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Abstract: WRKY transcription factors comprise one of the largest gene families and serve as key
regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY
genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY
genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided
into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif
compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived
from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal
role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional
regulation prediction showed that six key WRKY genes contribute to four major defense-related
pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA)
biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested
with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression
levels were highly correlated with predicted target genes, suggesting that these genes have important
functions in the response to O. furnacalis. Our results provide a comprehensive understanding of
the WRKY gene family based on the new assembly of the maize genome and lay the foundation
for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses
against O. furnacalis in the field.

Keywords: Zea mays; WRKY transcription factor; genome-wide analysis; transcriptional regulation
prediction; expression profiles; Ostrinia furnacalis

1. Introduction

Plants have evolved sophisticated inducible defense mechanisms to cope with her-
bivore attack at different stages of growth, involving changes at the molecular, cellular,
biochemical, and physiological levels [1–3]. These responses are generally controlled by
several key genes encoding transcription activators and repressors that regulate down-
stream defense-related signal transduction pathways [4]. Extensive research has shown
that transcription factors (TFs) are central regulators of gene expression; they play vital
regulatory roles in plant defenses against herbivores [5–7]. TFs are promising candidates
for genetic engineering due to their roles as master regulators of many defense-related
genes [8]. Accordingly, deciphering the mechanistic actions of TFs is essential to future
studies into insect resistance.

The WRKY TF family is among the largest TF families known in plants. Several studies
have demonstrated their crucial roles in herbivore-induced plant defenses. For example,
OsWRKY53 has been reported to activate rice defenses against Nilaparvata lugens by acti-
vating an H2O2 burst and suppressing ethylene biosynthesis [9]. Overexpression of the
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OsWRKY89 gene enhanced rice resistance to white backed planthopper [10]. In addition,
Arabidopsis AtWRKY72, wheat TaWRKY53, and tomato SIWRKY70, have been directly in-
volved in herbivory-induced defense responses [11–13]. Since the first WRKY TF, SPF1 was
cloned from sweet potato (Ipomoea batatas L.) [14], many WRKY genes and corresponding
sequence features have been identified in various plant species. WRKY TFs are charac-
terized by a conserved DNA-binding domain (DBD) with approximately 60 amino acids,
containing the absolutely conserved signature WRKYGQK at the N-terminus, followed
by a C2H2 (C-X4-5-C-X22-23-H-X-H) or C2HC (C-X7-C-X23-H-X-C) type zinc-finger motif
at the C-terminus [15]. WRKY TFs activate and repress gene expression by recognizing
and binding to W-box elements (TTGACT/C) in the promoter regions of target genes [16].
Based on the number of WRKY domains and the pattern of the zinc finger motif, WRKY
TFs can be divided into three distinct groups: group I proteins, which typically contain two
WRKY domains (N-terminal and C-terminal) and a C2H2-type zinc finger motif; group II
proteins, which have one WRKY domain and a C2H2-type zinc finger motif, and can be
further segmented into five subgroups (IIa-IIe) based on phylogeny; and group III proteins,
which also have one WRKY domain, but a unique C2HC-type motif [17,18].

Maize (Zea mays L.) is the most productive and widely grown crop in the world,
and an ideal model for genetic and genomic studies [19]. In recent years, several studies
on genome-wide WRKY identification have been reported in succession using different
versions of the maize genome. Zhang et al. identified 120 putative WRKY protein-encoding
genes in the maize B73 RefGen_v3 genome [20], and Hu et al. identified 125 putative WRKY
protein-encoding genes using the new high-quality maize v4 genome [21,22]. Previous
studies additionally focused primarily on the roles of WRKY TFs in response to abiotic stress
or during developmental processes in maize. For example, RNA-Seq expression analysis
revealed that 58 ZmWRKY genes were induced in drought stress [20]. Overexpression of
ZmWRKY17 in Arabidopsis thaliana decreased sensitivity to ABA and may act as a negative
regulator in salt stress responses through ABA signaling [23]. Similarly, overexpression
of ZmWRKY106 improved tolerance to drought and heat in transgenic Arabidopsis by
regulating stress-related genes [24]. Although significant progress has been made in
deciphering the roles of WRKY TFs in abiotic stress tolerance, fewer WRKY TF genes have
been functionally characterized in biotic stress responses, particularly herbivorous attack.
In this study, we performed another characterization and analysis of the WRKY gene family
using the maize v4 genome. This comprehensive gene list, which revealed a few conflicts
with previous studies [20,21], contributes to the understanding of functional and genetic
evolution of the entire WRKY gene family in maize. We also integrated transcriptional
regulation and expression analyses of WRKY genes to screen candidate key ZmWRKY
genes involved in Chinese commercial maize (hybrid Jingke968) defense against the Asian
corn borer, Ostrinia furnacalis, which is one of the most destructive pests to maize, and
which causes significant yield loss in China [25]. Our results contribute to improved
understanding of the ZmWRKY gene family and lay the groundwork for future research in
genetic improvement of insect resistance in commercial maize.

2. Results
2.1. Identification and Characterization of WRKY Genes in Maize

A total of 128 putative WRKY genes were identified in the maize genome (B73 Re-
fGen_v4) using a hidden Markov model (HMM) search. Conserved domain analysis
confirmed that these genes contained single or double WRKY domains (based on the Pfam
and SMART databases), suggesting that they are indeed WRKY gene family members.
Based on their chromosomal locations, all WRKY genes identified in this study were des-
ignated sequentially as ZmWRKY1-ZmWRKY128 (Table S1). Most of the genes contained
the well-conserved WRKYGQK domain, although there were four variants: WRKYGEK,
WKKYGQK, WRKYGGK, and WRKYRQK, which were found in six, two, seven, and
one gene, respectively, distributed primarily in groups II-c and III. There was also some
variation in the zinc finger motif in two of the sequences (ZmWRKY31 and ZmWRKY114).
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Four genes (ZmWRKY85, ZmWRKY108, ZmWRKY110, and ZmWRKY127) were found to
have lost the WRKYGQK domain, and one gene (ZmWRKY106) had lost the zinc-finger
motif (Table S1).

Protein properties, including amino acid (aa) sequence length, molecular weight
(MW), and isoelectric point (pI) are shown for each ZmWRKY in Table S1. In summary,
the length of the encoded proteins ranged from 99 aa (ZmWRKY7) to 729 aa (ZmWRKY55),
with an average of approximately 360 aa. The MW ranged from 11.22 kDa (ZmWRKY7) to
78.74 kDa (ZmWRKY55), and the pI varied from 4.55 (ZmWRKY98) to 10.78 (ZmWRKY128).

2.2. Classification, Phylogenetic Analysis, and Motif Composition of the ZmWRKY Genes

To better understand the evolutionary relationships of the ZmWRKY proteins, an
unrooted neighbor-joining phylogenetic tree was constructed based on multiple sequence
alignment of the 199 WRKY protein sequences (Table S2) from maize and Arabidopsis
(Figure 1). Based on the classification of AtWRKYs, ZmWRKY proteins were classified into
three major groups (groups I, II, and III) together with WRKYs from Arabidopsis (Figure 1).
Among them, seventeen ZmWRKY proteins were categorized into group I. Fifteen of these
contained two intact WRKY domains and C2H2-type zinc finger motifs. However, the other
two members of group 1 (ZmWRKY21 and ZmWRKY84) had only one complete WRKY
domain each (Table S1). Seventy-five proteins were assigned to group II, and each protein
in this group contained a single WRKY domain and a C2H2-type zinc finger structure.
We further divided group II into five subgroups: II-a, -b, -c, -d, and -e, with 7, 11, 29, 12,
and 16 members, respectively. Thirty-six ZmWRKYs with a single WRKY domain were
assigned to group III because of their C2HC zinc-finger structure. Group II was the largest
group of WRKY TFs in maize, accounting for ~57.0% of all putative ZmWRKYs (Table S1).
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Figure 1. Phylogenetic analysis of WRKY gene family of Arabidopsis and maize. The phylogenetic tree
was constructed by MEGA 7.0 using the neighbor-joining (NJ) method with 1000 bootstrap replicates.
The phylogenetic tree was constructed based on the full-length protein sequences of WRKY proteins.

The phylogenetic tree was divided into two large branches. The group II subgroups
aside from II-c were monophyletic (Figure 1). Groups II-a, -b, and -c were clustered together
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with group I, whereas groups II-d and -e were more closely related to group III (Figure 1).
Phylogenetic analysis also showed that there were some closely related orthologous WRKY
gene pairs between maize and Arabidopsis (ZmWRKY27 and AtWRKY13; ZmWRKY11 and
AtWRKY35; ZmWRKY127 and AtWRKY14; ZmWRKY72 and AtWRKY55; ZmWRKY31 and
AtWRKY49; ZmWRKY28 and AtWRKY47; ZmWRKY10 and AtWRKY25; ZmWRKY126 and
AtWRKY2) (Figure 1).

To determine the sequence features and diversification among the ZmWRKY pro-
teins, we predicted putative motifs using MEME [26] and identified a total of ten typical
conserved motifs, which we designated as motifs 1–10. We generated a schematic dis-
tribution of these motifs among different groups based on the ZmWRKY phylogenetic
relationships (Figure 2). Motifs 1, 2, and 3 were the most highly conserved and appeared
most frequently in the ZmWRKY proteins. The majority of ZmWRKY proteins within the
same clade generally had similar motif compositions. For example, subgroups II-a and
II-b were closely related to each other, uniquely containing motifs 6 and 7. Other motifs
existed only in specific groups, e.g., motifs 5 and 10 existed only in group II-d. Motif 9
was found only in group II-e, where it was present in every protein except ZmWRKY37,
ZmWRKY38, and ZmWRKY111. Similarly, motif 4 was mainly found in groups II-c and I,
and motif 8 occurred only in groups I, II-c, and II-e (Figure 2). Detailed information for
each motif is shown in Table S3. Overall, the results demonstrate diversification of WRKY
proteins in maize.
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2.3. Chromosomal Location, Gene Duplication, and Collinearity Analysis of ZmWRKYs

To further investigate features of the ZmWRKY family, we determined the chromoso-
mal location of each gene. All 128 putative ZmWRKY genes were unevenly distributed
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across the 10 chromosomes (Figure 3). Chromosome (Chr) 8 contained the highest number
of ZmWRKY genes (25), followed by Chr3 (22), then Chr2, Chr4, and Chr6, (12 each).
Eleven genes were located on Chr1 and 10 on Chr10. Nine ZmWRKY genes were found
on both Chr5 and Chr7. In contrast, only six ZmWRKY genes were found on Chr9.
The ZmWRKY genes were often located in distal telomeric regions of the chromosomes
(Figure 3).
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Figure 3. Genomic location and duplication events analysis analysis of ZmWRKY genes. Chromo-
somes 1–10 are represented by blue color, and the chromosome numbers are indicated at the bottom
of each chromosome. Scale bar marked on the chromosome indicating chromosome lengths (Mb).
Gray lines in the background indicate the synteny blocks within the maize genome. The syntenic
WRKY gene pairs and tandem duplicated WRKY gene pairs are indicated with red curves and red
rectangles, respectively.

Gene duplications, including segmental duplication and tandem duplication, play
a significant role in expansion of gene families [27]. Here, we identified three pairs of
genes (ZmWRKY52/53, ZmWRKY80/81, and ZmWRKY121/122) derived from tandem
duplication, which were located on chromosomes 4, 7, and 10, respectively (Figure 3).
Notably, all three pairs of tandem duplicates were observed in group III (Figure 1) and had
the same motif composition (Figure 2). Sixty-nine collinear WRKY gene pairs were also
characterized (Figure 3 and Table S4), and were most often located on Chr8, followed by
Chr3 then Chr6. These results indicate that segmental duplication significantly contributed
to expansion of the ZmWRKY gene family.

Syntenic analysis was conducted between maize and Oryza sativa, and A. thaliana to
further deduce the evolutionary relationships between WRKY genes using MCScanX [28].
We found that the number of collinear gene pairs differed between species (Figure 4 and
Table S5). A total of 94, and 64 orthologous gene pairs were identified between maize and
rice, and Arabidopsis, respectively. This is likely due to the closer relationship between maize
and rice than between maize and Arabidopsis. Additionally, we observed some gene pairs
with one-for-one synteny, such as ZmWRKY35/AtWRKY54 and ZmWRKY78/AtWRKY59.
We speculate that these genes may have played a vital role in expansion of the WRKY gene
family during evolution. In general, these results show that most orthologs exhibit unequal
loss and expansion during polyploidization.
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2.4. Expression of ZmWRKY Genes in Response to O. furnacalis Feeding

RNA-seq was carried out to elucidate the dynamic expression patterns of the 128 ZmWRKY
genes in commercial maize to O. furnacalis attack at the mid-whorl stage (Table S6). Maize
leaves were collected at 0, 2, 4, 12, and 24 h post-infestation. Not all of the predicted
ZmWRKY genes were expressed under normal or herbivorous attack conditions. The
128 ZmWRKYs were divided into four classes by k-means clustering, based on their differ-
ential expression patterns (Figure 5). The first class contained 103 members, which showed
relatively low expression in most conditions; however, expression varied at different time
points after initiation of O. furnacalis feeding. The second and fourth classes contained
thirteen and seven members, respectively, most of which were downregulated at 2, 4, 12,
and 24 h post-infestation. The third class contained five members, which were strongly
upregulated at all four time points post-infestation relative to 0 h. Among these, we found
that ZmWRKY42 and ZmWRKY115 shared a similar expression pattern and clustered on the
same branch. Furthermore, gene pairs in the fourth class derived from tandem duplication
(ZmWRKY80/81 and ZmWRKY121/122) exhibited the same expression pattern (Figure 5).

2.5. Prediction of Transcriptional Regulation and Differential Expression Analysis in Key
ZmWRKY Genes

PlantRegMap [29] was used to infer potential regulatory interactions between ZmWRKY
TFs and DEGs. Based on functional annotations from the plant metabolic network (PMN) [30],
several key ZmWRKY genes and target genes were identified as being related to the flavonoid,
JA signaling, and benzoxazinoid biosynthesis pathways in maize (Figure 6 and Table S7).
Among them, ZmWRKY42, ZmWRKY71, and ZmWRKY77 were predicted to bind the
promoter of Zm00001d012674, which was confirmed to be involved in L-phenylalanine
biosynthesis II. ZmWRKY71, ZmWRKY65, ZmWRKY79, ZmWRKY46, and ZmWRKY77 were
predicted to bind the promoter of Zm00001d034635, which is an enzyme predicted to
participate in flavonoid biosynthesis. ZmWRKY71 and ZmWRKY77 were predicted to bind
the JA pathway-related genes LOX6 and LOX13. Moreover, ZmWRKY42, ZmWRKY46, and
ZmWRKY65 were predicted to bind the benzoxazinoid biosynthesis-related genes Bx10,
Zm00001d019251, and Zm00001d023994 (Figure 6).
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Figure 6. Proposed function and inferred relative position of WRKY-regulated L-phenylalanine
biosynthesis II, flavonoid biosynthesis, jasmonic acid (JA) biosynthesis, and benzoxazinoid biosyn-
thesis in maize. (a) Overview of L-phenylalanine biosynthesis II and flavonoid biosynthesis in maize.
PAL, phenylalanine ammonia lyase; C4H, cinnamate-4-hydroxymate; 4CL, 4-coumarate: coenzyme
A ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxylase. (b) JA
biosynthesis in maize. LOX, lipoxygenase; 13-HPOT, 13(S)-hydroperoxylinolenic acid; AOS, allene
oxide synthase; 12,13-EOT, 12,13(S)-epoxylinolenic acid; AOC, allene oxide cyclase; OPDA, 12-oxocis-
10,15-phytodienoic acid; OPR, 12-oxophytodienoate reductase. (c) Benzoxazinoid biosynthesis in
maize (modified from Tzin et al. [31]). Each red square represents a WRKY gene in the network and
is labeled with the gene name. Each green asterisk delegates a target gene and is labeled with the
gene name or gene id, including four previously reported (in bold font). An edge color indicates
correlation between WRKY TFs and target genes. The red labels indicate the target genes had been
verified in the previous studies.
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On this basis, we investigated the expression of these key WRKY TFs and their target
genes in response to O. furnacalis feeding in more detail. The results showed that all key
WRKY genes except for ZmWRKY71 and ZmWRKY79 were significantly upregulated during
O. furnacalis feeding, and that ZmWRKY42 was strongly induced at all four time points post-
infestation (Figure S1). It should be noted that ZmWRKY115 clustered with ZmWRKY42,
which had a similar expression pattern and was also highly induced by O. furnacalis
herbivory (Figures 5 and S1). All predicted target genes, except for Zm00001d019251
and LOX13, were significantly upregulated compared with the control at all time points.
Zm00001d012674 and Zm00001d023994 were found to be strongly induced by O. furnacalis
feeding (Figure S1). In addition, the RNA-seq data showed a high correlation of these key
WRKY TFs with the reported genes or candidate interacting genes (Figure 6 and Table S7).

To understand the expression patterns of key ZmWRKY genes at a finer scale, we quan-
tified expression levels of these genes in response to O. furnacalis feeding using quantitative
reverse transcription polymerase chain reaction (qRT-PCR); ZmWRKY79 was excluded due
to its low expression level. The results were consistent with those from the transcriptome
analysis, confirming the reliability of our RNA-seq data (Figure 7). After infestation with
O. furnacalis, the expression levels of five of the key genes were significantly upregulated at
the four time points, whereas ZmWRKY71 exhibited the opposite expression pattern. In
addition, these genes showed dynamic changes at different periods of time, indicating that
the selected ZmWRKY genes were closely involved in O. furnacalis infestation (Figure 7).
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feeding at 2, 4, 12 and 24 h, with that of 0 h as control (set as value of 1). Values are the mean ± SD of
three biological replicates. Asterisks indicate statistically significant differences in the O. furnacalis pre-
infested maize plants compared to Control (Student’s t-test, ns, not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001).

3. Discussion

The WRKY TFs form a large family whose members play important roles in a variety
of biological processes in plants [32,33]. Recently, a new annotated maize reference genome
assembly that is more complete and accurate relative to the previous reference genome
was reported [22]. This has generated new opportunities for comprehensive analysis of the
WRKY gene family in maize and comparison to the WRKY families in other plants.
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In this study, a total of 128 putative non-redundant WRKY genes were identified
and characterized using the new maize reference genome, the number of WRKY genes is
higher than that identified in the previous studies [20,21]. Compared with the previously
reported by Zhang et al. [20] and Hu et al. [21], additional new ZmWRKY genes (12 and
9, respectively) were identified and renamed according to the chromosomal distribution,
and some previously identified ZmWRKY genes (e.g., GRMZM2G103742) that had no
corresponding gene models in maize v4 genome were considered obsolete; moreover,
two genes (Zm00001d034475 and Zm00001d044315) identified by Hu et al. [21] were not
found in our result based on the same maize genome (Table S1). The WRKY genes were
categorized into three groups based on conserved domains and phylogenetic analysis,
and the results were consistent with previous findings [21]. The molecular weights and
isoelectric points of the ZmWRKY proteins showed a great deal of variation, likely due to
their differing roles across a range of environments. Structural comparison of the conserved
WRKY domain, which binds the promoter of target genes, presented a highly variable
region responsible for new molecular activities. Motif analysis of ZmWRKY proteins
demonstrated that, in general, closely related WRKY proteins from the same phylogenetic
clade shared similar motif distributions and sequences, implying functional similarities.
Similar results have also been reported in rice and Arabidopsis [34,35]. However, the
sequence modifications found in some ZmWRKY proteins suggested that those family
members have functionally diversified. In addition, the total number of WRKY genes
identified in maize is greater than the 72 that have been identified in Arabidopsis [35]
and the 116 in cotton [36], but fewer than the 171 identified in wheat [37] and the 188 in
soybean [38] (Figure S2). This suggests a distinct degree of evolutionary expansion in
the WRKY family among plant species. Wheat and soybean have undergone two whole
genome duplication (WGD) events, which are responsible for the large-scale expansion
of many gene families in those species [38,39]. Gene expansion can generate novel genes
and broaden the function of a gene family, allowing an organism to better adapt to various
environments [40]. We found that a high proportion of WRKY genes are distributed in
duplicated blocks in maize, suggesting that maize WRKY genes have undergone large-
scale duplication events, accelerating the expansion of the ZmWRKY gene family. In
terms of evolutionary analysis, genes from maize, rice, and Arabidopsis exhibited extensive
synteny, indicating that these WRKY genes may have existed in a common ancestor
before the divergence of these lineages. Additionally, there were more syntenic blocks
detected between maize and rice than between maize and Arabidopsis, consistent with the
evolutionary relationships between monocot and eudicot species [41].

Many studies have revealed that WRKY TFs act as regulators in plant defense-related
phytohormone signaling, such as the JA, salicylic acid (SA), and abscisic acid (ABA) path-
ways [42,43]. JA-mediated signaling is the primary activator of inducible defenses against
chewing herbivore attack [44,45]. For instance, in Nicotiana attenuate, NaWRKY3 and
NaWRKY6 positively control susceptibility to Manduca sexta by regulating JA-dependent
signaling [46]. OsWRKY70 mediates rice resistance to Chilo suppressalis by positively mod-
ulating JA and negatively mediating gibberellin (GA) biosynthesis [47]. Our findings
may provide another case study; ZmWRKY77 and ZmWRKY71 were predicted to regulate
lipoxygenases-related genes (LOX6 and LOX13) and were involved in JA synthesis in
response to O. furnacalis feeding. Although both were strongly induced during continuous
insect attack, they showed opposite patterns of expression; ZmWRKY77 was upregulated,
whereas ZmWRKY71 was downregulated. JA and its derivatives can induce the production
of benzoxazinoids, specialized metabolites that form toxic breakdown products to deter
insect feeding or inhibit digestion [48–50]. Here, we found that ZmWRKY42, ZmWRKY46,
and ZmWRKY65 were predicted to participate in benzoxazinoid synthesis and were highly
upregulated at all tested time points post-infestation. Importantly, ZmWRKY42 was pre-
dicted to regulate Bx10, which participates in methylating 2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one glucoside (DIMBOA-Glc) to 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-
3-one glucoside (HDMBOA-Glc). DIMBOA-Glc and HDMBOA-Glc are the most im-
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portant benzoxazinoids in maize and have been associated with increased resistance to
several lepidopteran insects, such as Spodoptera litura, Mythimna separata, and Spodoptera
frugiperda [31,50–53].

Another crucial pathway for responding to herbivorous insect attack is the flavonoid path-
way [54]. In our analysis, ZmWRKY71, ZmWRKY42, ZmWRKY77, ZmWRKY46, ZmWRKY79,
and ZmWRKY65 were predicted to take part in L-phenylalanine and flavonoid biosynthesis.
L-phenylalanine is the precursor for a plethora of specialized metabolites involved in
plant defense (e.g., flavonoids) [55]. The phylogenetic relationships between gene family
members are important in functional prediction; genes clustered on the same branch may
share conserved functions [56]. Previous studies have found that a TF, ZmWRKY34 (named
ZmWRKY95 in our study), was predicted to bind the promoters of BX6, BX10, and BX11,
and was highly induced in maize 6 h after M. separata feeding. It has been speculated that
ZmWRKY34 may regulate BX6 and BX10/11 at later time points [53]; however, we only
found it to be significantly elevated at 2 h after O. furnacalis treatment. This may be due
to insect species-specific differences in the time it takes the plant to selectively activate
the appropriate pathways. Interestingly, ZmWRKY95 showed a high degree of similarity
with ZmWRKY71 and AtWRKY51, which has been reported to mediate JA signaling and
alter resistance to some virulent pathogens in Arabidopsis [57]. Furthermore, AtWRKY23,
which regulates the biosynthesis of flavonol in Arabidopsis [58], clustered together with
ZmWRKY42. Remarkably, ZmWRKY115 clustered with ZmWRKY42 in the expression
profiling, suggesting a similar function for the two WRKY genes. ZmWRKY115 was lo-
cated on the same branch as AtWRKY40, AtWRKY18, and AtWRKY60, which are involved
in the crosstalk between SA and JA signaling that affects susceptibility of Arabidopsis to
two distinct types of pathogens [59]. AtWRKY40 is also associated with both mechani-
cal wounding and JA, and is consistently upregulated by Spodoptera exigua feeding [60];
AtWRKY18 and AtWRKY40 play a significant role in resistance to S. littoralis herbivory in
Arabidopsis [61]. Overall, these results demonstrate that critical WRKY TFs act as positive or
negative regulators of plant defense-related genes and/or signaling. Furthermore, genetic
variation in different maize cultivars leads to variation in responses to herbivores attack,
potentially leading to lost chemical defenses during crop domestication [49]. In this study,
we identified several key candidate WRKY genes in Chinese commercially field-grown
maize that is susceptible to infestation by O. furnacalis at the mid-whorl, which is of great
practical significance in maize cultivation to enhance insect resistance in the field. Further
experiments are required on transgenic plants that silence or overexpress these candi-
date WRKY genes to directly identify transcriptional targets of key WRKY genes, which
will help to further establish their role in mediating defense responses to O. furnacalis in
commercial maize.

4. Materials and Methods
4.1. Identification and Sequence Analysis of WRKY Genes in Maize

To comprehensively identify the WRKY genes, all maize protein sequences were
downloaded from the maize genome database (B73 RefGen_v4, https://www.maizegdb.
org/, accessed on 5 October 2021). The Hidden Markov Model (HMM) seed file of the
WRKY domain (PF03106) was obtained from the Pfam database (http://pfam.sanger.ac.
uk/, accessed on 5 October 2021) to identify maize WRKY proteins using Hmmsearch [62]
with an E-value threshold of 0.01. Subsequently, all non-redundant maize WRKY protein
sequences were validated for the presence of the WRKY domain by submitting them as
search queries to the Pfam and SMART (http://smart.embl.de/, accessed on 5 October
2021) databases.

4.2. Sequence Alignment, Phylogenetic and Conserved Motifs Analysis

To study the phylogenetic relationships of ZmWRKY proteins and orthologs in Ara-
bidopsis, sequences of AtWRKY TFs were retrieved from TAIR (http://www.arabidopsis.
org, accessed on 5 October 2021). Multiple sequence alignment of the AtWRKY and

https://www.maizegdb.org/
https://www.maizegdb.org/
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http://pfam.sanger.ac.uk/
http://smart.embl.de/
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http://www.arabidopsis.org
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ZmWRKY protein sequences was performed with the ClustalW module in MEGA 7.0 [63],
and phylogenetic trees were constructed using the neighbor-joining (NJ) approach with
1000 bootstrap replicates. The phylogenetic tree was visualized using iTOL (https://itol.
embl.de/, accessed on 5 October 2021) [64].

Conserved motifs of the ZmWRKY proteins were analyzed with MEME (http://
alternate.meme-suite.org/tools/meme, accessed on 5 October 2021) [26]. The relevant
parameters were set as follows in the analysis: number of repetitions = any; maximum
number of motifs = 10; optimum width of motifs = 6 to 100. iTOL was used to visualize the
phylogenetic trees and conserved motifs.

4.3. Chromosomal Location, Gene Duplication, and Synteny Analysis

The chromosomal distribution of ZmWRKY genes was mapped according to the
physical location and length of chromosomes based on the v4 version of the maize genome
annotation file (GFF3) and the corresponding genomic DNA sequences.

To explore the syntenic relationships of the WRKY genes in maize and rice, and
Arabidopsis, whole genome protein sequences from all species were searched against them-
selves using BLASTP with an E-value threshold of 1 × 10−10. MCScanX [28] was used to
detect the duplication types and collinear blocks using whole-genome sequences, anno-
tation documents, and protein sequences downloaded from the Ensembl Plants database
(http://plants.ensembl.org/index.html, accessed on 5 October 2021). The chromosomal
distribution and inter-species syntenic analysis were visualized using Circos v0.69 [65].

4.4. RNA-Seq Analysis

The raw RNA-Seq data used here were generated for a previous study done in our
research group [49]. We re-conducted the quality control and trimming to filter the adaptor
sequences and unknown/low-quality reads with fastp [66]. Clean reads were mapped to
the new maize reference genome (B73 RefGen_v4) using HISAT2 [67]. Approximately 87%
of the clean reads (out of 81.87–88.93% of the total reads) were mapped to the reference
genome (Table S8). Read summarization was used to obtain gene expression levels using
featureCounts [68], and trimmed mean of M-values (TMM) [69] was used to normalize
the counts. Tests for pairwise differential expression were performed in the DESeq2 R
package [70], with genes having a p value < 0.05 and |FoldChange| > 2 considered to
be differentially expressed genes (DEGs) for further analysis. Gene expression values
were visualized using the ComplexHeatmap (v2.4.2) R package with expression values
centralized by row. Expression patterns were clustered using k-means clustering on rows
with k = 4.

4.5. Transcriptional Regulation Prediction and Functional Annotation

The 1.0 kb region upstream of the transcription start site for all DEGs were extracted as
input sequences to infer potential regulatory interactions between ZmWRKY TFs and DEGs
using PlantRegMap online (http://plantregmap.gao-lab.org/, accessed on 10 October
2021) [29]. TFs with over-represented targets in the input gene set (p-value ≤ 1 × 10−5)
were identified. The Pearson correlation coefficient was calculated for enriched TFs and
DEGs based on expression, and only those with a correlation coefficient greater than 0.5
and with a significant correlation (p-value ≤ 0.05) were submitted to the Plant Metabolic
Network databases (PMN) (https://plantcyc.org/, accessed on 10 October 2021) [30]
to predict the potential biological function. Finally, the filtered network was input to
Cytoscape (v3.7.1) [71] to construct the regulatory network map.

4.6. Plant Materials and qPCR Validation

Maize genotype Jingke968 as the plant material was grown in the field; each plant was
enclosed in a separate nylon cage (60 mesh). Developmentally similar and healthy maize
plants were used for experiments when they were at the mid-whorl stage. Leaf samples
were separately collected for extraction of total RNA and synthesis of cDNA at 0, 2, 4, 12,
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and 24 h after initial O. furnacalis infestation (20 3rd instar larvae in each plant). Three
biological replicates were produced for every treatment. Detailed experimental conditions
and protocols referred to Guo et al. [49].

Based on the gene expression characteristics, six candidate ZmWRKY genes were
selected and their response to O. furnacalis infestation treatments were quantified with
qRT-PCR. We performed qRT-PCR in 96-well plates using an ABI 7500 real-time PCR
system (ABI, Alameda, CA, USA). Each pair of primers was tested for quality using melt
curve analysis and determining their respective PCR amplification efficiency. Each assay
was optimized so that the efficiency ranged between 94 and 99% (Table S9).

The total volume per reaction was 20 µL and each reaction contained 10 µL TB Green
Premix Ex Taq (2×), 0.4 µL ROX Reference Dye II (50×), 2 µL cDNA, 6.8 µL ddH2O, and
0.4 µL each primer pair (10 µM). The reaction conditions were 95 ◦C for 30 s, followed by
35 cycles of 95 ◦C for 5 s and 60 ◦C for 34 s, and finally a melting curve ranging from 60 to
95 ◦C. Actin was used as the internal control, as described by Guo et al. [49]. Relative gene
expression levels were calculated based on three biological replicates using the 2−∆∆CT

method [72]. To determine if there was a significant difference between the control and
treatment groups, a t-test was employed with a threshold of 0.05.

5. Conclusions

In this study, a total of 128 WRKY genes were identified in an updated version of the
maize genome. The genes could be divided into three main groups based on phylogenetic
analyses. We conducted a systematic analysis of the genes including identification of con-
served motifs, chromosomal location, gene duplication events, and synteny. Comparisons
among the WRKY genes across three species (maize, rice, and Arabidopsis) demonstrated
extensive synteny, indicating common evolutionary origins of the genes. Moreover, tran-
scriptional regulation prediction suggested that several key WRKY genes contribute to four
major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazi-
noid, and JA biosynthesis. Expression of these key WRKY genes was highly correlated with
expression of putative target genes, and the WRKYs were strongly induced by O. furnacalis
feeding. This suggests that several WRKY genes have important herbivory-defensive
functions in commercial maize grown in natural environments, especially in response to O.
furnacalis. In conclusion, our results contribute to a comprehensive understanding of the
ZmWRKY gene family; furthermore, we identified a set of candidate herbivory-response
genes, laying the foundation for further studies in commercial maize defense against O.
furnacalis in the field.
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