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Background. Gene expression profiling and the analysis of protein-protein interaction (PPI) networks may support the
identification of disease bio-markers and potential drug targets. Thus, a step forward in the development of systems
approaches to medicine is the integrative analysis of these data sources in specific pathological conditions. We report such an
integrative bioinformatics analysis in human heart failure (HF). A global PPI network in HF was assembled, which by itself
represents a useful compendium of the current status of human HF-relevant interactions. This provided the basis for the
analysis of interaction connectivity patterns in relation to a HF gene expression data set. Results. Relationships between the
significance of the differentiation of gene expression and connectivity degrees in the PPI network were established. In
addition, relationships between gene co-expression and PPI network connectivity were analysed. Highly-connected proteins
are not necessarily encoded by genes significantly differentially expressed. Genes that are not significantly differentially
expressed may encode proteins that exhibit diverse network connectivity patterns. Furthermore, genes that were not defined
as significantly differentially expressed may encode proteins with many interacting partners. Genes encoding network hubs
may exhibit weak co-expression with the genes encoding their interacting protein partners. We also found that hubs and
superhubs display a significant diversity of co-expression patterns in comparison to peripheral nodes. Gene Ontology (GO)
analysis established that highly-connected proteins are likely to be engaged in higher level GO biological process terms, while
low-connectivity proteins tend to be engaged in more specific disease-related processes. Conclusion. This investigation
supports the hypothesis that the integrative analysis of differential gene expression and PPI network analysis may facilitate a
better understanding of functional roles and the identification of potential drug targets in human heart failure.
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INTRODUCTION
Heart failure (HF) stems from complex genetic, environmental and

life style factors and is one of the main causes of death in the world

[1]. Myocardial infarction, ischemic cardiomyopathy and dilated

cardiomyopathy (DCM) may contribute to the emergence of HF.

The latter, is a leading cause of congestive heart failure [1,2]. In

DCM, the heart becomes enlarged, which makes the pumping of

blood less efficient to vital organs. Due to the high rate of

morbidity and mortality attributed to HF, previous studies have

aimed to unveil the genetic factors crucial to the emergence and

development of the disease. As a result, HF signature genes [3,4,5],

protein-protein interactions (PPI) and larger gene expression data

sets have been made publicly available [6]. Thus, it has been

suggested that the integration of these sources may improve the

identification of clinically-relevant disease markers [6,7].

Recent examples of the predictive power of integrative

bioinformatics approaches to investigating diseases have been

reported by Oti et al. (2006) [8] and Xu and Li (2006) [9]. They

investigated whether signature genes of genetically heterogeneous

and hereditary diseases could be predicted from the analysis of PPI

networks. Lu et al. (2007) [10] integrated gene expression analysis

and a biological interaction network to investigate the allergic

response in asthma. Cline et al. (2007) [11] proposed a generic

protocol to integrate gene expression data and biological networks,

which may help to explain the control mechanisms underlying the

observed changes in activity of a biological process. In the context

of HF, Barth et al. (2006) [2] analysed gene expression patterns

related to DCM and identified specific gene regulatory relation-

ships. Here, using a DCM-related microarray data set, we report

an analysis of human HF gene expression responses in relation to a

HF-specific PPI network.

To build the HF PPI network, known HF-relevant genes

(KHFG) were first identified together with validated PPIs of their

encoded proteins according to the Human Protein Reference

Database (HPRD) [12]. This was followed by the identification of

differentially expressed genes from microarray data encoding

molecular profiles of healthy vs. HF subjects. The proteins

encoded by these significantly differentially-expressed genes were

mapped onto the global HF PPI network. We first assessed key

statistical and topological relationships between significantly

differentially-expressed genes and the interaction network. Results

showed that in terms of gene expression, genes significantly

differentially expressed are not always represented by highly-

connected nodes. Other results showed that, although not

significantly differentially-regulated, some of the proteins encoded

by genes traditionally associated with HF may interact with

proteins encoded by significantly differentially-expressed genes,

and that the latter tend to be highly connected. Further analyses,

which integrated expression data and the PPI network, evaluated

levels of co-expression between genes encoding network nodes and
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corresponding genes encoding their interacting partners. A key

question was whether there was any significant quantitative

relation between co-expression levels and network connectivity

degree. This analysis indicate that: a) genes represented by

network hubs may exhibit weak co-expression with the genes

encoding their interacting protein partners; and b) genes that were

not defined as significantly differentially-expressed in the gene

expression data analysis may encode proteins with many

interacting partners. These significant findings were replicated

using a second, independent microarray data set. To identify

biological process overrepresentations associated with the PPI

network’s topology, the data were analysed in the context of the

Gene Ontology. Results show that genes represented by highly-

connected nodes are more likely to be engaged in higher-level

biological process terms (as defined by the Gene Ontology), than

genes represented by low-connectivity nodes. This study supports

the idea that a PPI network integrated with expression data may

further assist researchers in identifying potential disease markers or

therapeutic targets, which might be overlooked when results rely

on expression profiling analyses only.

RESULTS
This study evaluated human HF gene expression responses, in

relation to the topology of a HF-specific PPI network. The

microarray data set analysed was obtained from the Gene

Expression Omnibus (GEO) [13], accession number GDS2206.

This data set, which was derived from a study on DCM, consisted

of 28 samples: 15 and 13 samples obtained from non-failing hearts

and HF patients respectively. After pre-processing, significantly

differentially-expressed genes were identified by performing

significance analysis of microarray (SAM) [14]. To validate

significant findings, a second microarray data set was used. This

second data set, also derived from a study on DCM, was obtained

from the GEO, accession number GDS2206, and included 12

samples: 5 samples originated from non-failing hearts and 7

samples from HF patients (see Methods).

The PPI network was assembled by including validated

interactions, as reported in the HPRD [12], for KHFGs and for

proteins encoded by genes included in the expression data sets. For

the network visualisation, a colour labelling scheme was used to

distinguish between the types of proteins each node represented.

In addition, nodes were classified according to the degree of

connectivity. Superhubs were represented by nodes with connec-

tivity degree greater than 100, hubs referred to nodes with

connectivity degree greater than 20 and lower than 100,

peripheral-A were nodes with connectivity greater than two and

lower than 20; and peripheral-B nodes represented proteins with

one interacting partner (see Methods).

To evaluate relationships between connectivity and significantly

differentially-expressed expression patterns, topological analysis of

the network was carried out. Furthermore, network topology was

integrated with the DCM expression data to evaluate gene

connectivity versus co-expression levels. To calculate co-expression

levels linked to every node in the network, the nodes and their

interaction partners were mapped into the DCM expression data

set. Next, Pearson’s correlation coefficients between the expression

profile of each gene coding for a node and each gene coding for its

interaction partners were calculated. Correlation value pairs were

regarded as significantly co-expressed if P-value,0.01. Finally, the

co-expression level of a gene was calculated by comparing the

number of its significantly co-expressed interactions against the

total number of its interacting proteins (see Methods). The PPI

network was analysed in the context of Gene Ontology (GO) to

identify biological process overrepresentations. Over-represented

biological processes were ranked according to their position in the

GO hierarchical scheme [15] (see Methods).

Network analysis
The PPI network (Figure 1A) consisted of nodes representing

proteins and their interaction partners. Some of the nodes

represented proteins encoded by significantly differentially-

expressed genes obtained from expression pattern analysis.

Initially, 1161 genes were identified (974 up-regulated in DCM

and 187 down-regulated in DCM). However, only 506 (457 up-

regulated and 49 down-regulated genes) were represented in the

network because their encoded proteins were reported to have at

least one interacting protein partner. The network also contained

71 nodes representing proteins encoded by KHFGs only. The

network contained 2835 nodes representing proteins encoded by

not significantly differentially-expressed genes (Table 1).

According to the node hierarchy described in Methods, 2.3% of

the genes were represented by network hubs or superhubs

corresponding to 47 significantly differentially-expressed genes (4

superhubs and 43 hubs). In contrast, 97.0% of the genes were

represented by either network peripheral-A or peripheral–B nodes

corresponding to 459 significantly differentially-expressed genes (279

peripheral-A and 180 peripheral-B). Details are shown in Table 1.

Three statistical significance tests based on random sampling were

implemented to allow us to reject the null hypothesis that the

proportion of significantly differentially-expressed genes (which were

also categorised as either hubs or superhubs) was obtained by

chance. These tests are described in Methods. All the statistical

significance tests reported P = 0. Thus, this supports the conclusion

that the observed proportions are statistically significant, i.e. larger

than the proportions expected by chance.

Examples of potentially relevant associations are described as

follows. BCAR1 is a protein represented by a network superhub

(Figure 1B) and NAP1L1 is represented by a peripheral-B.

According to the gene expression analysis, both BCAR1 and

NAP1L1 encoded significantly differentially-expressed genes. AKT1

also represents a network superhub (Figure 1C). The gene

encoding AKT1 is known to be associated with HF and it is

involved in several functional processes relevant to the develop-

ment of this disease, such as Apoptosis and the MAPK (Mitogen-

activated protein kinase) signalling pathway [16].

Only 40, out 71, KHFGs had a corresponding transcript in the

DCM data set, and only one of these genes, SOD1, was

significantly differentially-expressed. Moreover, 2051 genes that

encoded other protein’s interaction partners in the network had a

corresponding transcript in the gene expression data set and were

not significantly differentially-expressed. There were KHFGs with

no corresponding transcripts in the DCM data set because these

were either included in the array but with significant missing

values across the experimental samples, or their probes were not

included in the array.

Network connectivity versus significant gene

expression patterns
This section of the study integrated gene expression data with the

PPI network to describe potential significant relationships between

network connectivity and gene expression patterns (as described in

Methods). The first set of results, involving significantly differen-

tially- expressed genes, found that genes represented by network

superhubs and hubs tend to have lower range of ‘di’s values (the

score of class differentiation). In Figure 2 genes with those

characteristics are shown on the farthest right side of the plot. On

the contrary, genes represented by network peripherals-A and -B

Integrative Bioinformatics
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Figure 1. PPIs networks. PPIs networks corresponding to (A) global human HF network, (B) BCAR1’s PPI network, (C) AKT1’s PPI network. All PPIs were
retrieved from the HPRD. Up-regulated genes are represented by red nodes. Down-regulated genes are represented by green nodes. Known HF
genes (KHFG) are represented by nodes in yellow. Other genes encoding interacting partner proteins are represented by nodes in purple, if they have
a corresponding transcript, or in grey if they have no corresponding transcripts in the gene expression data set.
doi:10.1371/journal.pone.0001347.g001
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tend to have higher range of ‘di’s values. When proteins encoded by

non-significantly differentially-expressed genes were assessed, we

found that some of these protein’s interacting partners were encoded

by several significantly differentially-expressed genes. For instance,

GRB2 has 180 interacting partners and was not found to be

significantly differentially-expressed in the gene expression data.

However, 19 genes encoding its interacting partners, such as ABL1 or

BCAR1, were identified as significantly differentially-expressed in the

expression data analysis. We analysed the biological role of GRB2,

and its corresponding interacting partners, and found that processes

such as ‘signal transduction’, ‘‘regulation T Cell activation’’ or

‘‘regulation of MAPK activity’’ were over-represented (P,0.0001).

According to KEGG and Reactome, GRB2 is involved in more than

15 pathways. Other proteins whose interacting partners were

encoded by more than 15 significantly differentially-expressed genes

were TP53, NR3C1, SMAD2, CASP3, ESR1, RB1 and YWHAG

(Annex S1 shows complete list), which are involved in functional

processes such as apoptosis or cell cycle. These findings stress the

importance of performing gene expression analysis in conjunction

with interaction networks to help to identify otherwise overlooked

potential clinically-relevant targets.

Gene co-expression analyses in the context of

network connectivity
In this section gene expression data were integrated with the

topology of the PPI network to assess significant co-expression levels

(as detailed in Methods). We found that genes represented by

network hubs and superhubs are not necessarily significantly co-

expressed with their attributed protein-coding partners (IPs), than

other types of nodes. For example, genes MAPK1 and FXR2,

represented by network superhubs, were significantly co-expressed

with 15.5% and 10.2% of the genes encoding their IPs

respectively. On the other hand, genes represented by network

peripheral-A and -B may be strongly correlated with their

interacting partners. For example, ALDOB, represented by a

network peripheral-A, was significantly co-expressed with all the

genes encoding its IPs (i.e. 100% significant co-expression level).

Table 2 shows more details of the difference between these

categories in terms of mean cL values. No statistical significance

difference between category means were found at P = 0.05.

However, note that only network peripherals-A or –B showed

cases with cL = 100%. The global trend, as shown in Figure 3, is

that the higher the number of node connections the greater the

tendency to display low cL values. Figure 3A shows a scatter plot of

the number interacting partners (IPi) for a gene i, versus its

significant co-expression level (cLi) (as defined in Methods). Similar

trend was observed when non-significantly differentially expressed

genes were analysed. For example, HAP1 and SIN3A, represented

by network peripherals-A, were significantly co-expressed with all

their partners, IPs. Figure 3B plots (IPi) versus (cLi) of non-

significantly differentially-expressed genes. When analysing nodes

representing KHFGs, results showed that in general cLi of these

Table 1. Summary of nodes population according to
connectivity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hierarchy SEg KHFG N-SEg Total %

Superhub 4 3 0 0.21

Hub 43 24 5 2.11

Peripheral-A 279 37 585 26.41

Peripheral-B 180 7 2245 71.28

Total 506 71 2835 3412

Summary of nodes population according to connectivity. % nodes within each
category present in the interaction network. Significantly differentially-
expressed genes (SEg). Non-significantly differentially-expressed genes (N-SEg).
Known HF genes (NHFG).
doi:10.1371/journal.pone.0001347.t001..
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Figure 2. Plot of t-statistics (cL). Plot of t-statistic (di) representing the score for gene i vs. number of interacting partners (IP Log2) associated with
protein encoded by gene i.
doi:10.1371/journal.pone.0001347.g002
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genes was low. In fact, none of the 40 KHFGs, which had a

corresponding transcript in the DCM expression data, obtained a

cLi.50% (Figure 3C). For example, the cLi for PRKCA,

represented by a network superhub, was equal to 16.2% (i.e. this

gene’s expression pattern was significantly co-expressed with only

a few of the genes coding for its IPs).

In order to estimate the potential biological relevance of the

significant relationships found, as well as their reproducibility, these

pattern association procedures were replicated on a second,

independent human HF gene expression data set. Figure 3D, which

reviews the overall results of this second analysis, corroborates the

findings presented above. Genes encoding network hubs and

superhubs tend to be more weakly co-expressed with the genes

coding for their network interacting partners (IPi) than those genes

represented by network peripherals-A and –B. For example, cLi of

genes encoding network superhubs and hubs, such as AR, MAPK1,

PTPN11 or RAF1, were lower than 5%. On the contrary, the cLi of

MRFAP1L1, encoding a network peripheral-A, was equal to 100%.

The final analysis of this sequence evaluated the variation of co-

expression levels (cLs) across the four categories of network nodes.

Gene’s cL values were grouped according to node category and the

significance of the variance among these categories was estimated by

F-statistics. Results indicated (Table 3) that there are significant

differences between high connectivity categories (hubs and super-

hubs) and low connectivity categories (peripherals-A and –B)

(F = 10.93, P,0.000001). By contrast, F-statistics found no significant

difference when comparing high connectivity categories (network

hubs vs. superhubs) (F = 4.53, P = 0.14). Further, analysis of variance

(ANOVA) among all four categories was performed, from which no

significant differences were found (F = 0.93, P = 0.42). This analysis

suggests that hubs and superhubs display a significant diversity of co-

expression patterns in comparison to peripheral nodes.

Genes were ranked according to their co-expression levels (cL),

such that a gene, i, was defined as low co-expressed if its cLi was below

0.80 and highly co-expressed if its cLi was greater or equal than 0.80.

For example, MAPK1’s cL is equal to 0.15, therefore the gene was

labelled as low co-expressed. An example of a highly co-expressed

gene is ALDOB, whose cL is equal to 1.0 (100% significant co-

expression). Once the genes were grouped according to this

criterion, F-statistics were applied to estimate variability between

Figure 3. Scatter plot of the number interacting partners (IPi) for a gene i, versus its significant co-expression level (cLi). (A) significantly
differentially-expressed genes. (B) Non-significantly differentially-expressed genes. (C) KHFGs. (D) Independent testing data set.
doi:10.1371/journal.pone.0001347.g003

Table 2. Summary of average co-expression levels (cL) for
each network node category.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Categories Average cL 6 SD

Superhubs 17.33 6 4.59

Hubs 15.45 6 10.39

Peripherals-A 16.51 6 26.65

Peripherals-B 14.48 6 35.21

Summary of average co-expression levels (cL) for each network node category.
SD: Standard deviation. No statistical significant difference between category
means were found at P = 0.05.
doi:10.1371/journal.pone.0001347.t002..
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significant co-expression levels of these two groups. We found that

the difference of significant co-expression levels between these two

groups was statistically significant (F = 103.97, P,0.00001).

Through this analysis, we found that the cLs of MAP3K5 and

PABPC1 (represented by network peripherals-B) were of 0.80 and

0.87 respectively. Watanabe and Otsu (2004) [17] reported that

MAP3K5 promotes heart dysfunction and dilation, as well as

cardiac fibrosis. A previous study by Deo et al. (2002) [18] linked

PABPC1 to SOD1, the latter was the only KHFG significantly

differentially-expressed in our expression analysis.

GO analysis
The PPI network topology was also assessed in the context of the GO

to identify major biological roles within each node category. Genes

represented by network peripherals-A tend to be involved in a

greater number of lower-level GO biological processes (e.g. ‘‘CD4-

positive, alpha-beta T cell differentiation during immune response’’,

‘‘G1/S transition of mitotic cell cycle’’, ‘‘insulin-like growth factor

receptor signalling pathway’’) than those represented by network

hubs and peripherals-B (Table 4). The ‘‘G1/S transition of mitotic

cell cycle’’ biological process has been reported to be fundamental in

the development of HF [3]. Table 4 also shows that genes

represented by network superhubs tend to be involved in a greater

number of higher-level biological processes (e.g. ‘‘cell communica-

tion’’ or ‘‘signal transduction’’). These results are consistent with

results obtained by Lu et al. (2007) [10] in an asthma model.

However, we also demonstrated that genes represented by network

peripherals-B tend to perform higher-level biological processes

(Annex S2 contains complete list of over-represented GO biological

processes). But the latter may be explained by the relative lack of

experimental studies of these genes.

This analysis also corroborates that some genes found to be not

significantly differentially-expressed may influence the activation or

repression of several other gene products. For example, the protein

encoded by NR3C1 gene is known to interact with 82 proteins. GO

analysis of NR3C1, and corresponding interacting partners, identified

more than 60 significantly over-represented biological processes.

Examples of such relevant functional categories are ‘‘transcription’’

or ‘‘transcription from RNA polymerase II promoter’’ (P,0.00001).

This gene was not significantly differentially-expressed, but its

encoded protein interacts with 17 proteins encoded by genes that

were significantly differentially-expressed in the expression data

analysis (e.g. HNRPU, MAPK1, PRPF6, RAF1, NFKB1 and STAT3).

These genes are known to be involved in crucial processes relating to

cardiac remodelling, such as apoptosis, MAPK signalling pathway or

immune system signalling as described in KEGG and Reactome

databases and by other authors [3,16,19]. In addition, Kang and

Izumo (2000) [16] suggested that DCM is a one of the most common

forms of HF associated with apoptosis pathways dysfunction.

DISCUSSION
Undoubtedly gene expression pattern analyses have provided

insights into the biological basis of several deadly diseases. Because

of this, an important question is how to take advantage of available

public data and information bases. Moreover, there are concerns

about the reproducibility of functional predictions and pattern

identification results obtained using different data sets and platforms.

In human heart failure, a fair amount of microarray expression

data have been produced and uploaded into public databases.

Moreover, a number of disease signature genes have been

reported [2,3,7]. The challenge now is to find ways to integrate

such information in order to facilitate the discovery of disease-

specific knowledge and targets, as well as their reproducibility

using different data sources. This study evaluated gene expression

responses from the perspective of a PPI network and several

external functional information sources. Quantitative analysis

approaches were applied to elucidate significant global patterns

and trends encoded in these data sources. In particular, we address

the following questions: a) how network-based targets relate to

significantly differentially (or not differentially) gene expression-

based targets; and b) how network connectivity relates to

significant levels of co-expression between interacting partners.

To answer these questions a PPI network based on proteins

encoding KHFGs and other expressed genes was built. Significant

quantitative relationships between gene expression data and the

PPI network were identified. Such relationships and relevant

functional patterns may allow one to identify significant genes and

specific biological processes, which may be overlooked when

analyses rely on gene expression data only. Furthermore,

significant quantitative relationships were reproduced using an

independent data set.

The integration of expression data and the PPI network allowed

us to identify functionally-important, influential genes, which were

not found to be significantly differentially expressed in the

expression data analysis. Some of the proteins encoded by these

genes were reported to influence relatively large sets of proteins,

which may be encoded by significantly differentially-expressed

genes. For instance, proteins encoded by genes SMAD2, CASP3,

ESR1 and RB1, interacted with 17, 16, 16 and 15 proteins encoded

by significantly differentially-expressed genes. In the case of

KHFGs, nearly 50% of them had no corresponding transcripts

in the DCM data sets. However, the proteins they encoded were

reported to interact with several others proteins, which were

encoded by significantly differentially-expressed genes. For

example, the protein encoded by STAT3 (represented by a

Table 3. Analysis of variance of co-expression levels (cL) across
categories of network nodes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Categories compared F-value P-value

Hubs vs. superhubs 4.53 0.14

Hub vs. peripheral-A 7.41 0

Hub vs. peripheral-B 12.99 0

Superhub vs. peripheral-A 33.66 0.003

Superhub vs. peripheral-B 58.92 0.001

Peripheral-A vs. peripheral-B 1.75 0

Superhub, Hub vs. peripheral-A,-B 10.93 0

ANOVA (between all categories) 0.93 0.42

Analysis of variance of co-expression levels (cL) across categories of network
nodes. Significance level from F-statistics is represented in the form of P-values.
doi:10.1371/journal.pone.0001347.t003..
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Table 4. GO analysis, significantly over-represented biological
processes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Category % higher-level GO terms % lower-level GO terms

Superhub 0.29 0.71

Hub 0.15 0.85

Peripheral-A 0.06 0.94

Peripheral-B 0.15 0.85

Significance level ,0.05.
doi:10.1371/journal.pone.0001347.t004..
..

..
..

..
..

..
..

..
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..
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..
..
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..
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network hub) was reported to interact with other 94 proteins.

Among them, nine were encoded by significantly differentially-

expressed genes, such as MAPK1 or PDIA3, which are involved in

functional pathways such as natural killer cell mediated cytotox-

icity or MAPK signalling. These pathways are involved in the

aetiology of HF [3]. In addition, evidence based on published

papers has demonstrated the involvement of STAT3 in the

protection of the myocardium from HF [20,21].

The integrative analysis of gene expression data and the PPI

network suggests that proteins represented by network peripherals-

A and -B tend to be encoded by genes that are significantly co-

expressed with most of the genes encoding their interacting

proteins. This relationship was not observed in the case of network

hubs and superhubs. In terms of biological significance, these

analyses also showed that genes encoding network superhubs and

hubs tend to be involved in higher-level biological processes as

defined by the GO Biological Process hierarchy. Furthermore,

genes represented by network peripherals-A tend to be associated

with lower-level biological processes.

The integrative study reported here highlights three important

aspects. First, the approaches implemented may help to identify

potentially influential genes (e.g. STAT3, TGFB1, AKT1, SIN3A,

PABPC1, MAP3K5), otherwise overlooked by single-source expres-

sion pattern analysis. Second, it also represents a powerful

methodology to trace biological processes that may outline

potential clinical biomarkers or therapeutic targets and their

corresponding interacting partners. Third, in combination with

expression data this approach can be used as a tool to evaluate

stimulus/response studies. For example, two microarray data sets

can be mapped onto an interaction network to analyse gene

repression or activation when different experimental conditions

are studied. The latter application will be reported as part of a

forthcoming study.

Despite the fact that the global human HF network presented

here is far from complete and that it may include false positive

interactions, biologically-significant quantitative and qualitative

relations were identified. Moreover, significant quantitative

findings were reproduced when an independent gene expres-

sion data set was analysed. Quantifiable differences between

potentially influential functional components (as predicted by

independent single-source analyses and categories) were also found

[2,3,7].

A key conclusion of this research is that only a minority of hubs

(or superhubs) genes are also significantly differentially expressed

in HF. Furthermore, we showed that the observed proportions of

such genes are statistically significant in comparison to the values

expected by chance. The biological relevance of these results can

be summarised as follows. First of all, this study confirms the

weakness of performing functional characterisations of genes based

on gene expression data only. The integrative analysis of gene

expression and functional network data may improve the

predictive ability of future studies. The identification of potential

drug targets in heart failure should include integrative approaches

to estimate significant roles of genes in regulatory processes driving

the emergence of heart failure. Second, this study suggests that

processes relevant to cardiac remodelling and the progression

toward heart failure may be controlled by greater gene expression

modifications of low-connectivity network nodes, and relatively

smaller differential responses in nodes with higher connectivity.

Moreover, hubs and superhubs display a significant diversity of

quantitative co-expression patterns in comparison to peripheral

nodes. This may suggest that gene expression coordination

between hubs (or superhubs) and their interacting partners may

be more subtle that that observed between other genes.

MATERIALS AND METHODS

Microarray data analysis
The microarray data analysed in this study were obtained from the

Gene Expression Omnibus GEO) [13], accession number

GDS2206. This data set, which was derived from a study on

DCM, was composed of 28 samples: 15 and 13 samples from non-

failing hearts and HF patients respectively [2,22]. This data set

was available in Log scale [2], and probes with missing values in

more than 50% of samples, in either group, were excluded. To

quantity differential gene expression, significance analysis of

microarray (SAM) [14] was performed. The algorithm computes

a t statistic, di, representing the score of class differentiation for

gene i. Gene expression differences were considered significant if

False Discovery Rate (FDR) ,0.05 and Folding change .1.2.

In addition, a second microarray data set was used to validate

significant findings (i.e. gene co-expression vs. network patterns)

obtained from the first gene expression data set. This second data

set, also derived from a study on DCM, was obtained from the

GEO, accession number GDS2206, and was composed of 12

samples: 5 samples originated from non-failing hearts and 7

samples were obtained from HF patients [2,22].

A human HF interaction network
A PPI network was assembled by including validated interactions

reported for KHFGs and for proteins encoded by genes included

in the gene expression data sets. This network is offered as a public

resource of the current status of human HF-relevant interactions

(network is provided on request). The list of KHFG was obtained

from the Entrez database [23]. Entrez query was restricted by the

same set of keywords used in King et al. (2003) [3] (i.e. smooth

muscle, endothelial cell, apoptosis, cytokine and adhesion

molecule) and within the context of human HF. PPIs were

retrieved from the HPRD [4]. The HUGO nomenclature

standard was used to define unique id identifiers.

The PPI network was assembled by using a routine written in

JAVA, and its structure was encoded in the SIF format that can be

used by well-known network visualisation tools (e.g. Cytoscape). The

product of this assembly was a network composed of 3412 nodes and

13164 interactions. The number of interacting partners range from 1

to more than 100. A colour labelling scheme was used to distinguish

between the types of proteins each node represented. Proteins

encoded by up- and down-regulated genes (as predicted in the gene

expression data) were represented by nodes coloured in green and

red respectively. Proteins encoded by KHFGs were represented by

yellow nodes. Proteins encoded by not significantly differentially

expressed genes were represented by purple nodes. Proteins encoded

by genes whose expression pattern was not present in the data set,

but which encoded relevant interacting partners in the HF network,

were represented by grey nodes.

Nodes in the network were also classified according to the degree

of connectivity, based on a scheme similar to that used in Lu et al.

[10]. Superhubs are represented by nodes with connectivity degree

greater than 100, hubs refer to nodes with connectivity degree greater

than 20 and lower than 100, peripheral-A are nodes with connectivity

greater than two and lower than 20; and peripheral-B nodes represent

proteins with one interacting partner only.

Cytoscape v2.4 [24] was used for network visualisation.

Comparing observed vs. expected proportions of

relevant nodes
The statistical significance of the observed proportion (Robs) of

significantly differentially-expressed genes that were also either
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hubs or superhubs was estimated by three independent statistical

significance tests. In these analyses the null hypothesis was that the

observed proportion was obtained by chance, i.e. a random null

distribution of genes could have reported proportions as extreme

as the value observed. These statistical significance analyses were

implemented as follows. Based on the results shown above, each

gene was assigned to one of the following labels: ‘‘Significantly

differentially-expressed’’ (SDE) or ‘‘not-SDE’’. This vector of

labels will be referred to as ‘‘expression labels’’. Similarly, each

gene was labelled according to the binary class: ‘‘Superhub-or-

hub’’ or otherwise. This vector of labels will be referred to as

‘‘connectivity labels’’. The first statistical significance assessment

was based on a permutation test as follows. The expression labels

were randomly shuffled to obtain a permutated dataset. Using this

dataset, the proportion (Rper) of SDE that were also either

superhubs or hubs was calculated. This permutation process was

repeated N times, and the number of times, numSigPer, that

Rper$Robs was calculated, with Robs = 47/3412. Thus, the statistical

significance of the observed value (probability that the observed

value was obtained by chance) was estimated by P = numSigPer/N,

with N = 50000. A second permutation test was conducted in a

similar fashion, but now with only the connectivity labels

randomly shuffled to generate the permutated datasets. In the

third significance assessment test, 506 proteins (i.e. the number of

SDE genes observed) were randomly sampled from the total

population of network nodes (3412 proteins). Based on this sample,

Rrand represents the proportion of genes that were both SDE and

that encoded either hubs or superhubs. This sampling process was

repeated M times, and the number of times, numSigRand, that

Rrand$Robs was calculated, with Robs = 47/506. Thus, the proba-

bility of finding Robs at random was estimated by P = numSigRand/

M, with M = 50000. All the statistical significance tests reported

P = 0, with maximum Rper and Rrand values equal to 20/3412 and

19/506 respectively.

Network vs. gene co-expression analysis
Results from the topological analysis of the network were integrated

with the results obtained from the gene expression data analysis in

order to evaluate relationships between connectivity and significantly

differentially expressed expression patterns. Furthermore, network

topology was integrated with the DCM expression data to evaluate

gene connectivity versus co-expression levels.

To calculate co-expression levels linked to every node (i) in the

network, node and their interaction partners were mapped into

the gene expression data set. Next, Pearson’s correlation

coefficients between the expression profile of each gene coding

for a node and each gene coding for its interaction partners were

calculated. Correlation value pairs were regarded as significantly

co-expressed if its P-value,0.01. Finally, the co-expression level (cL) of

a gene (i) was calculated by comparing the number of its

significantly co-expressed interactions (cIPi) against the total

number of its interacting proteins (IPi), i.e. significantly co-

expressed and non-significantly co-expressed interaction partners

(Eq. 1). According to Eq. 1, a co-expression level (cLi) equal to

100% indicates that the gene (i) was significantly co-expressed with

each of the genes encoding its interacting partners in the PPI

network. A co-expression level (cLi) equal to 0% indicates that the

gene (i) was not significantly co-expressed with any of its

interacting partners.

cLi~
cIPi

IPi

ð1Þ

Assuming that a node, i, in the PPI network represents a protein

encoded by a gene, then: i is a node in the network; IPi represents

the set of interacting partners linked to i; cIPi represents the set of

interacting partners significantly co-expressed with i.

To verify that major findings were reproducible, the same

procedures were carried out using a second, independent

microarray data set as described above.

Gene Ontology analysis
Interaction network topology was analysed in the context of the

GO. Cytoscape-BiNGO [25] was applied to detect significantly

over-represented GO biological processes. Benjamini and Hoch-

berg multiple-test corrections adjusted raw P-values at a significant

level,0.05. To increase the level of stringency, GO-IEA terms

were discarded. GO annotations with IEA evidence code refer to

annotations inferred from sequence-based similarity searches,

which have not been reviewed by curators. In addition, using the

GO interaction network, a hierarchical classification scheme was

used to rank over-represented GO biological processes according

to their proximity to the root node of the GO Biological Process

hierarchy. Note that the GO root node is at the top level of the

hierarchy, followed by the Biological Process term and the rest of

the hierarchy terms (e.g., ‘‘developmental process’’ (third level),

‘‘multicellular organismal development’’, on the fourth level). In

this study a higher-level Biological Process is defined as any term above

the fourth level in the GO Biological Process hierarchy. A lower-

level Biological Process is defined as any annotation subsumed by any

term in the fourth level in the GO Biological Process hierarchy.

SUPPORTING INFORMATION

Annex S1 Network proteins and corresponding number of

interacting partners encoded by significantly differentiated genes

Found at: doi:10.1371/journal.pone.0001347.s001 (0.17 MB

XLS)

Annex S2 Significantly over-represented GO biological process-

es.

Found at: doi:10.1371/journal.pone.0001347.s002 (0.09 MB

XLS)
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