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Background: Breast cancer is one of the most common malignancies in women worldwide, and early and 
accurate diagnosis is crucial for improving treatment outcomes. Conventional ultrasound (CUS) is a widely 
used screening method for breast cancer; however, the subjective nature of interpreting the results can lead 
to diagnostic errors. The current study sought to estimate the effectiveness of using a GoogLeNet deep-
learning convolutional neural network (CNN) model to identify benign and malignant breast masses based 
on CUS.
Methods: A literature search was conducted of the Embase, PubMed, Web of Science, Wanfang, China 
National Knowledge Infrastructure (CNKI), and other databases to retrieve studies related to GoogLeNet 
deep-learning CUS-based models published before July 15, 2023. The diagnostic performance of the 
GoogLeNet models was evaluated using several metrics, including pooled sensitivity (PSEN), pooled 
specificity (PSPE), the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), the diagnostic 
odds ratio (DOR), and the area under the curve (AUC). The quality of the included studies was evaluated 
using the Quality Assessment of Diagnostic Accuracy Studies Scale (QUADAS). The eligibility of the 
included literature were independently searched and assessed by two authors.
Results: All of the 12 studies that used pathological findings as the gold standard were included in the 
meta-analysis. The overall average estimation of sensitivity and specificity was 0.85 [95% confidence interval 
(CI): 0.80–0.89] and 0.86 (95% CI: 0.78–0.92), respectively. The PLR and NLR were 6.2 (95% CI: 3.9–9.9) 
and 0.17 (95% CI: 0.12–0.23), respectively. The DOR was 37.06 (95% CI: 20.78–66.10). The AUC was 0.92 
(95% CI: 0.89–0.94). No obvious publication bias was detected.
Conclusions: The GoogLeNet deep-learning model, which uses a CNN, achieved good diagnostic results 
in distinguishing between benign and malignant breast masses in CUS-based images.
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Introduction

Breast cancer recently surpassed lung cancer as the most 
commonly diagnosed cancer in women, and in 2022, 
approximately 2.3 million new breast cancer cases were 
diagnosed (1-3). Breast cancer seriously affects women’s 
health and quality of life, and is also the fifth major cause of 
cancer-related death worldwide (2,3). However, with early 
cancer screening, early diagnosis, and prompt treatment, 
patient survival and quality of life can be significantly 
improved. Therefore, it is essential to detect breast cancer 
in its early stages and initiate treatment to minimize 
mortality (4-6).

Medical imaging technology can improve the diagnostic 
accuracy of breast cancer and reduce unnecessary 
biopsy times (7,8). Ultrasound (US) images and X-ray 
mammography are commonly used to identify cancers. US 
is a widely used, non-ionizing imaging technique that is 
low cost, radiation free, can be observed in real time, and 
can also be used as an adjunct to X-ray mammography, 
especially for dense breasts (2,3,5-7,9). A large number 
of breast US images are generated every day in the 
daily practice of healthcare organizations. The accurate 
assessment of these images depends heavily on physicians’ 
ability to recognize and identify image features, which 
requires sonographers to be experienced in image analysis 
to ensure reliable diagnostic conclusions. However, 
the subjectivity of a physician’s experience can lead to 
misdiagnosis or delayed diagnosis breast tumors. Therefore, 
the accuracy of breast US diagnosis by sonographers 
urgently needs to be improved (10).

Computer-aided diagnosis (CAD) systems using breast 
US images hold significant research value and have shown 
promising application prospects (11). In recent decades, 
there have been efforts to enhance breast US analysis using 
computer-aided technology. Extensive research has been 
conducted on breast US image analysis and intelligent 
diagnosis to accurately differentiate between benign 
and malignant breast masses (12,13). One approach uses 
traditional machine learning and algorithms to define 
and extract image features, after which a specific classifier 
is used to classify breast tumors according to thethe 
meaningful characteristics extracted. Another approach uses 

deep learning to achieve diagnosis by training models on 
relatively large data sets.

Traditional classification methods involve manually 
segmenting an image and then using a classifier or one 
trained by a shallow neural computer to identify each 
segment and classify the image (2,14). However, methods 
used to build and improve classifiers are time consuming 
and computationally heavy, and the diagnostic performance 
of such systems largely depends on the quality of the 
features extracted by the algorithm (15). To overcome 
these early machine-learning limitations, researchers began 
using deep learning to identify images. With deep learning, 
artificial neural networks can extract data-driven and self-
optimized feature graphs of the most discriminative features 
from the input images, and provide corresponding answers 
or predictions. Therefore, feature detection and selection 
are not commonly required (16,17). As deep learning can 
accurately extract meaningful characteristics from images 
and autonomously calculate inference and decision making, 
this learning method can diagnose images and is not 
dependent on the experience of radiologists (18-21).

Recently, convolutional neural networks (CNNs) have 
gained popularity for their image pattern identification and 
artificial intelligence (AI) strategies. CNNs are a method of 
deep learning and are inspired by the structure and function 
of the brain. In processing data using artificial neural 
networks containing concealed layers, CNNs imitate the 
visual cortex of mammals. CNNs are powerful visualization 
models that can generate hierarchical structures of features 
(15-18). Research studies have shown that CNNs, through 
an end-to-end, pixel-to-pixel process, surpass state-of-the-
art semantic segmentation techniques in medical image 
recognition (22-24). These findings, based on multiple 
research studies conducted in this field, highlight the 
superior performance of CNNs. 

GoogLeNet  i s  a  wide ly  used  CNN algor i thm 
model for breast US image classification. It performed 
exceptionally well in the ImageNet ILSVRC14 detection 
and classification challenge (25). The model provides 
the top five most likely classification results for a given 
image, ranked by confidence level. The test accuracy for 
these top five results is 93.3% (26). The main innovation 
of GoogLeNet lies in its efficient use of computational 
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resources. It introduces and incorporates a structure called 
the “inception module”  to approximate sparse connections 
between activation functions. This module helps eliminate 
redundancy and correlation between activation functions, 
thereby improving efficiency in memory usage and 
execution time without compromising accuracy (27).

Inception V1 and Inception V3 are different versions 
of the Inception architecture, and were both developed by 
the Google Research team (28,29). The main difference 
between these versions is the architectural design and 
performance improvements, which means that the depth 
and complexity of these versions differ. Inception V1, 
also known as GoogLeNet, was launched in 2014 (26). 
It consists of multiple Inception modules that capture 
information at different scales by using parallel convolution 
layers with different filter sizes, with 1×1 convolution for 
dimensionality reduction. Inception V1 has a relatively 
simple architecture compared to later versions. Inception 
V3 was released in 2015 and is a more advanced version 
of the Inception architecture (30). It was designed to 
improve on the limitations of Inception V1. It has various 
improvements over Inception V1; for example, it uses 
factoring convolution to reduce computational costs, 
and batch normalization to help with training stability. 
Inception V3 also has a deeper network structure that allows 
it to capture more complex features. However, as Inception 
V1 has a simple network structure and fewer parameters, 
it is easier to implement and deploy in the case of limited 
computing resources. Compared to Inception V3, it has 
higher computational efficiency and faster learning speed 
(28,30). Therefore, the choice of which version of Inception 
to use should be evaluated based on specific needs and 
conditions. If computational resources are limited, datasets 
are small, or there are limitations on model size, Inception 
V1 may be a good choice. However, with large datasets, 
higher accuracy, and better performance requirements, 
Inception V3 may be a better choice (28-30).

Using CNN models trained on non-medical ImageNet 
data for medical image analysis is a trend that has recently 
emerged (31). The review article by Morid et al. noted that 
this transfer learning approach is very common in medical 
image analysis, with the Inception-V3 CNN model being 
the most commonly used (32). In various types of medical 
image analyses, including X-ray, endoscopic, and US image 
analyses, the GoogLeNet model is the most commonly 
used, accounting for 19% of all models applied in these 
analyses. Moreover, GoogLeNet, which has been used 
in 50% of breast-related research, is the most commonly 

used model (32). Given the broad application and high 
effectiveness of the GoogLeNet model in breast US image 
classification, and the absence of a previous meta-analysis 
on this topic, it was chosen as the reference model for this 
meta-analysis. To enhance the stability and reliability of our 
research findings and to avoid selection bias, we specifically 
chose the GoogLeNet model as the subject of our study 
to evaluate its performance in the task of classifying breast 
tumors as benign or malignant.

Currently, several studies have shown that the deep-
learning US GoogLeNet model can effectively differentiate 
between benign and malignant breast masses, improving 
the accuracy of diagnoses (6,15,33-35). However, the 
sensitivity of these models varies among different studies. 
Six publications used the Inception deep-learning V1 
model (6,33,35-38), while another six publications used 
the Inception V3 deep-learning model (15,34,39-42). The 
study by Kriti et al. reported a sensitivity of 97% for the 
Inception V1 model (38), while that Ali et al. reported a 
sensitivity of only 74% for the Inception V3 model (39). 
The sensitivity of GoogLeNet deep-learning US-based 
models for diagnosing breast lesions varies substantially, 
and no meta-analysis on this topic appears to have been 
conducted. Therefore, this meta-analysis sought to assess 
the efficacy of the conventional ultrasound (CUS)-based 
GoogLeNet deep-learning model in discriminating 
between and diagnosing the nature of breast masses to assist 
sonographers to make more accurate diagnoses. We present 
this article in accordance with the PRISMA-DTA reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-679/rc).

Methods

This meta-analysis was registered on the PROSPERO 
website (registration number CRD42023459415).

Search strategy

A literature search of databases, such as Embase, PubMed, 
Web of Science, Wanfang, China National Knowledge 
Infrastructure (CNKI), and Cochrane Library databases, 
was conducted to retrieve all relevant studies published 
before July 15, 2023. The following broad keywords were 
used: “Deep learning” or “DL” or “Neural network” 
or “GoogLeNet” or “Inception V1” or “Inception V3” 
and “ultrasonography” or “ultrasound” or “ultrasonic” 
or “diagnostic imaging”, and “breast nodules” or “breast 

https://qims.amegroups.com/article/view/10.21037/qims-24-679/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-679/rc


Wang et al. GoogLeNet in breast mass classification7114

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(10):7111-7127 | https://dx.doi.org/10.21037/qims-24-679

masses”. To achieve a comprehensive and accurate literature 
search, this study employed a comprehensive search 
approach, including the use of subject terms and free 
terms for the online retrieval, as well as a manual search 
to supplement and refine the retrieved relevant literature. 
This approach ensured the acquisition of a broad range of 
research resources.

Study selection

To be eligible for inclusion in this meta-analysis, the articles 
had to meet the following inclusion criteria: (I) employ 
the GoogLeNet deep-learning model to perform the 
discriminative diagnosis of benign and malignant breast 
masses; (II) inclusively analyze the diagnosis of breast 
masses by CUS; (III) include raw data that either directly 
demonstrated or could be used to calculate sensitivity and 
specificity, and included data that provided information on 
true positives (TPs), false positives (FPs), false negatives 
(FNs), and true negatives (TNs); (IV) use pathological 
examination as the gold standard for the diagnosis of breast 
masses and clearly detailed the number of samples included 
and the respective counts of the different types of samples; 
and (V) have collected either test set data or validation set 
data; if both were collected, the test set data were chosen 
for the analysis.

Articles were excluded from the meta-analysis if they met 
any of the following exclusion criteria: (I) were not related 
to the GoogLeNet deep-learning model of CNN; (II) did 
not have data available that could be used to calculate the 
TPs, FPs, FNs, and TNs; (III) comprised review articles, 
letters, editorials, commentaries, theses, case reports, and 
conference articles, and so on; and/or (IV) were related to 
duplicate studies.

Data extraction and quality assessment

In this study, the titles and abstracts were reviewed 
independently by two authors to identify the qualifying 
articles. The full texts of the articles were then read to 
identify articles for inclusion in the meta-analysis. For each 
study, relevant information was independently extracted, 
including the first author, year of publication, country, 
sample volume in the training set, sample volume in the 
test set, quadruple table data (TPs, FPs, FNs, and TNs), 
sensitivity, specificity and the type of GoogLeNet model 
used. Studies were excluded if quadruple table data could 
not be extracted from thearticle.

The same two observers used the Quality Assessment 
of Diagnostic Accuracy Studies Scale (QUADAS-2) to 
assess the quality of the included articles. RevMan 5.4 
(Cochrane Collaboration) was used to output the result of 
QUADAS-2.

Statistical analysis

After data extraction, we evaluated the pooled sensitivity 
(PSEN) and pooled specificity (PSPE) using bivariate 
models, and summary receiver operating characteristic 
(SROC) curves were plotted with the areas under the 
curve (AUCs). Moreover, publication bias was assessed 
using Deeks’ funnel plots, and the risk of study bias was 
evaluated using the QUADAS-2 criteria. Further, post-test 
probabilities were calculated and represented using Fagan’s 
plot. All the data analyses were conducted and all the 
graphs were generated using Stata 17 (StataCorp LLC) and 
RevMan 5.4 (Cochrane Collaboration) software.

Based on study results, we assessed heterogeneity 
quantitatively. If the Q-test results met the criteria of P>0.1 
and I2≤50%, a fixed-effects model was used; otherwise, 
a random-effects model was used. Meta-regression and 
subgroup analyses were conducted to assess the reasons 
for clinical heterogeneity. A P value <0.05 was considered 
statistically significant.

Results

Literature searches results

As of July 2023, we initially retrieved 302 original articles 
based on our search criteria. A meticulous review of 
the titles and abstracts of these articles resulted in the 
preliminary selection of 197 articles. These were articles 
further subjected to a rigorous assessment based on 
predefined inclusion and exclusion criteria, culminating 
in the selection of 12 articles that met the requirements 
of our meta-analysis. A detailed workflow of the literature 
selection process is shown in Figure 1.

Characteristics of the eligible studies

Table 1  presents the main features of and general 
information about the 12 articles included in this meta-
analysis. The studies were published between 2017 and 
2023. Six articles employed the Inception V1 deep-learning 
model (6,33,35-38). The training and testing datasets 
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• Reason 1: ultrasound techniques other than conventional 
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• Reason 2: insufficient data (n=7)

Records removed before screening:
• Duplicate records removed  (n=105)
• Records marked as ineligible by automation tools (n=0)
• Records removed for other reasons (n=0)

Figure 1 Study flow chart detailing the reasons for exclusion of studies and the total number (n=12) of studies included.

Table 1 Characteristics of the included studies

Author Year Country
Training database Test database

SE SP TP FP FN TN Precision F1 score
GoogLeNet 

(type)N B M N B M

Han et al. (33) 2017 Korea – 3,765 2,814 – 489 340 0.83 0.95 282 24 58 465 0.92 0.87 Inception V1

Xiao et al. (40) 2018 China – 1,233 619 – 137 69 0.77 0.89 53 15 16 122 0.78 0.77 Inception V3

Zhang et al. (41) 2020 China – 2,500 2,500 – 788 219 0.86 0.82 188 142 31 646 0.86 0.69 Inception V3

Kim et al. (37) 2021 Korea – 2,140 1,440 – 100 100 0.88 0.76 88 24 12 76 0.88 0.83 Inception V1

Yu et al. (34) 2022 China – 500 500 – 48 52 0.81 0.9 42 5 10 43 0.81 0.85 Inception V3

Assari et al. (6) 2022 Iran – 256 226 – 79 77 0.88 0.91 68 7 9 72 0.88 0.89 Inception V1

Sirjani et al. (42) 2023 Iran – 597 319 – 71 79 0.75 0.73 59 19 20 52 0.75 0.75 Inception V3

Kriti et al. (38) 2020 India – 3,982 3,751 – 21 30 0.97 0.9 29 21 1 9 0.97 0.73 Inception V1

Ali et al. (39) 2023 Saudi 

Arabia

– 3,500 3,500 – 1,000 1,000 0.74 0.93 740 73 260 927 0.74 0.82 Inception V3

Masud et al. (35) 2022 Saudi 

Arabia

532 2,148 1,440 133 537 360 0.94 0.88 338 64 22 473 0.94 0.88 Inception V1

Tsai et al. (15) 2022 China 93 341 147 27 97 42 0.95 0.96 40 4 2 93 0.95 0.93 Inception V3

Alhussan et al. (36) 2023 Saudi 

Arabia

4,000 4,000 4,000 77 244 105 0.78 0.86 82 34 23 210 0.78 0.74 Inception V1

SE, sensitivity; SP, specificity; M, Malignant; B, Benign; N, Normal; TP, true positive; FP, false positive; FN, false negative; TN, true negative.
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in three articles were augmented with normal images 
(15,35,36). Seven articles used publicly available datasets 
(6,15,35,36,38,39,42), four articles used data collected by 
a single institution (33,34,40,41), and one article used data 
collected from two centers (37).

Methodology quality assessment

Using RevMan 5.4 software, methodological assessments 
based on the QUADAS-2 checklist were performed to 
determine the quality of included studies. As Figure 2 shows, 
the majority of the included studies had a low risk of bias in 
terms of the quality assessment items.

Accuracy of the GoogLeNet model based on US for deep 
learning in the differential detection of benign and 
malignant breast masses

Our data analysis revealed that the application of the 
GoogLeNet deep-learning model, based on US, achieved a 
PSEN of 0.85 [95% confidence interval (CI): (0.80–0.89)] 
and a PSPE of 0.86 (95% CI: 0.78–0.92) in distinguishing 
between benign and malignant breast masses (Figure 3). 
Higgins I2 statistics revealed significant heterogeneity in 
terms of sensitivity (P<0.05, I2=88.36%) and specificity 
(P<0.05, I2=94.63%). Accordingly, the random-effects 
model was used to analyze the sensitivity and specificity. 

Alhussan et al. 2023 

Ali MD et al. 2023 

Assari Z et al. 2022 

Han s et al. 2017 

Kim J et al. 2021 

Kriti et al. 2020 

Masud M et al. 2022 

Sirjani N et al. 2023 

Tsai MJ et al. 2022 

Xiao T et al. 2018 

Yu MH et al. 2022 

Zhang H et al. 2020

P
at

ie
nt

 s
el

ec
tio

n 

In
de

x 
te

st
 

R
ef

er
en

ce
 s

ta
nd

ar
d 

Fl
ow

 a
nd

 ti
m

in
g

P
at

ie
nt

 s
el

ec
tio

n 

In
de

x 
te

st
 

R
ef

er
en

ce
 s

ta
nd

ar
d

Applicability concernsRisk of bias

High Unclear Low

Patient selection 
Index test 

Reference standard 
Flow and timing

0          25         50         75        100
Applicability concerns, %Risk of bias, %

0          25         50         75        100

High Unclear Low

Figure 2 Bias risk of the included studies (based on the QUADAS-2 criteria). Judgements of the review authors about each domain for each 
included study.
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The positive likelihood ratio (PLR) and negative likelihood 
ratio (NLR) were 6.2 (95% CI: 3.9–9.9) and 0.17 (95% CI: 
0.12–0.23), respectively. The diagnostic odds ratio (DOR) 
was 37.06 (95% CI: 20.78–66.10) (Figure 4), and the AUC 
was 0.92 (95% CI: 0.89–0.94) (Figure 5). The Spearman’s 
correlation coefficient (r=−0.31, P=0.10) indicated that extra 
threshold factors might have contributed to the observed 
heterogeneity. The results of the above statistical analyses 
were considered acceptable.

Publication bias

The Deek funnel plot plotted by Stata 17.0 showed a 
symmetrical distribution of the study, with a P value of 
0.70 (P>0.05) (Figure 6), which indicated that there was no 
apparent publication bias in this study.

Heterogeneity detection

In view of the strong heterogeneity among the incorporated 
studies, this study used meta-regression to analyze the 
factors related to heterogeneity. The following variables 
were analyzed: the type of deep-learning architecture 
(GoogLeNet ) ,  the  number  o f  b rea s t  US  image 
classifications, and the study publication year (≤2021 or 
>2021). The results of the regression analysis are set out 
in Table 2. Of the variables, the PSEN of Inception V1 was 

0.89 (95% CI: 0.84–0.93), and that of Inception V3 was 0.81 
(95% CI: 0.75–0.88), P<0.01; the PSPE of Inception V1 
was 0.83 (95% CI: 0.73–0.94), and that of Inception V3 was 
0.89 (95% CI: 0.81–0.96), P=0.03. Both were statistically 
significant. The PSEN for studies that included normal, 
benign, and malignant US images was 0.90 (95% CI: 
0.84–0.93), while that for the subgroup that included only 
benign and malignant images was 0.84 (95% CI: 0.78–0.89) 
(P<0.01), indicating a statistically significant difference. 
The PSPE for the studies that included normal, benign, 
and malignant US images was 0.91 (95% CI: 0.82–1.00), 
and that for the subgroup that included only benign and 
malignant images was 0.84 (95% CI: 0.76–0.93) (P=0.06), 
but no statistically significant difference was found. The 
PSEN for studies published in and before 2021 was 0.87 
(95% CI: 0.80–0.93), and that for studies published after 
2021 was 0.85 (95% CI: 0.79–0.91) (P=0.01). The PSPE 
for studies published in and before 2021 was 0.81 (95% 
CI: 0.68–0.93), and that for studies published after 2021 
was 0.89 (95% CI: 0.83–0.96) (P=0.01). The differences 
between the PSEN and PSPE before and after 2021 were 
statistically significant.

Sensitivity analysis

To investigate whether any study affected the stability of the 
PSEN and PSPE, we eliminated the included studies one 
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Figure 3 Forest plots showing model sensitivity and specificity for diagnostic breast masses. The horizontal lines illustrate the 95% 
confidence intervals of the individual studies. CI, confidence interval.
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Figure 5 The ROC. 1 represents the study of Han et al.; 2 
represents the study of Xiao et al.; 3 represents the study of Zhang 
et al.; 4 represents the study of Kim et al.; 5 represents the study of 
Yu et al.; 6 represents the study of Assari et al.; 7 represents the study 
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Figure 6 The publication bias of the included studies. No 
significant publication bias was found in the present meta-analysis. 
Each circle represents an eligible research study. 1 represents 
the study of Han et al.; 2 represents the study of Xiao et al.; 3 
represents the study of Zhang et al.; 4 represents the study of Kim 
et al.; 5 represents the study of Yu et al.; 6 represents the study of 
Assari et al.; 7 represents the study of Sirjani et al.; 8 represents 
the study of Kriti et al.; 9 represents the study of Ali et al.; 10 
represents the study of Masud et al.; 11 represents the study of Tsai 
et al.; and 12 represents the study of Alhussan et al. 1/root (ESS), 
square root of the reciprocal of ESS; ESS, effective sample size.
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Table 2 Meta-analysis of ultrasound-based deep learning for the differential diagnosis of benign and malignant breast masses 

Category N
PSEN PSPE

SE (95% CI) P SP (95% CI) P

GoogLeNet <0.01 0.03

Inception V1 6 0.89 (0.84–0.93) 0.83 (0.73–0.94)

Inception V3 6 0.81 (0.75–0.88) 0.89 (0.81–0.96)

Number of Classes <0.01 0.06

2 9 0.84 (0.78–0.89) 0.84 (0.76–0.93)

3 3 0.90 (0.84–0.93) 0.91 (0.82–1.00)

Year 0.01 0.01

≤2021 5 0.87 (0.80–0.93) 0.81 (0.68–0.93)

>2021 7 0.85 (0.79–0.91) 0.89 (0.83–0.96)

Data set class 0.03 0.03

Extra 8 0.87 (0.82–0.92) 0.82 (0.75–0.93)

Intra 4 0.82 (0.74–0.91) 0.90 (0.82–0.98)

N, number of included studies; PSEN, pooled sensitivity; SE, sensitivity; CI, confidence interval; PSPE, pooled specificity; SP, specificity.

by one. The sensitivity and specificity analysis results are set 
out in Table 3. The results revealed no significant change in 
the PSEN and PSPE or in Higgins I2, with the exception of 
non-significant changes noted in individual studies.

Fagan plot analysis

The Fagan plot analysis showed that the GoogLeNet 
deep-learning model when applied to US images can assist 
radiologists to differentiate between benign and malignant 
breast lesions. When the pre-test probability was 25%, 
a “positive” GoogLeNet result increased the probability 
of a correct diagnosis to 68%, while a “negative” result 
decreased the probability of a correct diagnosis to 5% 
(Figure 7A). With pre-test probabilities of 50% and 75%, 
a “positive” test result changed the post-test probability to 
86% and 95%, respectively, while a “negative” test result 
changed it to 14% and 34%, respectively (Figure 7B,7C).

Discussion

This study conducted a meta-analysis to evaluate and 
analyze the value of the GoogLeNet deep-learning model, 
which is based on US imaging, in the differential diagnosis 
of benign and malignant breast masses. The PSEN and 
PSPE of the 12 included studies were 0.85 (95% CI: 
0.80–0.89) and 0.86 (95% CI: 0.78–0.92), respectively. The 

DOR was 37.06 (95% CI: 20.78–66.10), and the AUC was 
0.92 (95% CI: 0.89–0.94). These results showed that the 
GoogLeNet deep-learning model based on US has high 
diagnostic accuracy in differentiating between benign and 
malignant breast masses. We prioritized the inclusion of 
test set data when both test and training sets were available 
in the study, as test sets can be used to assess the ability of 
models to generalize over unseen data, help in the selection 
of the most appropriate model or method, ensure a more 
accurate assessment of the meta-analysis, and guarantee the 
scalability of findings.

All the research reports included in our meta-analysis 
were of relatively good quality, and no obvious publication 
bias was observed. A lack of uniformity in the gold-standard 
criteria in a few studies resulted in a slight decline in the 
quality of some reports. However, there was significant 
heterogeneity in the sensitivity and specificity of the studies 
included. This might be partly due to some study data 
being sourced from a single institution (33,34,40,41), which 
could have resulted in the high level of heterogeneity. 
Additionally, it could be related to differences in the study 
designs, demographic statistics, or imaging acquisition 
techniques. The meta-regression and subgroup analysis 
results identified the type of GoogLeNet model, the 
number of categories in the breast US images, the data set 
class, and the study publication year as the main sources 
of heterogeneity. A detailed breakdown of heterogeneity 
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Table 3 The sensitivity analysis in which articles were eliminated one by one 

Eliminated article
PSEN PSPE

AUC (95% CI)
SE (95% CI) I

2
 (95% CI), % P SP (95% CI) I

2
 (95% CI), % P

Han et al. (33) 0.86 (0.80–0.90) 89.31 (84.28–94.34) <0.01 0.85 (0.76–0.91) 93.99 (91.61–96.38) <0.01 0.92 (0.89–0.94)

Xiao et al. (40) 0.86 (0.81–0.90) 89.39 (84.41–94.37) <0.01 0.86 (0.77–0.92) 95.12 (93.30–96.94) <0.01 0.92 (0.89–0.94)

Zhang et al. (41) 0.86 (0.80–0.90) 88.79 (83.44–94.13) <0.01 0.87 (0.78–0.92) 94.60 (92.52–96.67) <0.01 0.92 (0.89–0.94)

Kim et al. (37) 0.85 (0.80–0.90) 88.97 (83.73–94.20) <0.01 0.87 (0.79–0.92) 94.95 (93.04–96.85) <0.01 0.92 (0.89–0.94)

Yu et al. (34) 0.86 (0.80–0.90) 89.40 (84.43–94.37) <0.01 0.86 (0.77–0.92) 95.10 (93.27–96.93) <0.01 0.92 (0.89–0.94)

Assari et al. (6) 0.85 (0.80–0.90) 88.90 (83.63–94.18) <0.01 0.86 (0.77–0.92) 94.97 (93.08–96.86) <0.01 0.92 (0.89–0.94)

Sirjani et al. (42) 0.86 (0.81–0.90) 89.46 (84.52–94.40) <0.01 0.87 (0.79–0.92) 95.03 (93.17–96.89) <0.01 0.93 (0.90–0.95)

Kriti et al. (38) 0.84 (0.79–0.88) 89.28 (84.23–94.32) <0.01 0.89 (0.84–0.92) 91.64 (87.98–95.30) <0.01 0.93 (0.90–0.95)

Ali et al. (39) 0.86 (0.81–0.88) 78.48 (66.21–90.75) <0.01 0.85 (0.76–0.91) 93.37 (90.65–96.08) <0.01 0.92 (0.89–0.94)

Masud et al. (35) 0.84 (0.79–0.87) 78.71 (66.60–90.81) <0.01 0.86 (0.77–0.92) 95.23 (93.46–96.99) <0.01 0.90 (0.87–0.92)

Tsai et al. (15) 0.85 (0.80–0.89) 88.52 (83.01–94.03) <0.01 0.85 (0.76–0.91) 94.69 (92.66–96.72) <0.01 0.91 (0.88–0.93)

Alhussan et al. (36) 0.86 (0.81–0.90) 89.44 (84.50–94.39) <0.01 0.86 (0.77–0.92) 95.17 (93.37–96.96) <0.01 0.92 (0.89–0.94)

PSEN, pooled sensitivity; SE, sensitivity; CI, confidence interval; PSPE, pooled specificity; SP, specificity; AUC, area under the curve.

Figure 7 Fagan plot analysis examining the ability of the GoogLeNet model to detect breast masses: (A) pre-test probability at 25%; (B) 
pre-test probability at 50%; (C) pre-test probability at 75%. The Fagan plot is composed of the left vertical axis representing the pre-test 
probability, the middle vertical axis representing the likelihood ratio, and the right vertical axis representing the post-test probability. Prob, 
probability; LR, likelihood ratio; pos, positive; neg, negative.

caused by these factors is presented below.
First, this meta-analysis included five articles published 

in and before 2021 (33,35,37,38,40,41), and seven articles 
published after 2021 (6,15,34,36,39,42). The sensitivity 

of the articles published after 2021 was lower than that of 
the articles published in and before 2021 (0.85 vs. 0.87) 
(P=0.01). The specificity of the articles published after 2021 
was higher than that of the articles published in and before 
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2021 (0.89 vs. 0.81) (P=0.01). The results were statistically 
significant. To decrease the misdiagnosis rate and improve 
the accuracy of benign and malignant classification of breast 
masses, some studies after 2021 introduced new methods 
and techniques, and while these methods and techniques 
might have improved the specificity of the models, they 
also reduced their sensitivity to a certain extent, resulting 
in an increase in PSPE. Conversely, the gross numbers of 
benign masses included in the articles after 2021 were more 
than those included in the articles in and before 2021, and 
more normal images were also included, which improved 
the specificity of the models. Most of the studies after 
2021 used publicly available datasets that typically contain 
samples from different sources, different fields, and different 
characteristics. Due to the broader diversity of data, more 
malignant images of different pathologic types might have 
been included, reducing the sensitivity of the models.

Second, in the selection of the ultrasonic images, the 
different types of images included represented one of the 
major factors affecting the heterogeneity of this study. 
Nine articles used images that included both benign and 
malignant images (6,33,34,37-42), and three articles used 
images that included normal, benign, and malignant images 
(15,35,36). The subgroup analysis revealed a statistically 
significant variation in sensitivity (0.84 vs. 0.90) (P<0.05). 
This might be due to the increased ability of the models to 
distinguish between categories. The inclusion of normal 
breast US images enables models to study the characteristics 
of normal breast tissue and compare them to lumps. This 
can help the model better understand differences in tumor 
characteristics, morphology and texture, and improve the 
sensitivity of classification. The inclusion of normal images 
in the training data improved the sensitivity of models in 
some studies; however, this also carries the risk of models 
overfitting to an unrealistic data distribution compared to 
clinical populations where most assessed cases have some 
abnormality. Careful external validation is needed to reduce 
potential overfitting concerns.

Third, the choice of dataset also affected the results of 
our meta-analysis. Eight studies used external validation 
sets, while four used internal validation sets. The subgroup 
analysis revealed significant differences in sensitivity and 
specificity (0.87 vs. 0.82, P=0.03; 0.82 vs. 0.90, P=0.03). 
Differences across the validation sets might stem from 
models adequately learning certain features or patterns in 
the dataset during training, which might lead to overfitting 
and decreased generalization on unseen data. External 
validation sets perform better in terms of sensitivity, as they 

better simulate real-world data distributions, reflecting the 
models’ performance in practical applications. Overall, these 
findings offer different perspectives on model performance, 
aiding in comprehensive assessments of accuracy and 
generalizability. Future research should further investigate 
and adjust the model to enhance stability.

Finally, Inception V1 and Inception V3 are two different 
versions of the GoogLeNet model. The Inception V1 model 
was used in six articles (6,33,35-38), and the Inception 
V3 model was used in the other six articles (15,34,39-42). 
Our results showed that the sensitivity of the Inception V1 
model was higher than that of the Inception V3 model (0.87 
vs. 0.81, P<0.05). While the specificity of the Inception 
V1 model was lower than that of the Inception V3 model 
(0.89 vs. 0.85, P<0.05). This might be because the Inception 
V3 model is deeper and more complex than the Inception 
V1 model. The Inception V3 model was introduced with 
more layers and parameters, allowing the model to better 
learn the details and features of the image, which improves 
specificity (43). However, more complex models may be 
more likely to overfit the training data, resulting in reduced 
sensitivity on new data (44). Conversely, Inception V1 is 
relatively simpler and may be easier to generalize to new 
data, and thus perform better in terms of sensitivity (28,45).

The current meta-analysis had some limitations. First, 
the inclusion of only two versions of GoogLeNet renders 
the study less than comprehensive. Inception V4 (46,47) and 
Xception (40,42) models have been used in some studies, 
but they were not included in this meta-analysis due to 
their limited use in studies. Second, this study only included 
research conducted in Asia and published in English and 
Chinese languages, which might have introduced language 
and regional biases. As a result, the generalizability of the 
findings on a global scale is limited, posing a challenge for 
healthcare professionals worldwide to trust its relevance 
and accuracy. To enhance the credibility and applicability 
of our findings, future research should consider including 
studies from multiple regions and studies published in 
multiple languages. Third, only CUS images were included 
in this study. The GoogLeNet deep-learning model is 
based on elastic imaging (18,48), and Automated Breast 
Ultrasound (ABUS) (49) has been shown to perform well in 
the diagnosis of benign and malignant breast masses. In the 
future, a wider range of ultrasonic imaging techniques can 
be incorporated and an attempt can be made to combine 
different imaging technologies in clinical practice. Fourth, 
this meta-analysis focused solely on the GoogLeNet 
model; however, given the swift evolution of deep-learning 
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architectures, reliance on any single model could create 
certain limitations. Numerous studies have been conducted 
using integrated learning with multiple models in the 
classification of medical images; therefore, comparing or 
integrating multiple models in future studies could help to 
improve the broad applicability and validity of the results. 
Fifth, only 12 articles were included in this meta-analysis, 
and some of these featured small sample sizes, which might 
affect the accuracy of our meta-analysis results. Large-scale, 
prospective, multicenter studies need to be conducted to 
evaluate the diagnostic efficacy of the GoogLeNet deep-
learning model more robustly. This indicates a gap in the 
existing research and the need for our findings to be more 
extensively validated before clinical adoption.

This review primarily focused on research that used 
the GoogLeNet model (based on traditional CNN) to 
distinguish between benign and malignant breast masses. 
However, we also acknowledge the limitations of our study. 
Below, we discuss how to further improve the GoogLeNet 
deep-learning model. Additionally, we comprehensively 
review other research achievements in using the GoogLeNet 
model to characterize breast masses to establish a more 
solid evidence base for its broader application in medical 
diagnostics. We aim to provide broader insights and ideas for 
future improvements in the use of the GoogLeNet model.

The success of an AI model in clinical applications 
depends not only on its high accuracy and precision but also 
on the practical integration of the following factors. First, 
the interpretability of AI decisions is particularly important 
in the healthcare domain (50-52). While deep-learning 
models like GoogLeNet excel at image classification tasks, 
their complex structures make it difficult to explain the 
decision-making process. To facilitate understanding of 
diagnostic outcomes by medical professionals, technicians, 
and patients, interpretability tools and techniques should 
be introduced (53). For example, Grad-CAM could be used 
to highlight the image regions that influence the model’s 
decision (54,55) to help healthcare practitioners understand 
the reasoning behind the predictions. Second, integration 
with existing healthcare information technology systems 
cannot be overlooked in practical applications (56). Effective 
integration should ensure seamless alignment between 
AI solutions and existing systems, such as electronic 
health record systems, without disrupting established 
clinical workflows (57). Finally, the training of healthcare 
professionals in the use of such technology is crucial. Such 
training should emphasize that AI solutions are meant to 
assist rather than replace healthcare professionals in decision 

making. Through hands-on experiences, like clinical 
simulations or the use of virtual patient models, medical 
staff can bolster the efficacy and safety of AI applications in 
medicine (58).

Aggregation rules are techniques for optimizing feature 
processing, reducing computational complexity, and 
enhancing model performance by integrating, compressing, 
and enhancing features in deep-learning classification 
models (59). Aggregation rules can significantly reduce 
the consumption of computational resources in medical 
image analysis and still maintain efficient and accurate 
performance when dealing with a large amount of image 
data, thus improving the overall classification and diagnosis 
results (60). In addition, when using deep neural networks 
for classification, the performance of the model can be 
evaluated based on the statistical information (e.g., the 
accuracy and F1-score) of the rules (61). Aggregation rules 
significantly improve the performance and computational 
efficiency of deep-learning models by integrating features in 
medical image analysis, while enhancing the generalization 
and recognition ability of the models (62). For example:

(I) Attention mechanisms significantly improve 
models’ recognition ability by dynamically 
adjusting the feature weights (63).

(II) Multi-scale feature aggregation techniques (e.g., 
Feature Pyramid Networks, FPN) enhance the 
ability of models to capture global and local 
information (64).

(III) Global average pooling (GAP) retains more global 
information and improves the generalization ability 
of models (65).

(IV) Convolutional and pooling layers extract high-
dimensional features and can be integrated with 
aggregation rules to enable classifiers to process 
this information efficiently (66).

(V) Pooling operation reduces the dimensionality 
of feature maps, and reduces the computational 
complexity and the number of parameters, while 
also preventing overfitting (67).

Thus, optimizing the use of resources and improving 
the quality of the aggregation rules can greatly enhance the 
ability of deep-learning models in medical image analysis 
and improve the efficiency and accuracy of diagnosis.

A great deal of research has been conducted to advance 
CAD systems to support radiologists (68,69). Due to the 
difficulty of collecting a huge number of images for the field 
of medical imaging, the former methods have generally 
only been able to handle smaller data sets; however, they 
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have nonetheless shown their potential (70-72). Han et al. 
adopted a deep-learning approach with a substantial dataset 
(comprising several thousand patients) using the GoogLeNet 
model (33). Each region of interest sample image was 
processed, which included margin augmentation, image 
cropping, and histogram equalization. The images were also 
scaled to match the input image dimensions of the network. 
The CNN was trained to distinguish between malignant 
and benign masses. The AUC of the network was >0.95 with 
an accuracy of about 0.9 (90%), a sensitivity of 0.83, and a 
specificity of 0.95. This demonstrates that deep-learning 
methods have significant potential for clinical application.

Assari et al. developed a new GoogLeNet-based dual-
mode CAD system that was designed to classify solid breast 
masses in combination with information from mammograms 
and CNN images (6). In the proposal framework, each 
mode is trained initially with two different single-mode 
models. The dual-mode is then trained using high-level 
feature maps obtained from each mode. The sensitivity of 
the dual-mode reached 90.91% and the accuracy reached 
90.38%, both of which are higher than those of the single-
mode model. The results showed that the dual-mode CAD 
system improved the accuracy of breast mass classification.

The meta-ensemble learning technique, which merges 
the outputs of various CNNs, has been shown to enhance 
the classification accuracy of models. Ali et al. applied a meta-
learning algorithm to optimize the learning process and 
combined the output of multiple CNNs using an ensemble 
learning approach (39). The evaluation results showed that 
the model using the ensemble learning method had high 
accuracy and effectiveness. In addition, Zafar et al. (73) 
compared various pre-trained networks and employed a 
network selection algorithm to determine the best model 
for breast CNN image classification. They employed an 
evolutionary optimization (EO) algorithm as a network 
selection strategy. After thorough testing and analysis, 
this algorithm was shown to improve classification rates 
significantly, achieving the highest rates for all the examined 
pre-trained models. Notably, the Inception-ResNet-v2 
model had a classification accuracy rate of 96.15% when 
the EO algorithm was applied. These results indicate that 
the integration of multiple models substantially boosts the 
performance of breast CNN image classification.

A research study proposed a novel intelligent-based, 
high-performance, low-cost automatic shallow network 
named the Feature-Preserved Mesh Network for 
accurately segmenting retinal vessels. This architecture 
preserves spatial features and employs a series of feature 

concatenations, contributing to better segmentation 
performance. This model could inspire improvements 
in the GoogLeNet model in breast CNN, and in our 
future research, we intend to expand on this further (74). 
In addition, techniques such as network selection and 
information fusion optimization may be used to refine the 
performance of GoogLeNet models in detecting breast 
masses. These approaches offer great promise for improving 
the capabilities of breast CNN classification models (75).

Fukuda et al. built a 50-cycle deep-learning model of 
GoogLeNet architecture based on elastography to predict 
the probability of malignancy (48). The model was used 
on the experimental data and compared with the findings 
of the fat damage ratio assessment and the five-point visual 
color (elasticity score) assessment. The performance of the 
model was assessed based on the ROC curve. The model 
had an AUC of 0.90 and a sensitivity of 0.80. These results 
indicated that ultrasonic elastography-based GoogLeNet 
deep-learning had high accuracy in the classification and 
diagnosis of benign and malignant breast masses. ABUS 
images can be visualized in horizontal and coronal views. 
Wang et al. adopted an improved Inception V3 architecture 
to provide an effective method for extracting multi-view 
features from the two views (49). This method had an AUC 
of 0.95 with cross-validation performed 50 times. It also had 
a sensitivity and specificity of 0.89 and 0.88, respectively. 
It achieved significant improvements in classification 
performance over conventional machine-learning feature 
extraction solutions, such as the histogram of oriented 
gradients and the principal component analysis.

Conclusions

This meta-analysis showed that deep learning based on 
the CNN GoogLeNet model is an effective method 
for distinguishing between and diagnosing benign and 
malignant breast masses. However, due to the limited 
sample size and the variability in the quality of the studies, 
additional multicenter or prospective studies need to be 
conducted in the future to address these limitations.
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