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Abstract 

Background: Decision-making regarding biochemical recurrence (BCR) in localized prostate cancer (PCa) 
patients after radical prostatectomy (RP) mainly relies on clinicopathological parameters with a low predictive 
accuracy. Currently, accumulating evidence suggests that immune-associated genes (IAGs) play irreplaceable 
roles in tumorigenesis, progression and metastasis. Considering the critical role of immune in PCa, we 
therefore attempted to identify the novel IAGs signature and validate its prognostic value that can better 
forecast the risk for BCR and guide clinical treatment. 
Methods: RNA-sequencing and corresponding clinicopathological data were downloaded from the Gene 
Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Weighted gene 
co-expression network analysis (WGCNA) was utilized to screen out the candidate module closely related to 
BCR, and univariate and LASSO Cox regression analyses were performed to build the gene signature. 
Kaplan-Meier (KM) survival analysis, time-dependent receiver operating curve (ROC), independent prognostic 
analysis and nomogram were also applied to evaluate the prognostic value of the signature. Besides, Gene 
ontology analysis (GO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis 
(GSEA) were used to explore potential biological pathways. 
Results: A total of six IAGs (SSTR1, NFATC3, NRP1, TUBB3, IL1R1, GDF15) were eventually identified and 
used to establish a novel IAGs signature. The Kaplan-Meier analysis revealed that patients with low-risk scores 
had longer recurrence-free survival (RFS) than those with high-risk scores in both GSE70769 and TCGA 
cohorts. Further, our signature was also proven to be a valuable independent prognostic factor for BCR. We 
also constructed a nomogram based on the gene signature and related clinicopathologic features, which 
excellently predict 1-year, 3-year and 5-year prognosis of localized PCa patients after RP. Moreover, functional 
enrichment analysis demonstrated the vital biological processes, and stratified GSEA revealed that a crucial 
immune-related pathway (T cell receptor signaling pathway) was notably enriched in the high-risk group. 
Conclusions: We successfully developed a novel robust IAGs signature that is powerful in BCR prediction in 
localized PCa patients after RP, and created a prognostic nomogram. In addition, the signature might help 
clinicians in selecting high-risk subpopulation, predicting survival status of patients and promoting more 
individualized therapies than traditional clinical factors. 
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Introduction 
Worldwide, prostate cancer (PCa) ranks the 

second most commonly diagnosed malignancies in 
males [1, 2]. According to the latest cancer statistics, it 
is predicted that approximately 192,000 novel PCa 
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patients will be diagnosed and more than 33,000 
deaths will appear in the United States in 2020, which 
account for 21% for incidence and 10% for mortality in 
all tumors [2]. Although radical prostatectomy (RP) is 
proved to be the primary and effective treatment for 
clinical localized PCa patients [3-5], approximately 
20% of them develop biochemical recurrence (BCR) 
and eventually progress to castration-resistant 
prostate cancer (CRPC) [6-8]. For these patients, more 
undergo personalized adjuvant therapy (radiation 
therapy, chemotherapy, androgen deprivation 
therapy) or even intensive multimodal therapy [7, 9, 
10]. Nevertheless, some patients have indolent 
prostate cancer, which can be followed without 
immediate treatment and had few effects on living 
quality. Therefore, to avoid unnecessary over-
treatment of indolent disease, it is of great importance 
to distinguish between these patients for the 
improvement of prognosis. 

As we known, the prognosis of PCa patients is 
closely related to prostate-specific antigen (PSA), 
Gleason score (GS) and clinical TNM stage [11-13]. 
Among these clinicopathologic factors, GS is a 
dominant prognostic parameter. However, due to the 
sampling error and subjectivity in estimating PSA, GS 
and TNM stage, patients with similar clinicopatho-
logic features may develop into opposite outcomes. 
Hence, better prognostic markers are needed to 
identify patients with high-risk of BCR for the 
management of localized PCa patients undergoing RP 
clinically. Nowadays, gene expression signatures turn 
out to have prognostic value in various forms of 
cancer, which not only emerge as gene molecular 
signature to increase the prognostic accuracy, but also 
help researchers in boosting studies of novel therapy 
methods [14-16]. Recently, some researchers have 
demonstrated that immune-associated genes (IAGs) 
play a vital role in the genesis and development of 
prostate cancer [17]. Hussein, et al found that different 
kinds of immune cells, such as natural killer cells, 
CD4+ and CD8+T-cells, dendritic cells and tumor- 
associated macrophages were detected in prostate 
cancer tissues [18]. For instance, T-cell infiltration has 
been illustrated to be related to tumor progression 
and cancer-specific survival (CSS) in both localized 
and metastatic patients [19, 20]. Natural killer (NK) 
cells seem to be connected with a lower risk of 
progression [21]. Tumor-associated macrophages 
appear to be associated with aggressive pathologic 
features and recurrence after prostatectomy [22]. 
Concerning immunotherapy, a variety of antigen 
delivery systems serve as feasible and promising 
immunotherapeutic agents against prostate cancer 
[23-25]. Sipuleucel-T, the first approved by the US 
FDA for the treatment of men with asymptomatic or 

minimally symptomatic CRPC, was a landmark in 
cancer immunotherapy, and such immune resistance 
likely exists because of immunogenicity of cancer cells 
and an immunosuppressive tumor microenvironment 
[23, 26]. 

However, there are few studies associating IAGs 
with BCR in localized PCa patients after RP. 
Considering the crucial role of the immune system in 
the prognosis of PCa, we determined to establish 
novel predictive IAGs signature to improve the risk 
stratification of biochemical recurrence in PCa 
patients via employing the high-throughput 
sequencing results and downloading clinical data 
from the Gene Expression Omnibus (GEO, https:// 
www.ncbi.nlm.gov/geo/) database and the Cancer 
Genome Atlas (TCGA, https://portal.gdc.cancer. 
gov/). The results might offer a more powerful tool 
for clinicians to make individualized and precise 
medical decisions and have a better understanding of 
possible molecular mechanisms of BCR. 

Materials and Methods 
Acquisition of the eligible sample datasets and 
IAGs 

In our study, 471 localized PCa patients 
following RP and full-scale clinical parameters from 
two independent cohorts were included. One was 
from the Gene Expression Omnibus (GEO), and the 
other was from the Cancer Genome Atlas (TCGA) 
cohort. The RNA-seq data of GSE70769 were 
produced with Illumina HumanHT-12 V4.0 Array, for 
92 samples with full-scale clinical information. 
Besides, RNA-sequencing (RNA-seq) expression 
profile of 379 patients was downloaded from the 
TCGA dataset (Table S1). Inclusion and exclusion 
criteria of eligible patients: The inclusion criteria were 
as follows: (I) biospecimens were concentrated from 
localized prostate cancer patients after radical 
prostatectomy; (II) clinicopathological characteristics, 
such as Gleason score (GS), clinical stage T (cT), 
prostate-specific antigen (PSA) or surgical margins 
(SM) were contained; (III) the outcomes (biochemical 
recurrence (BCR) or BCR-free (BCR-F)) of samples 
were included; The exclusion criteria were as follows: 
(I) patients also following chemotherapy or 
radiotherapy in addition to the radical prostatectomy. 
In our study, GSE70769 was utilized as a training set, 
while the TCGA database was applied to validate. 
The whole RNA-seq data and microarray were log2 
transformed and normalized with the manufacture- 
provided R packages. A collection of immune- 
associated genes (IAGs) were downloaded from the 
Immunology Database and Analysis Portal (ImmPort, 
https://immport.niaid.nih.gov) [27]. 
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Weighted Gene Co-Expression Network 
Analysis 

In accordance with the microarray data from the 
training database, the weighted gene co-expression 
network analysis (WGCNA) was performed to 
establish a scale-free co-expression network [28]. First, 
based on the expression of IAGs, a hierarchical 
clustering analysis of PCa patients with different 
clinicopathological features was used to remove 
outlier patients. Next, according to the Pearson’s 
correlation coefficient between IAGs, the suitable soft 
threshold power (β) was selected to construct the 
scale-free network, and β = 3 (score free R^2 = 0.89) 
was considered to ensure the establishment of the 
network (Figure S1B) in our study. Then, utilizing the 
topological overlap matrix (TOM)-based dissimilarity 
measure, with deep-Split of 2 and min-Module size 
(gene group) of 30 for the IAGs cluster dendrogram, 
average linkage hierarchical clustering was created. 
IAGs with similar expression modes were stratified 
into the same modules by a one-step network 
construction and module detection. Besides, two 
parameters were defined. One was gene significance 
(GS), which was used to quantify the connection 
between individual IAG and biochemical recurrence- 
free survival (RFS). The other was module eigengenes 
(MEs), which served as the first principal component- 
related module whose value could be regarded to 
represent the whole IAGs in the module. Under the 
two parameters, the excellent candidate module that 
had the highest absolute correlations with RFS was 
singled out for further analysis. 

Establishment and validation of the risk score 
model 

IAGs deriving from the candidate module was 
submitted for the univariate Cox regression analysis, 
and those were significantly associated with 
biochemical recurrence-free survival (RFS) (p < 0.05) 
were screened for prognostic signature development. 
Subsequently, we performed the least absolute 
shrinkage and selection operator (LASSO) Cox 
regression analysis to single out the optimal 
prognostic IAGs [29]. Eventually, with individual 
normalized gene expression value weighted by its 
LASSO Cox regression coefficients, the risk score 
algorithm of each PCa patient was established as 
(exprIAG1 × coefficientIAG1) + (exprIAG2 × 
coefficientIAG2) + ⋯ + (exprIAGi × coefficientIAGi). 
Specifically, where i is the number of IAG, 
coefficientIAGi is the regression coefficient of IAG i, 
and exprIAGi is the expression value of each 
candidate IAG i. 

Moreover, in light of the median risk score in the 
training set as the threshold, eligible PCa patients 

were divided into low- and high-risk groups. The 
Kaplan‐Meier survival curves were plotted to 
compare the prognostic difference in RFS between the 
two subgroups mentioned above. The time- 
dependent receiver operating characteristic curves 
(ROC) was generated by using the “SurvivalROC” 
package, and area under the curve (AUC) values were 
calculated to estimate the specificity and sensitivity of 
the risk score. To further determine the predictive 
ability of our model, the TCGA database was adopted 
as a validation cohort. The univariate and 
multivariate Cox proportional hazards regression 
analyses were performed to assess the BCR outcome 
predictive performance of our model and other 
related clinicopathological features. 

Construction of the prognostic nomogram 
To offer a clinically quantitative tool to monitor 

and predict BCR outcomes in PCa patients, a novel 
nomogram model was established [30], which 
integrated the IAGs signature and related 
clinicopathological parameters. The ROC curve was 
plotted, and the area under the ROC curve (AUC) was 
subsequently calculated to assess the veracity of the 
compound nomogram. Besides, to compare the 
predicted and actual observed BCR results of the 
compound nomogram, the calibration curves were 
applied, among which the 45° line represented the top 
prediction. 

Functional enrichment analysis of IAGs 
Gene ontology analysis (GO) functioned as a 

standard method for noting genes and identifying 
biological attributes for high-throughput genome 
data, containing biological process (BP), cellular 
component (CC) and molecular function (MF). As a 
knowledge base for systematically analyzing gene 
functions, Kyoto encyclopedia of genes and genomes 
(KEGG, http://www.genome.jp/) connected 
genomic information with higher-order functional 
details. GO enrichment analysis and KEGG pathway 
analysis were carried out on the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) online tool (version 6.8; https://david. 
ncifcrf.gov/). Both FDR and P-value < 0.05 were 
regarded as statistically significant. 

Then the downloaded gene set enrichment 
analysis (GSEA, http://www.broadinstitute.org/ 
gsea/index.jsp) was applied to identify the pathways, 
which were mainly enriched between high-risk and 
low-risk groups [31]. The number of permutations 
was set to 1000 for each analysis, and the normalized 
enrichment score (NES) value was calculated for each 
gene set. The gene size smaller than 15 or larger than 
500 was excluded, and a gene set was regarded as the 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

3718 

enriched group when nominal NES > 1.5 and p-value 
< 0.05. 

Statistical analyses 
In our study, the Fisher’s exact test or Chi‐

squared test was executed for categorical variables, 
and one-way analysis of variance (ANOVA) or 
Student’s t-test for continuous variables. The 
univariate Cox proportional hazards regression 
model and LASSO regression analysis were used to 
calculate the hazard ratio and the regression 
coefficient. Survival curves were analyzed by the 
Kaplan‐Meier method utilizing the log-rank test. The 
Z-score method was applied to normalize risk scores 
in the training and validation cohort. The SPSS 
Statistics 26.0 and R software 3.6.3 were performed for 
all statistical analyses. It was considered significantly 
different that two-sided P values were less than 0.05. 

Results 
Establishment of a prognostic IAGs signature 

To identify the relationship between IAGs and 
localized PCa patients with different clinicopathologic 
features, the expression data profile of these 1811 
IAGs was transformed into a gene co-expression 
network utilizing a WGCNA package in the training 
cohort (Figure 1). Sample clustering illustrated that 
the sample GSM1817916 was an outlier that were 
excluded from our study (Figure S1A), and the other 
eligible samples along with different BCR, PSA, cT, 
GS, and SM rates were selected for IAGs expression 
clustering (Figure 1A). With a power of β = 3 set as the 
optimal soft threshold, a total of six co-expressed 
modules were identified through a scale-free network 
establishment method (Figure 1B and Figure S1B). 
Among these co-expressed modules, one module 
(red) with the highest absolute correlation value with 
BCR was screened out (p = 0.002 and correlation 
coefficient = 0.34) (Figure 1C and Figure S1C). Next, 
the 58 IAGs from the red module was submitted for 
the univariate Cox regression analysis. Taking the 
cut-off value of P < 0.05, 24 IAGs were identified to be 
significantly linked to the RFS of localized PCa 
patients (Figure 1D). Then, in order to generate the 
hub candidate IAGs, the LASSO Cox regression 
analysis was applied to get the optimal lambda value, 
which came from the minimum partial likelihood 
deviance (Figure 1E). In the end, six critical prognostic 
IAGs comprising of SSTR1, NFATC3, NRP1, TUBB3, 
IL1R1 and GDF15 were selected, and their individual 
nonzero LASSO coefficients were shown in Figure 1F. 
Furthermore, we established a six prognostic IAGs 
signature by employing the risk score model. The risk 

score of each sample was calculated according to the 
following formula: 

Risk score = (-1.0121*expression level of NFATC3) + 
(-0.0960*expression level of GDF15) + 
(-0.0374*expression level of IL1R1) + 
(0.0334*expression level of TUBB3) + 
(0.1937*expression level of NRP1) + 
(0.6039*expression level of SSTR1). 

IAGs signature is an independent risk factor in 
localized PCa patients 

In accordance with the coefficient value of the six 
IAGs, the risk scores of all samples were calculated 
and ranked in the training set and the validation set. 
The risk scores of BCR-free (BCR-F) patients were 
obviously decreased compared with those of BCR 
ones in both cohorts. Based on the risk score, patients 
in the training set were divided into the high-risk and 
low-risk groups. Kaplan-Meier survival curves 
displayed that localized PCa patients in the high-risk 
group had a significantly poorer recurrence-free 
survival (RFS) compared to those in the low-risk one 
(p < 0.0001) in the training database (Figure 2A). 
Utilizing the same regression coefficient (β) and 
algorithm, those findings were subsequently tested in 
the validation set, which presented the same result as 
expected, with a significantly longer RFS in the 
low-risk group (p < 0.0001) (Figure 2B). The Cox’s 
regression model was performed to determine 
whether the signature was an independent factor 
compared to other clinicopathological factors, such as 
GS, SM, PSA and age. After the multivariate Cox 
regression analysis, the results demonstrated that the 
IAGs signature was an independent prognostic 
parameter, which was significantly connected with 
RFS (training set: HR = 4.328, 95%CI 2.123-8.824, P < 
0.001; validation set: HR = 2.019, 95%CI 1.038-3.928, P 
= 0.038) (Figure 2A and 2B). To estimate the 
prognostic power of the IAGs signature, the 
time-dependent ROC analyses were used, and the 
area under curve (AUC) values were calculated. We 
found that the average AUC value of the risk score for 
RFS was 0.778 at five years follow-up in the training 
set, which was significantly higher than those of GS 
(AUC = 0.733), SM (AUC = 0.640), PSA (AUC = 0.577) 
and cT (AUC = 0.577). Similarly, in the validation set, 
average AUC value of the risk score (AUC = 0.755) 
was also considerably higher than those associated 
with GS (AUC = 0.720) and cT (AUC = 0.609) (Figure 
2A and 2B). The outcomes mentioned above 
suggested that the IAGs signature served as a more 
powerful predictor for BCR than other clinical 
features in localized PCa patients. 
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Figure 1. Selection of eligible biomarkers to construct a prognostic immune-associated genes (IAGs) signature. (A) Cluster tree of localized PCa samples in GSE70769, and the 
color band underneath the tree displaying the numeric values of clinicopathologic features; (B) Cluster Dendrogram showing different IAGs modules; (C) Heatmap visualizing the 
correlation between the modules and clinicopathologic features; (D) Volcano plot revealing the result of univariate Cox regression analysis; (E) LASSO regression with tenfold 
cross-validation obtained six prognostic IAGs utilizing minimum lambda value. (F) Distribution of LASSO coefficients of IAGs signature. PCa: prostate cancer; IAGs: 
immune-associated genes; BCR: biochemical recurrence; LASSO: least absolute shrinkage and selection operator. 

 
Figure 2. Predictive value of gene signature for BCR in (A) GSE70769 dataset (training cohort) and (B) TCGA database (validation cohort). Risk scores in BCR patients were 
significantly higher than those with BCR-free. The Kaplan–Meier analysis demonstrated that patients with low risk scores had a significantly longer recurrence-free survival (RFS) 
than those with low risk scores. The multivariate Cox regression model illustrated that the risk score was an independent prognostic risk factor. The time-dependent receiver 
operating characteristic (ROC) model showed that the risk score was a powerful predictor for BCR. BCR: biochemical recurrence. 

 
In addition, we normalized the risk score to 

Z-score for both TCGA and GSM1817916 cohorts. The 
results indicated that compared to BCR-free (BCR-F) 
patients, Z-score was significantly higher in BCR 
patients. What’s more, with the extension of BCR 
time, Z-score also has a tendency to increase 
gradually (Figure S2). 

Construction and validation of the prognostic 
nomogram based on the IAGs signature 

To provide a clinically quantitative method to 

monitor and predict the prognosis of localized PCa 
patients undergoing BCR after RP, we constructed a 
novel prognostic nomogram that integrated the risk 
score, GS, SM, cT and PSA. A total point could be 
calculated by adding the scores of five variables in the 
nomogram, among which survival probabilities could 
be estimated easily. The results showed that the 
prognostic nomogram could better predict 1-, 3- and 
5-year RFS of localized PCa patients (Figure 3A). In 
the training set, the AUC value of 1-year, 3-year and 
5-year RFS of the new nomogram were 0.801, 0.837 
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and 0.862, respectively, which presented the excellent 
prognostic power in predicting RFS (Figure 3B). The 
calibration plots of our nomogram for survival 
prediction suggested an excellent conformity between 
the expected and the observed outcomes (Figure 3C). 

Identification of biological pathways of IAGs in 
the candidate module related to BCR 

The GO enrichment and KEGG pathway 
analysis were performed to explore the potential 
functional and molecular mechanisms of IAGs in the 

 

 
Figure 3. Nomogram and calibration plots based on our established signature and clinical variables. (A) Nomogram for predicting probabilities of localized PCa patients with 1-, 
3‐, 5‐year survival; (B) The calibration plot of the nomogram for agreement test between 1-, 3- and 5-year survival prediction and actual result; (C) The receiver operating 
characteristic (ROC) curves of the nomogram to predict 1-, 3- and 5-year survival. PCa: prostate cancer. 
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candidate module (red module). GO enrichment 
analysis demonstrated that the candidate IAGs were 
mainly enriched in the biological processes (BP) 
connected with regulation of cell proliferation, 
response to wounding, cell surface receptor linked 
signal transduction, secretion by cell and antigen 
processing and presentation, etc. Regarding the 
cellular component (CC) analysis, we found that the 
candidate IAGs were notably associated with 
acellular region, extracellular space, integral to 
plasma membrane, intrinsic to plasma membrane and 
extracellular region part, etc. In terms of the molecular 
function (MF), the candidate IAGs were significantly 
involved in cytokine activity, cytokine binding, 
peptide binding, peptide receptor activity, peptide 
receptor activity and G-protein coupled, etc. 
Moreover, KEGG pathway analysis revealed that the 
candidate IAGs were mainly enriched in axon 
guidance, T cell receptor signaling pathway, 
cytokine-cytokine receptor interaction, natural killer 
cell mediated cytotoxicity and neuroactive ligand- 
receptor interaction, etc. (Figure 5A and Table 1). 

 

Table 1. GO and KEGG about immune-associated genes (IAGs) 
in the candidate module (red module) related to biochemical 
recurrence (BCR) 

Items -logP 
GO  
BP  
regulation of cell proliferation 4.67 
response to wounding 3.18 
cell surface receptor linked signal transduction 3.14 
secretion by cell 3.01 
antigen processing and presentation 2.45 
CC  
extracellular region 5.91 
extracellular space 4.36 
integral to plasma membrane 4.00 
intrinsic to plasma membrane 3.89 
extracellular region part 3.69 
MF  
cytokine activity 4.06 
cytokine binding 3.13 
peptide binding 2.15 
peptide receptor activity 2.04 
peptide receptor activity, G-protein coupled 2.04 
KEGG  
axon guidance 4.16 
T cell receptor signaling pathway 2.52 
cytokine-cytokine receptor interaction 2.51 
natural killer cell mediated cytotoxicity 2.19 
neuroactive ligand-receptor interaction 1.26 
GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; BP: 
biological process; CC: cellular component; MF: molecular function. 

 
 
Additionally, we carried out the gene set 

enrichment analyses (GSEA) to identify the potential 
biological processes between high- and low-risk 
groups in the training cohort (Table 2). Intriguingly, 
stratified GSEA demonstrated that an important 

immune-related pathway, namely T cell receptor 
signaling pathway, was notably enriched in the high- 
risk group (Figure 5B). 

 

Table 2. Gene set enrichment analyses (GSEA) between high- and 
low-risk groups in the training cohort (terms enriched in high-risk 
group) 

Items Size NES P-value 
C2 KEGG    
KEGG_DORSO_VENTRAL_AXIS_FORMATION 24 1.70 0.004 
KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_ 
ALS 

52 1.68 0.007 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 129 1.67 0.009 
KEGG_PROGESTERONE_MEDIATED_OOCYTE_ 
MATURATION 

84 1.66 0.010 

KEGG_T_CELL_RECEPTOR_SIGNALING_ 
PATHWAY 

106 1.57 0.033 

C5 BP    
GO_BLOOD_VESSEL_ENDOTHELIAL_CELL_ 
PROLIFERATION_INVOLVED_IN_SPROUTING_ 
ANGIOGENESIS 

49 1.80 0.002 

GO_POSITIVE_REGULATION_OF_CELL_ 
MIGRATION_INVOLVED_IN_SPROUTING_ 
ANGIOGENESIS 

36 1.80 0.002 

GO_CELL_AGGREGATION 20 1.75 0.004 
GO_NEGATIVE_REGULATION_OF_ 
ENDOTHELIAL_CELL_APOPTOTIC_PROCESS 

33 1.66 0.006 

GO_POSITIVE_REGULATION_OF_BLOOD_ 
VESSEL_ENDOTHELIAL_CELL_MIGRATION 

74 1.62 0.004 

C5 CC    
GO_CULLIN_RING_UBIQUITIN_LIGASE_ 
COMPLEX 

135 1.69 0.002 

GO_MEDIATOR_COMPLEX 35 1.69 0.006 
GO_ANCHORED_COMPONENT_OF_PLASMA_ 
MEMBRANE 

54 1.65 0.002 

GO_CATENIN_COMPLEX 28 1.64 0.008 
GO_U2_SNRNP 21 1.63 0.028 
C5 MF    
GO_PROTEIN_DEACETYLASE_ACTIVITY 29 1.93 0.002 
GO_NAD_DEPENDENT_PROTEIN_ 
DEACETYLASE_ACTIVITY 

15 1.88 0.002 

GO_GLUTAMATE_RECEPTOR_ACTIVITY 27 1.85 0.007 
GO_VOLTAGE_GATED_CALCIUM_CHANNEL_ 
ACTIVITY 

46 1.74 0.008 

GO_UBIQUITIN_LIKE_PROTEIN_CONJUGATING_ 
ENZYME_ACTIVITY 

38 1.71 0.002 

GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; BP: 
biological process; CC: cellular component; MF: molecular function. 

 

Verification of the expression and prognostic 
value of IAGs in the signature 

Then the expression profiles of the six hub IAGs 
between tumor and normal tissue were presented in 
Figure S3, which displayed that GDF15, TUBB3 and 
SSTR1 were significantly upregulated in prostate 
cancer, while NFATC3 and IL1R1 were significantly 
downregulated when compared with normal tissue (p 
< 0.05). However, the expression level of NRP1 was 
not significantly different between normal and 
prostate tissue (p = 0.5305). Moreover, to validate the 
protein expression of hub IAGs in prostate cancer, 
immunohistochemistry results from the Human 
Protein Atlas (HPA) database (http://www. 
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proteinatlas.org/) were utilized, which showed the 
similar results as expected (Figure 4). 

 

 
Figure 4. Verification of hub IAGs expression in prostate cancer and normal 
prostate tissue utilizing the Human Protein Atlas (HPA) database. (A): GDF15; (B): 
IL1R1; (C): TUBB3; (D): NRP1; (E): SSTR1. IAGs: immune-associated genes. 

 

Discussion 
Prostate cancer is a common malignancy among 

elderly males in the world [2]. Unfortunately, 
approximately 27 to 53% of PCa patients develop local 
recurrence or distant metastasis within ten years after 
surgery [32-34]. Biochemical recurrence (BCR), 
defined as a re-increase in prostate-specific antigen 
(PSA) above 0.2 µg/L and confirmed by two 
consecutive elevated values, is a decisive risk factor 
for distant metastasis, prostate cancer-specific and 
overall mortality [35, 36]. Evidence demonstrated that 
without a secondary therapy following BCR, about 
30% of patients underwent clinically manifested 
distant metastasis, and 19-27% of patients may suffer 
prostate-cancer specific mortality within 10 years [37, 
38]. Therefore, it is highly desirable to stratify 
localized PCa patients following RP with high-risk of 
BCR, which may provide more frequent monitoring, 
early intervention and even decision-making for 
adjuvant therapy. Instead of utilizing traditional 
tumor risk stratification tools based on clinical 
parameters, our study aimed at finding novel 
biomarkers for a more precise prediction of BCR. 

During the era of cancer immunotherapy, PCa is 
the first malignancy to demonstrate improved 
survival with a cancer-specific vaccine, proving that it 
is an immune responsive disease [39, 40]. The role of 
immune surveillance in PCa has been extensively 
explored, and some studies have illustrated that 
compared with the control group, the overall survival 

 

 
Figure 5. Functional enrichment analysis. (A) Bubble chart indicating KEGG pathways that 58 IAGs in candidate module (red module) were mainly enriched in; (B) One important 
immune-related pathway, namely T cell receptor signaling pathway enriched in the high-risk group based on stratified GSEA. IAGs: immune-associated genes; KEGG, Kyoto 
encyclopedia of genes and genomes; GSEA, gene set enrichment analysis. 
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rate of patients got improved after treatment with 
relevant immunologically active substances [17, 40, 
41]. Therefore, the use of immune-associated genes 
(IAGs) as a prognostic factor for PCa is convincing. 
Our study is the first research to establish a prognostic 
model based on IAGs in patients with localized 
prostate cancer. 

In our study, we singled out six 
immune-associated genes (SSTR1, NFATC3, NRP1, 
TUBB3, IL1R1, GDF15) to construct the BCR 
predictive model based on the GSE70769 dataset 
(training cohort) and validate it in the TCGA database 
(validation cohort). We performed WGCNA to 
identify the candidate gene module (red module) that 
was most significantly connected with BCR. Then, the 
univariate Cox regression analysis and LASSO 
regression analysis were utilized to select six hub 
genes from the red module. On the basis of six IAGs, 
we established the predictive signature and calculated 
the risk score of each patient according to the formula. 
Further, the enrolled patients were divided into high- 
and low-risk groups based on the median risk score 
value, and the Kaplan-Meier survival analysis 
demonstrated that patients with low risk scores had a 
significantly longer recurrence-free survival (RFS) 
than those with high risk scores in both TCGA and 
GSE70769 cohorts. Univariate and multivariate Cox 
regression analysis displayed that the risk score was 
an independent prognostic factor for BCR. What’s 
more, we performed the time-dependent ROC 
analysis, which illustrated that our model exhibited 
the excellent predictive performance in both the 
training and validation datasets. The efforts above 
underscored that our six IAGs signature had the 
satisfactory sensitivity and specificity in predicting 
BCR of localized PCa patients after RP. 

In addition, to provide a quantitative tool for 
clinicians to predict BCR and improve risk 
stratification, a compound nomogram was established 
that integrated the risk score and four relative 
clinicopathological parameters (GS, SM, PSA, and cT). 
In the calibration plots of our novel prognostic 
nomogram, greatly satisfactory conformity was found 
between the predicted and observed outcomes. The 
results of time-dependent ROC analysis showed that 
the novel nomogram had the wonderful prognostic 
power in predicting RFS, with an AUC of 0.862 after 
5-year follow-up. Therefore, our prognostic 
nomogram might better help clinicians monitor and 
predict the 1-, 3- and 5-year RFS of localized PCa 
patients following RP, and provide better 
individualized therapy than original clinical 
protocols. 

Some IAGs involved in our signature have been 
investigated to play critical roles in tumors, even in 

prostate cancer. For example, GDF15, namely a 
divergent TGF-beta superfamily cytokine, slowed the 
growth of PCa by irritating tumor immunity. And the 
overexpression of GDF15 was related to an increased 
number of CD8 T cells, an increased number of 
CD8+CD11c+ T cells and a reduced proportion of 
“exhausted” CD8+PD1+ T cells [42, 43]. NFATC3 was 
widely associated with the progression and prognosis 
of multiple human cancers, such as colorectal cancer 
(CRC) [44], gastrointestinal cancer [45], human 
glioblastoma (hGB) [46], oral/oropharyngeal 
squamous cell carcinoma (OSCC) [47] and breast 
cancer [48]. Regarding TUBB3, it was reported that 
TUBB3 overexpressed in castration-resistant prostate 
cancer (CRPC), and might function as a negative 
predictor of docetaxel-resistance in metastatic CRPC 
patients [49]. NRP1, known as a regulator of neuronal 
guidance and angiogenesis, expressed in various 
malignancies and promoted tumor angiogenesis [50, 
51]. Yeh, et al. demonstrated that NRP1, serving as a 
novel androgen-suppressed gene, upregulated during 
the adaptive response of PCa to androgen-targeted 
therapies (ATTs), and could be a prognostic 
biomarker of clinical metastasis and lethal PCa [51]. 
As for IL1R1, Gerashchenko, et al revealed that IL1R1 
was downregulated in prostate cancer, and relative 
expression of IL1R1 was found in tumors with 
different Gleason score (GS) [52]. SSTR1 was linked to 
androgen receptor (AR) expression and tumor 
metastasis. Besides, by decreasing cell-proliferation 
and PSA secretion, SSTR1 exerted a significant 
pathophysiological role in prostate cancer, and could 
be served as a novel tool to explore therapeutic targets 
[53]. 

As the six IAGs signature demonstrated 
excellent ability in predicting BCR in PCa patients, the 
signaling pathways and biological processes also 
needed to explore in our study. The GO enrichment 
analysis and KEGG pathway analysis illustrated that 
IAGs in the candidate module were significantly 
enriched in T cell receptor signaling pathway, natural 
killer cell mediated cytotoxicity, regulation of cell 
proliferation, cell surface receptor linked signal 
transduction, extracellular region, extracellular space, 
cytokine activity, cytokine binding, peptide binding 
and peptide receptor activity, et al. Stratified GSEA 
indicated that in the high-risk group, biological 
processes were significantly enriched in T cell 
receptor signaling pathway, progesterone mediated 
oocyte maturation, blood vessel endothelial cell 
proliferation involved in sprouting angiogenesis, cell 
aggregation, mediator complex, anchored component 
of plasma membrane, protein deacetylase activity, 
glutamate receptor activity and so on. It was worth 
noting that one immune-related pathway, namely T 
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cell receptor signaling pathway was enriched in both 
analyses. Therefore, we supposed that T cell receptor 
signaling pathway might make considerable 
contributions to tumorigenesis, progression and poor 
prognosis in localized PCa patients after RP, which 
further showed the high clinical value of our gene 
signature. 

Overall, our IAGs based signature was 
successfully established and carefully evaluated in the 
discovery and validation databases. The signature is 
of vital importance for clinical application, helping 
predict and monitor the progression and metastasis of 
prostate cancer. In spite of the merits, several 
limitations remained to be acknowledged. First, our 
study was the retrospective design, thus the reliability 
of our six IAGs signature is needed to verify in 
multi-center and prospective researches. Second, 
more and more experiments should be carried out to 
further investigate the potential biological progress 
and molecular mechanisms of these IAGs in prostate 
cancer progression. 

Conclusion 
In conclusion, our study identified and 

established a novel robust IAGs (SSTR1, NFATC3, 
NRP1, TUBB3, IL1R1, GDF15) signature in predicting 
BCR for localized PCa patients following RP, which 
could help clinicians predict patients’ recurrence-free 
survival (RFS) and improve the specific 
individualized management than original clinical 
parameters. Moreover, the signature could also serve 
as an independent prognostic factor, and nomogram 
based on it showed an excellent predictive efficacy of 
patients’ survival status. However, further studies are 
expected to validate our prognostic model, and 
functional researches are required to better 
understand the molecular mechanisms in prostate 
cancer. 
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