method of analysis
would be useful to examine the robustness of conclusions to
assumptions, and to answer different questions. Sayers et al.
(2017) compared six methods that relate a linear trajectory
of change to a later outcome, using simulated data, conclud-
ing that two-stage approaches result in biased unconditional
associations. Johnson (2015) provides an overview of strat-
egies available in modelling human growth, but does not
apply these to one dataset in order to compare results. To
date, no evaluation has examined prenatal growth or been
based on an example including both missing data and con-
founders. Newer methods have recently been developed: the
joint multilevel linear spline model and SITAR. Here we com-
pare five methods, chosen because they are widely used to
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model longitudinal data and the relationship with a future
outcome, but aren’t adversely affected by high levels of col-
linearity between measurements: a residual growth model,
two-stage multilevel linear spline model, joint multilevel lin-
ear spline model, SITAR and a growth mixture model
approach. The inclusion of newer methods and application
of all methods to a realistically complex scenario including
pre- and postnatal data, missing data and confounders,
builds on previously published comparisons. The residual
growth model and both multilevel linear spline models pro-
vide measures of growth in different time intervals, whereas
the SITAR method enables researchers to model three
parameters relating to the biological process of growth; the
growth mixture model groups participants according to
broad patterns of growth across the whole exposure period.
All methods address the question of how these measures of
growth are related to an outcome in later life.

Peak bone mass is achieved in the third to fourth decade
of life and is a major determinant of osteoporotic fracture
risk in later life (Hernandez et al. 2003); understanding factors
that influence bone mineral accrual may, thus, inform novel
approaches to fracture prevention. Our example relates linear
growth (both prenatal and postnatal) to 6-year bone mineral
content (BMC). The aim of the study is to demonstrate a var-
iety of methods as illustrated by application to the example
of childhood growth, and to provide some guidance as to
when each method might be useful. We first describe the
dataset and then the various models in turn. We then com-
pare the results and identify strengths and weaknesses of
each method for particular applications.

The Southampton Women’s Survey

The Southampton Women’s Survey (SWS) is a prospective
cohort study comprising 12,583 non-pregnant women living
in Southampton, UK (Inskip et al. 2006). Women who became
pregnant were followed up with ultrasound scans at 11,
19 and 34 weeks’ gestation, including measurements of
crown–rump length (CRL) (at 11 weeks gestation) and femur
length (FL) (at 19 and 34 weeks). Postnatally, crown–heel
length was measured at birth, 6 and 12months and height
at 2 and 3 years. At 6 years of age a sub-set of children had
whole body bone mass (omitting the head) measured by
dual energy x-ray absorptiometry (DXA).

A total of 1852 women became pregnant and delivered a
singleton term infant surviving the neonatal period, with no
major congenital growth abnormalities, before the end of
2003. Of these, 1173 children born between February 2000
and December 2003 were visited at home at 6–7 years of
age and 753 were subsequently willing to attend a clinic and
have a whole body DXA scan and comprise the analysis sam-
ple. Of these, 432 participants had complete data for linear
size at all ages; the median (range) number of linear size
measures per participant was 8 (4–8).

Descriptive statistics for the 1852 infants born before the
end of 2003, the sub-set of 753 with a DXA scan and the 432
with complete data for linear size are provided in
Supplementary Table S1; broadly the groups are comparable,

although there is a tendency for those having a DXA scan to
be taller and slightly better educated than the baseline sample,
and for those with complete linear size measurements to be
again taller and better educated than those with a DXA scan.

Age was defined as years from predicted date of delivery
(to adjust for gestational age at birth), e.g. 11 weeks’ gestation
¼ �0.56 years. For the SITAR method, age was defined as
years from birth because this analysis provides a data-driven
developmental age adjustment. In these analyses sex is con-
sidered as a confounder, and adjustment for age at BMC
measurement is included in order to account for age-related
variability in BMCs. Descriptive statistics are given in Table 1.

Measurements of length were not available from prenatal
ultrasound scan measurements. However, length can be esti-
mated from CRL and FL by assuming that they are propor-
tional to total length. An appropriate multiplier was found
by comparing the summary statistics for total length from
foetal autopsies provided by Guihard-Costa et al. (2002) with
those for CRL and FL in the SWS dataset. This suggested
multipliers of 1.71, 7.66 and 6.91 to predict foetal length
from CRL at 11weeks and FL at 19weeks and 34weeks,
respectively. Note also that there is a small discontinuity
between supine length (measured at birth, 6 and 12months)
and height (measured at 2 and 3 years) that remains to be
accounted for in the statistical methods. For convenience,
scaled foetal length, supine length and height are henceforth
referred to as length. Figure 1 shows how length varies by
age in the sample. Age had a normal distribution at 11
weeks, 19 weeks and 34 weeks gestation and birth; the
means (SD) were �0.54 (0.01), �0.39 (0.01), �0.11 (0.01) and
0.00 (0.02) years, respectively. Age had a skewed distribution
at 6 and 12months, 2 and 3 years; the medians (IQRs) were
0.51 (0.49–0.54), 1.02 (1.00–1.05), 2.04 (2.00–2.07) and 3.06
(3.02–3.12) years, respectively.

Residual growth model

Sequential length measures taken in relatively close proxim-
ity are highly collinear, so regressing the outcome on all indi-
vidual measurements leads to wide confidence intervals.
Residual growth modelling, however, involves deriving inde-
pendent measures of growth (Keijzer-Veen et al. 2005; Adair
et al. 2009; Menezes et al. 2012).

Residual growth for child j is defined as the difference
between observed length at time p (lengthpj) and predicted

Table 1. Descriptive statistics.

Characteristic n Valuea

11 week crown-rump length (cm) 503 5.3 (0.8)
19 week femur length (cm) 712 3.1 (0.2)
34 week femur length (cm) 746 6.5 (0.3)
Birth supine length (cm) 737 50.1 (1.9)
6 month supine length (cm) 746 67.5 (2.5)
12 month supine length (cm) 735 75.9 (2.7)
2 year height (cm) 705 86.8 (3.1)
3 year height (cm) 719 96.1 (3.5)
Males, n (%) 753 393 (52%)
6 year BMC (kg) 753 0.54 (0.07)
Age at BMC (years) 753 6.7 (6.5–6.8)
aPercentage for categorical data, mean (SD) for continuous data except age at
BMC, for which median (IQR) is presented.
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length at time p ^ðlengthpj). ^lengthpj is obtained by an ordinary
least squares regression of lengthpj on all previous lengths:

lengthpj ¼ b0 þ
Xp�1

i¼1
bilengthij þ ej

Residual growth (lengthpj � ^lengthpjÞ is, therefore, the
estimated residual error ðêjÞ and is the growth in length
relative to that predicted from all previous length measure-
ments. The seven residual growth measurements are
orthogonal to all preceding length measurements, and all
preceding residual growth measurements and, thus, are
independent of each other.

Although measurements were planned for defined ages,
there was inevitable variability in the actual ages of measure-
ment. Therefore, before the residual growth models were fit-
ted, internal length z-scores were derived using the LMS
method (Cole and Green 1992). This method provides
smoothed centile curves to potentially skewed data, allowing
z-scores to be calculated at exact ages; these z-scores were
used in the growth residual model. The LMS method summa-
rises the changing distribution of a measurement according
to a covariate such as age by three curves representing the
skewness (L), median (M) and coefficient of variation (S).
Internal rather than external z-scores were chosen, since suit-
able external standards were not available for prenatal data.
LMS z-scores were created using LMSchartmaker (Pan and
Cole 2011) to fit growth curves for boys and girls separately.

Residual growth measures were derived using all time
points from 11 weeks’ gestation to 3 years and were scaled
to have a mean of 0 and an SD of 1 so that the final coeffi-
cients would be comparable across time points. In a second
stage, ordinary least squares regression was used to regress
6-year whole body BMC on size at the first time point and
the residual growth measures, including sex and age at BMC
as additional predictors. Four hundred and thirty-two partici-
pants who had complete data for length at all ages contrib-
uted to the analysis, which explained 55% of the variation in
BMC. Figure 2 illustrates the results of the model. BMC was
positively associated with faster residual growth between
birth and 3 years, particularly between 12months to 2 years.

Two-stage multilevel linear spline model

A multilevel linear spline model (Tilling et al. 2011) was fitted
to the repeated measurements of length. This model has two
levels: measurement occasion (level 1) and within individual
(level 2). It models the change in length with age as a piece-
wise linear growth trajectory between knot points where the
slope changes and partitions the variation in the repeated
measures of length into between-individual (level 2) and
within-individual (level 1) variation. The exposure variable was
age, and the outcome variable was length. Explanatory varia-
bles were included to indicate the type of measurement (i.e.
CRL, FL, or supine length (reference; separate effects were not
required for each of these) and height) and the level 1 vari-
ance was allowed to differ between CRL measures and non-
CRL measures as this improved model fit. The knot points
were positioned at the ages of measurement (except the
extreme ages), since these were most informative about
child’s length. Models were fitted including every combination
of three- and four-knot linear splines (i.e. every possible set of
knot positions); models with fewer than three knots were too
simplistic for the shape of the curve and fitted the data
poorly, while models with more than four knots failed to con-
verge. The selected model had a low AIC and also minimised
the mean absolute differences between the observed and pre-
dicted values across measurement occasions. It had knots at
34 weeks’ gestation, birth, 6 and 12months of age, with a
baseline at 11 weeks’ gestation, thus estimating average size
at 11 weeks’ gestation (b0) and changes between 11 and 34
weeks gestation (b1), 34 weeks gestation and birth (b2), birth
and 6months (b3), 6 and 12months (b4) and 12months and
3 years (b5). Individual-level random effects were allowed for
all these estimates, meaning that each individual is allowed to
have their own size at 11 weeks gestation and changes
between time points. The model estimates the variances and

Figure 1. Length of SWS participants by age.

Figure 2. Residual growth modelling: conditional change in length as predic-
tors of 6 year whole body BMC (g).
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covariances of these individual deviations from the average
pattern of growth. For example, the between-individual vari-
ance in size at 11 weeks gestation is given by r2

u0 below. The
ith measurement for the jth individual is given by:

lengthij ¼ b0 þ b1 þ u1j
� �

spline1 11�34weeksð Þij
þ b2 þ u2j
� �

spline2 34weeks�birthð Þij
þ b3 þ u3j
� �

spline3 birth�6monthsð Þij
þ b4 þ u4j
� �

spline4 6�12monthsð Þij
þ b5 þ u5j
� �

spline5 12months�3yearsð Þij
þCRLij þ heightij þ u0j þ CRLij � eCRLij

þ 1� CRLijð Þ � enon�CRLij

where

u0j
u1j
u2j
u3j
u4j
u5j

2
6666664

3
7777775
�Normal

0
0
0
0
0
0

2
6666664

3
7777775
;

r2
u0

ru01 r2
u1

ru02 ru12 r2
u2

ru03 ru13 ru23 r2
u3

ru04 ru14 ru24 ru34 r2
u4

ru05 ru15 ru25 ru35 ru45 r2
u5

2
66666664

3
77777775

0
BBBBBBB@

1
CCCCCCCA

and

eCRLij
enon�CRLij

� �
�Normal

0
0

� �
;

r2
e1
0 r2

e2

� �� �

In the second stage, BMC was regressed on each of the
standardised individual-level random effects from the multi-
level model in turn, adjusting for sex, age at BMC measure-
ment and individual-level random effects relating to earlier
age intervals and length at 11weeks. For example, to esti-
mate the association of growth between birth and 6months
conditional on prior growth with BMC, the regression equa-
tion is given by:

BMCj ¼ a0þa1sexj þa2BMCagejþa3û0jþa4û1j þa5û2j þa6û3j

where û0j;û1j;û2j and û3j are the standardised best linear
unbiased predictors of the random effects from the multi-
level model and a6is the regression coefficient of interest.

Bootstrapping (by cluster with replacement, using 500
replications) was used to derive confidence intervals for the
coefficients in order to account for the uncertainty in esti-
mating the growth parameters using the multilevel model.
For each bootstrap sample, the multilevel model was fitted,
random effects estimated and then BMC regressed on the
standardised random effects. The 2.5th and 97.5th percentiles
were used as the confidence intervals for each parameter.

Figure 3 illustrates the regression coefficients from the
second stage regression model. The model was fitted on all
753 participants and explained 53% of the variance in BMC.
After adjustment for growth in earlier periods, growth in all
periods up to 3 years was strongly positively associated with
BMC. The greatest difference in BMC per SD of growth was
seen for growth between birth and 6months.

Joint multilevel linear spline model

A bivariate multilevel linear spline model (Macdonald-Wallis
et al. 2012) was fitted to the repeated measurements of
length and to BMC, all as outcomes. The model had three
levels: measurement (length or BMC, level 0) within measure-
ment occasion (level 1) and within individual (level 2). The
exposure variable for the multilevel model for length was
age, with knot points at 34 weeks gestation, birth, 6 and
12months of age, so that the results were comparable with
the two-stage multilevel linear spline model. The exposure
variables for the BMC outcome were sex and age at BMC
measurement (centred at 6.5 years). The model, therefore,
included the same six individual-level random effects as in
the two-stage multilevel linear spline model (above) plus an
individual-level random effect for BMC. This allows individu-
als to have growth that varies around a population average,
BMC that varies around a population average, and for the
individual growth and BMC to be related. These seven ran-
dom effects were used to derive estimates of the coefficients
for the regression of BMC on each growth parameter,
adjusted for previous growth (Tilling et al. 2001; Goldstein
et al. 2002; Macdonald-Wallis et al. 2012). The formula for
the ith measurement occasion and the jth individual is given
by:

lengthij ¼ b0 þ b1 þ u1j
� �

spline1 11�34weeksð Þij
þ b2 þ u2j
� �

spline2 34weeks�birthð Þij
þ b3 þ u3j
� �

spline3 birth�6monthsð Þij
þ b4 þ u4j
� �

spline4 6�12monthsð Þij
þ b5 þ u5j
� �

spline5 12months�3yearsð Þij
þCRLij þ heightij þ u0j þ eCRLij þ enon�CRLij

BMCj ¼ b6 þ b7sexj þ b8BMCagej þ u6j

Figure 3. Two stage multilevel linear spline: conditional change in length as
predictors of 6 year whole body BMC (g).
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where

u0j
u1j
u2j
u3j
u4j
u5j
u6j

2
666666664

3
777777775
�Normal

0
0
0
0
0
0
0

2
666666664

3
777777775
;

r2
u0

ru01 r2
u1

ru02 ru12 r2
u2

ru03 ru13 ru23 r2
u3

ru04 ru14 ru24 ru34 r2
u4

ru05 ru15 ru25 ru35 ru45 r2
u5

ru06 ru16 ru26 ru36 ru46 ru56 r2
u6

2
6666666664

3
7777777775

0
BBBBBBBBB@

1
CCCCCCCCCA

and

eCRLij
enon�CRLij

� �
�Normal

0
0

� �
;

r2
e1
0 r2

e2

� �� �
:

The Stata command reffadjust (Palmer et al. 2014) was used
to obtain confidence intervals for each coefficient. Figure 4
illustrates the regression coefficients from the model explain-
ing 53% of the variance in BMC. After adjustment for growth
in earlier periods, growth in all periods up to 3 years was
strongly positively associated with BMC. The greatest differ-
ence in BMC per SD of growth was seen for growth between
12months and 3 years.

SITAR

SITAR (SuperImposition by Translation And Rotation) is a
shape-invariant mixed effects growth model (Lindstrom 1995;
Beath 2007; Cole et al. 2010) that models both the measure-
ment scale and the age scale of the growth curve. The mean
growth curve is fitted as a cubic spline and, in addition, the
intercept on the measurement scale includes a subject-spe-
cific random effect, while on the time scale both the inter-
cept and slope include subject-specific random effects. This
means the model is ‘shape-invariant’—a single mean curve is
estimated, but it is modified by the inclusion of the random
effects to match the observed growth curves for individuals.

The three random effects reflect simple transformations of
the mean curve. SITAR size is an up–down shift of the curve
(random intercept on the measurement scale), SITAR timing
is a left–right shift of the curve (random intercept on the age
scale), and SITAR intensity is a shrinking–stretching of the
age scale (random slope on the age scale). If the model fits
well, adjusting the individual curves for their random effects
superimposes them on the mean curve, leading to the
name SITAR.

The formula for the SITAR model is

lengthij ¼ aj þ h ecj tij�bj
� �� �þ eij

where the lengthij are measurements at ages tij, with i index-
ing the occasion and j the subject; h(.) is a function in trans-
formed age defining the mean spline curve; aj, bj and cj are
subject-specific random effects for size, timing and intensity,
respectively, and the eij are normally distributed residuals.
Fixed effects for a, b and c are also included, to ensure the
mean random effects are zero. Note that c is exponentiated
to provide a multiplier centred on one. The mean curve is fit-
ted as a natural cubic B-spline, which is a cubic spline with
particular properties where the number and placement of
knots is chosen to minimise the Bayesian Information
Criterion. The spline curve regression coefficients are esti-
mated as fixed effects simultaneously with the other fixed
and random effects. The model is fitted in R using the nlme
package and the author’s sitar package.

The relationship between growth and later outcome can
be estimated in at least three ways. The most obvious
approach is to first fit the SITAR model and then as a second
stage regress the outcome on the triplets of subject-specific
SITAR random effects, analogous to the two-stage multilevel
linear spline model described above. An alternative, though
counter-intuitive approach is to include the outcome in the
SITAR analysis as a fixed effect subject covariate for each of
SITAR size, SITAR timing and SITAR intensity. In other words,
the random effects for each subject are adjusted for the sub-
ject’s later outcome. This analysis effectively reverses time,
by seeing whether the outcome (i.e. BMC here) ‘explains’ the
earlier pattern of growth, hence testing for the existence or
not of an association between growth and later outcome. A
third approach is to fit the full bivariate spline model analo-
gous to that in the previous section.

The last approach would be best, but was challenging
analytically due to modelling the SITAR random effects on
the age scale. Of the other approaches, the first assumes
that the random effects are estimated without error, so that
their standard errors need to be bootstrapped. However, in
practice this led to unstable models with inconsistent results
and the approach was dropped. The second approach
assumes (incorrectly) that the outcome is measured without
error; however, it was preferred as it correctly handles the
uncertainty in the random effects and in practice it also gave
more consistent results.

The SITAR model was fitted using
ffiffiffiffiffiffiffiffiffiffiffiffiffi
length

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ageþ 0:75
p

(after testing untransformed and log trans-
formed alternatives), where the age offset of 0.75 years
reflected the prenatal period. The model included all 753

Figure 4. Joint multilevel linear spline: conditional change in length as predic-
tors of 6 year whole body BMC (g).
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participants in the dataset, using spline curves with knots at
the three age quartiles (i.e. four degrees of freedom), and it
explained 82% of the variance in length; this should be com-
pared with values of around 95% usually seen for SITAR
applied to weight in infancy or 99% for height in puberty.

Figure 5A shows the fitted mean curves for back-transformed
length and its first derivative (length velocity); the peak velocity
was at 16 weeks’ gestation. In the analyses including age-
adjusted BMC as a covariate to explain the three SITAR random
effects, the most important covariate was SITAR size (t ¼ þ14.3),
while SITAR timing (t ¼ þ5.3) and SITAR intensity (t ¼ �3.8)
were also highly significant. SITAR size is effectively a measure of
mean length from 11weeks gestation to 3years; a child who
was relatively long was likely to have greater BMC at age 6years.
SITAR timing marks the age when individuals are growing fastest,
and this occurred early in pregnancy (Figure 5A). Thus, the age
when a child is growing fastest is primarily a marker of early
growth in this dataset. A later peak predicts higher BMC. SITAR
intensity measures upward centile crossing in length across the
age range and was negatively associated with BMC.

The three SITAR parameters were highly correlated (size-
timing r¼ 0.76, timing-intensity r ¼ �0.98, size-intensity r ¼
�0.76). Figure 5B shows the predicted length growth curves
corresponding to BMC z-scores of �2, 0 and þ2, respectively,
demonstrating the combined effects of the three BMC SITAR
parameters on each curve. Taller infants who grew more
quickly had a higher BMC (blue curve), while shorter infants
who grew more slowly had a lower BMC (red curve).

Growth mixture model

Growth mixture modelling (Muth�en 2001, 2004) is used to
identify distinct groups of individuals who share similar aver-
age growth curves by combining a latent curve model (to
estimate the average growth curves) with a categorical latent
class variable.

A single growth model was fitted to estimate class mem-
bership and relate this to BMC. We fitted a non-linear spline
that best fitted the data between any two time points (for
the slope factor the first loading for length at 11weeks was
0, and the second loading for length at 19weeks was 1; the
rest were freely estimated) (Bollen and Curran 2006).
Variance and covariance of the latent growth variables (i.e.
intercept and slope) were each constrained to be equal
across classes. In addition, residual variances of the CRL, FL,
supine length and height measurements were each con-
strained to be equal across classes. The latent growth varia-
bles and the categorical latent class variable were adjusted
for sex. BMC was regressed on sex and age at BMC and the
categorical latent class variable was related to BMC by esti-
mating the sex- and age-adjusted mean BMC within each
class. The model is described in Figure 6.

Mplus was used to estimate a series of growth mixture
models with increasing numbers of classes (starting at two).
The best model was chosen based on (1) overall fit accord-
ing to the BIC, (2) quality of classification judged by the
entropy statistic and (3) interpretability of the classes.

Three latent classes were identified, but with only reason-
able separation (entropy ¼ 0.69). For each participant at
each time point sex-specific LMS z-scores were calculated for
the estimated length measurements. Figure 7A characterises
the classes by plotting average internal z-scores in each class.
The largest class (65% of the sample) had a stable growth
pattern, the second largest class (28%) had a descending
pattern and a third (7%) described an ascending pattern.
Differences in BMC in the ‘descending’ and ‘ascending’
classes compared with the ‘stable’ class are illustrated in
Figure 7B; all pairwise comparisons were significant.

Discussion

The findings from residual growth modelling and both
multilevel linear spline models are the most

Figure 5. (A) Mean distance and velocity curves for length back-transformed from the square root scale. Age at peak velocity is marked. (B) SITAR-predicted length
growth curves corresponding to BMC z-scores of �2, 0 and þ2, respectively.
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straightforward to compare and showed that all measures
of growth were positively associated with BMC. Postnatal
growth was generally more closely related to BMC at age
6 years than earlier growth, although there were some dif-
ferences in the exact associations, such as the period of
growth most strongly related to the outcome. Results from
the growth mixture model are less directly comparable,
but again it was the fastest-growing children (in the
ascending class) who had highest BMC. According to the
SITAR analysis, taller infants who grew more quickly had a
greater bone mass at age 6 years. The fact that there is
broad agreement between these approaches, despite differ-
ent underlying assumptions, gives us confidence in the
conclusion that more rapidly-growing children have higher

BMC at 6 years, and that this is robust to the modelling
approach used. The percentage variance in BMC explained
by the residual growth model (55%) was very similar to
that from the multilevel linear spline models (both 53%);
these percentages could not be determined for the SITAR
and growth mixture models.

The residual growth modelling approach does not model
the trajectory of growth, so gives no information about
growth patterns. All the other methods describe growth and
then relate summaries of the pattern of growth to the out-
come. The linear spline models assumed a (unrealistic) piece-
wise linear pattern, whereas both SITAR and the growth
mixture models allowed a more plausible non-linear trajec-
tory. However, the associations estimated using linear spline

Figure 7. (A) Growth mixture model: average estimated length LMS z-scores by class and (B) Growth Mixture Model: Differences in BMC (g) from ‘stable’ group.

Figure 6. Growth mixture model.
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multilevel models are easier to interpret than those esti-
mated using smoother curve shapes.

Residual growth modelling has the advantage that growth
between all time points is modelled, thus allowing the influ-
ence of all periods to be considered, although potentially
also being susceptible to the issue of multiple comparisons.
It is also relatively easy to understand and communicate to
non-statisticians and is straightforward to implement in
standard statistical software. The model can be extended to
incorporate other predictors and to consider interactions. A
limitation is that only participants with data at all time points
can be analysed, resulting in loss of power and potential
bias. Here 432 children were included, compared with 753 in
all other models. The method is also only feasible for studies
with data collected at more or less fixed ages, as in the SWS.
Because of measurement error, effect sizes are likely to be
biased towards the null, and uncertainty in the estimates of
growth are not taken into account in the confidence inter-
vals for the associations with BMC, thus standard errors may
be under-estimated (Sayers et al. 2017).

Multilevel models (including the linear spline models and
SITAR) are suitable for data measured at varying ages
between participants, and where individuals have differing
numbers of measurements. They can also allow for different
measurement types (CRL, FL, supine length and height). A
key decision in the linear spline models was the parameter-
isation of the trajectory—the linear spline provided ease of
interpretation, but other possibilities include polynomials,
non-linear splines and non-linear models (e.g. SITAR). With
spline models further choices are the number and placement
of knots (Tilling et al. 2014). All the multilevel models assume
normality of random effects and residuals.

The two-stage multilevel linear spline model is relatively
easy to implement and interpret. The initial stage of the ana-
lysis can be carried out by an experienced statistician; it is
then simple for less experienced researchers to perform the
second stage of the analysis. However, the correlations
between the individual-level random effects were high (up
to 0.8 for 6–12months and 12months–3 years), potentially
leading to wider confidence intervals in the final model.
Others have shown (Sayers et al. 2017) that this method is
biased for all coefficients except for the final growth period
(where all random effects are included), and that standard
errors may be under-estimated as they do not incorporate
the uncertainty in the estimation of the random effects.

If correctly specified, the joint multilevel linear spline
model gives unbiased estimates of the relationship between
BMC and growth, and correct standard errors. This leads to
more accurate confidence intervals, which are notably wider
(Figure 4) than those for the residual growth modelling
(Figure 2) and the two-stage multilevel linear spline model
(Figure 3). Disadvantages are that the method is only appro-
priate when the health outcome is continuous, and it is rela-
tively complex to implement.

There are three main assumptions underlying SITAR: devel-
opmental age linearly related to chronological age, normality
of residuals and multivariate normality of random effects. The
first assumption may well be invalid in this example, since

the time period includes both foetal and infant life when
growth patterns can differ. Infants born earlier tend to grow
faster postnatally, i.e. catch up, and, hence, are developmen-
tally advanced. But their being born early may well be linked
to reduced foetal growth, implying delayed prenatal develop-
ment. So at birth they switch from being delayed to being
advanced, and this contravenes the SITAR linearity assump-
tion. That said, the sample here was term-born, which
restricted the range of gestational ages to 37–42weeks, but
even so it reflects a wide spectrum of maturity.

SITAR provides a cubic spline mean curve and summary
of growth in three parameters: size, timing and intensity of
growth; this small number is attractive if the models fit well.
The model operates on both the measurement and age
scales, accounting for differences in developmental age. A
disadvantage of SITAR is that it requires a non-linear mean
curve or else the size and timing random effects become
confounded. Also, a joint model of growth and a health out-
come cannot (within currently available software) be fitted,
meaning that the relationship of interest cannot be directly
estimated. Instead, growth curves were related to later BMC
(Figure 5B).

The growth mixture model classifies participants accord-
ing to their pattern of growth. This has the strength of ease
of interpretation, as long as growth in individual groups can
be clearly described. Independent variables can be included
to investigate systematic differences in average growth
curves and estimates can be allowed to vary across the
classes. These models are particularly appropriate if it is not
tenable that all participants have the same underlying pat-
tern of growth. Three groups were identified here, though
inevitably some children did not neatly fit into any one
group and were allocated to the group they most closely
resembled. This model did identify a class of children in an
ascending trajectory who had higher BMC at age 6 years;
however, in theory, there may be patterns of growth that
relate to the outcome which are not revealed by this
method. Growth mixture models are computationally chal-
lenging, thus limiting models to low order polynomials.
Also, model selection involves subjective judgements, the
models may identify spurious classes and interpretation of
the latent classes is not always straightforward. A further
disadvantage is that, as it is the association between the
latent class and BMC that is being estimated, relationships
between BMC and growth during different age periods can-
not easily be identified.

A key requirement of all analysis methods was for con-
siderable pre-processing of the data: if the research ques-
tion is about growth over time, then measures at all time
points need to have the same meaning. Here, we achieved
this by use of multipliers—although this still leaves the pos-
sibility of mean changes between measurement types (e.g.
from supine length to height), and differing measurement
error between methods or across ages. Combining prenatal
and postnatal measurements involves making assumptions,
and the development of multipliers using a sample of foetal
autopsies may involve bias due to possible pathological
growth, but measurements both before and after birth
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must be used if hypotheses regarding mismatch of the pre-
and postnatal environment (Godfrey et al. 2007) are to
be explored.

Residual growth models and linear spline models enable
a researcher to discover how growth during different peri-
ods relates to an outcome. The results of these models
were broadly consistent, such that growth, particularly at
later ages, was positively associated with BMC. The choice
between these methods in another context would depend
upon: the research question of interest; whether measure-
ments were made at fixed ages for all cohort members; the
amount and structure of missing data; the statistical soft-
ware available and the sensitive periods of interest. Bias in
both residual growth models and the two-stage multilevel
approach will increase with increasing measurement error.

The linear spline models require the assumption of piece-
wise linear growth, or at least that there are periods with
approximately linear growth. If this assumption is untenable,
other parameterisations could be explored. SITAR allows
researchers to discover how three parameters relating to the
biological process of growth are associated with the out-
come of interest, allowing for a non-linear growth trajectory.
The growth mixture models used here also allowed a non-
linear growth trajectory, and this method of freely estimating
the trajectory could be used in a non-mixture multilevel
model. We recommend that, if a linear spline model is used
as the main analysis model, a non-linear method should be
used as a sensitivity analysis. Similarly, if a method assuming
one pattern of growth is used as the main analysis model, a
mixture model would be a useful addition to verify robust-
ness of conclusions to this assumption.

The challenge for future researchers is to decide on the
most appropriate methods of analysis to employ, the most
important issue being the question under consideration.
The choice of method will further depend on the nature of
the measurements, the requirements for communication of
the findings, the software available and whether assump-
tions inherent in the particular approach are met. It should
also be noted that different methods achieve varying levels
of data reduction. We have not attempted to perform a
comprehensive comparison of all statistical methods to
characterise growth, and the comparison made here does
not point to one method that should be used in preference
to others, but it has highlighted some of the issues that
need to be considered. Table 2 provides brief guidance
about when each approach might be useful. Since each
method has its limitations, we agree with previous authors
(De Stavola et al. 2006; Tu et al. 2013) that different meth-
ods of analysis can be considered complementary and more
than one approach may be helpful to describe associations
between longitudinal exposure data and a distal outcome.
The approaches used should be carefully chosen to make
different assumptions and a qualitative judgement made
about agreement between different models.
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Table 2. Guidelines for choice of statistical method to characterise growth.

Question Data characteristics Approach

How does growth relate to a
later outcome?

� Measures taken at same time
for everyone.

� Little/no missing data.
� Fairly small number of measures.
� Outcome can be continuous or

categorical.

Residual growth model
Advantages: simple to implement and interpret.
Disadvantages: does not describe pattern of growth; can only relate out-
come to growth at ages measured; difficult to use where there are large
amounts of missing data.

What is the pattern of growth,
how does it vary between indi-
viduals, how does it relate to a
later outcome?

� Measures do not need to be at same
times for everyone, nor does everyone
need to have the same number
of measures.

� Measures not too close together.
� Outcome can be continuous or

categorical.

Two-stage multilevel linear spline model
Advantages: fairly simple to interpret, pattern of growth modelled in an
intuitive way. Can be moderately simple to implement.
Disadvantages: Assumes periods of linear growth; biased associations with
outcome unless all random effects included in model; autocorrelation may
be a problem (if measures close together). If pattern of growth complex,
model convergence may be problematic.

What is the pattern of growth,
how does it vary between indi-
viduals, how does it relate to a
later outcome?

� As above, but with continuous
(Normally distributed) outcome.

Joint multilevel linear spline model
Advantages: Interpretable results for both pattern of growth and associ-
ation with outcome. Unbiased (providing model correctly specified).
Disadvantages: Can be complex to fit, and model convergence may be
problematic.

How does growth vary with
chronological and developmen-
tal age? How does this relate
to a later outcome?

� As for two-stage multilevel linear
spline models.

SITAR
Advantages: Biological interpretation to the association between growth
and later outcome. Fewer parameters than linear spline model if pattern of
growth is complex.
Disadvantages: Biased associations with outcome unless all random effects
included. Pattern of growth not easy to interpret. Random effects may be
highly correlated. More complex to fit than linear models.

Are there sub-groups of the popu-
lation with different growth
patterns? Do these groups have
different outcomes?

� As above. Growth Mixture Model
Advantages: Spline model more flexible than linear spline model, may be
more realistic pattern of growth. Identifies latent sub-groups (all above
methods assume there are no sub-groups).
Disadvantages: Fairly complex to fit. Many parameters, so some assump-
tions need to be made. Pattern of growth may not be easily interpretable
(graphs will be needed). Association is with group membership—can’t
identify associations with specific periods of growth.
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