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As functional nanomaterials with simulating enzyme-like properties, nanozymes can not
only overcome the inherent limitations of natural enzymes in terms of stability and
preparation cost but also possess design, versatility, maneuverability, and applicability
of nanomaterials. Therefore, they can be combined with other materials to form composite
nanomaterials with superior performance, which has garnered considerable attention.
Carbon dots (CDs) are an ideal choice for these composite materials due to their unique
physical and chemical properties, such as excellent water dispersion, stable chemical
inertness, high photobleaching resistance, and superior surface engineering. With the
continuous emergence of various CDs-based nanozymes, it is vital to thoroughly
understand their working principle, performance evaluation, and application scope.
This review comprehensively discusses the recent advantages and disadvantages of
CDs-based nanozymes in biomedicine, catalysis, sensing, detection aspects. It is
expected to provide valuable insights into developing novel CDs-based nanozymes.
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INTRODUCTION

Natural proteases are easily denatured and degraded under harsh environmental conditions, their
catalytic efficiency is limited, and their product separation and purification are costly. Their recovery
and recycling are difficult, dramatically limit their practical applications (Attar et al., 2019; Wang Z.
et al., 2020; Ding et al., 2020). For instance, although considerable progress has been made in the
design and development of catalytic nanomotors such as bimetallic nanorods, catalytic microtubes,
Janus particles and bioenzyme-driven motors, some problems remain, such as a small number of
applied enzymes, a slow motor speed, and toxicity of high hydrogen oxide (H2O2) concentrations
(Ma et al., 2016; Xu et al., 2019; Hermanova and Pumera, 2020; Hermanova and Pumera, 2020;
Mathesh et al., 2020; Yang Q. et al., 2021; Yuan et al., 2021).

In this case, it is necessary to identify a suitable enzyme substitute to simulate the natural enzyme.
Since Yan and his colleagues first demonstrated the peroxidase activity of magnetic Fe3O4

nanoparticles (NPs) in 2007, numerous nanomaterials mimicking enzymes have been developed
(Gao et al., 2007; Natalio et al., 2012; Hou et al., 2013; Wei andWang, 2013; Lin et al., 2014; Kluenker
et al., 2017). In addition, the researchers are exploring ways to integrate other nanomaterials with
nanozymes to improve the catalytic efficiency of cascade reactions. For example, integrated
nanozyme invertase/GOx/hemin@ZIF-8A has a 700% higher catalytic efficiency than mixed
invertase@ZIF-8, GOx@ZIF-8, and hemin@ZIF-8 alone (Cheng et al., 2016).

CDs are excellent candidates for nanomaterial composites with nanozymes due to their surface
modification, heteroatom doping, and composite with NPs (Kang and lee., 2019; Yang et al., 2020;
Wang et al., 2019). In recent years, although CDs-based nanozymes have successfully simulated the
structure and function of common natural enzymes such as oxidase, catalase and superoxide
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dismutase, they continue to face numerous obstacles (Zhao et al.,
2020; Li et al., 2020a). The most significant limitation is that
catalytic reactions are relatively few in number, with a strong

emphasis on reduction-oxidation (REDOX) reactions. As a result,
it is necessary to summarize the application research of CDs-
based nanozymes with different sources and structural
characteristics (Figure 1), which can provide a reference for
future searching or designing novel nanozymes.

THE APPLICATIONS OF CDs-BASED
NANOZYMES IN BIOMEDICINE

Biomedicine urgently requires the development of effective
antimicrobial agents to combat bacterial contamination. Although
antibiotics, metal NPs, composite NPs, and enzymes have been
employed as antimicrobial agents, these materials exhibit several
limitations: cytotoxicity, antibiotic resistance, and environmental
pollution (Fischbach and Walsh, 2009; Kohanski et al., 2010; Song
et al., 2012; Fasciani et al., 2014; Rizzello and Pompa, 2014; Leidinger
et al., 2015). Therefore, there is a great demand for low-cost,
sustainable, and effective antimicrobials suitable for long-term use.
CDs-based nanozymes are an effective alternative to the above
materials due to their unique electronic, optical, thermal, and
mechanical properties. Zhang et al. synthesized a series of
nitrogen-doped CDs to mimic the activity of oxidase. Such CDs
can mimic the oxidation reaction in a few seconds and effectively
inhibit the growth of Escherichia coli (E. coli) and Salmonella (Zhang
et al., 2018). However, it demonstrated antibacterial activity only at
acidic pH and insufficient activity at physiological conditions around
neutral pH. For this reason, Kumud Malika Tripathi et al. prepared
luminescent N, S, and P-co-doped carbon quantum dots (NSP-
CQDs) that exhibited peroxidase activity over a wide pH range
attributed to the presence of a high density of active sites for
enzymatic-like catalysis and accelerated electron transfer during
peroxidase-like reactions. It can significantly inhibit cell wall
growth of E. coli and Staphylococcus aureus (Tripathi et al., 2020).
Although this study realized the antibacterial effect of CDs-based
nanozymes, it did not consider the toxicity issues associated with a
highH2O2 concentration. Therefore,Wang et al. used a hydrothermal
method to synthesize a novel nitrogen-iodine co-doped CDs (N/
I-CDs) with excellent peroxidase activity. When activated by light,
they catalyze the conversion of exogenous H2O2 into hydroxyl radical
(OH), reduce high concentration of H2O2 to benign biological
concentration (50–100 μM), and increase the cell level of reactive
oxygen species (ROS) in bacterial cells. They also effectively resist
Gram-negative and Gram-positive bacterial infection and accelerate
the healing of artificial wounds (Wang X. et al., 2021).

At present, only a few reports are evaluating the antibacterial
properties of CDs-based nanozymes. In addition, whether CDs-
based nanozymes can inhibit fungi or viruses is a field worthy of
research (Fan et al., 2018).

THE APPLICATIONS OF CDs-BASED
NANOZYMES IN CATALYSIS

Most catalytic reactions of nanozymes are mainly focused on
peroxidase, oxidase, superoxide oxidase, and catalase reactions,
while natural enzymes are diverse and exhibit various catalytic

FIGURE 1 | The synthesis method and structural property of CDs-based
nanozymes.
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capabilities, developing nanozymes for new enzyme reactions is
highly demanding (Gao et al., 2007; Asati et al., 2009; Wei and
Wang, 2013; Lin et al., 2014). For instance, Ce-doped CDs
(CeCDs) can simulate phosphatase activity, which is used for
phosphate ester hydrolysis (Du et al., 2020). However, the
optimal reaction conditions for this nanozyme are an alkaline
solution with pH 8.5 and a high temperature of 200°C. These
harsh reaction conditions significantly limit its application in
biological systems. Li et al. attempted to synthesize
Cu2O-decorated carbon quantum dots (Cu2O-CDs) with
intrinsic protease-simulating activity, which hydrolyzed
proteins including bovine serum albumin and casein under
physiological conditions (Li et al., 2020a). This dramatically
improves the applicability of nanozymes in proteomics and
related fields, opening the door to a plethora of potential
biological applications.

As many biochemical processes are carried out by various
enzymes, studying nanozymes simulating complex enzyme
reactions is one of the demanding research goals. Li et al.
studied paramelaconite (CDs@Cu4O3) with both oxidase and
peroxidase activities (Li et al., 2018). Zhao et al. synthesized dual
nanozymes with a complex CDs, which realized the simultaneous
dual catalysis of superoxide dismutase and horseradish
peroxidase activities (Zhao et al., 2020). These CDs-based
nanozymes provide a new perspective on synergistic properties
and comprehensive functions beyond traditional nanozymes. In
addition, the properties of composite materials can confer the
nanozymes new properties, such as stimulus responsiveness. Li
et al. synthesized Cu2O-CDs-Cu three component oxidase-like
catalyst, which can effectively generate high-energy electrons
under visible light irradiation to improve its oxidase catalytic
activity (Li et al., 2020b). This study provides insights into the
design of catalysts that can effectively couple thermal and
photonic stimuli to drive oxidase-like activity.

The catalytic mechanism of CDs-based nanozymes is not fully
understood. Although the active intermediates, catalytic activity,
and substrate binding sites have been identified, the progression
of reactions remains unclear.

THE APPLICATIONS OF CDs-BASED
NANOZYMES IN SENSING

As an ideal and essential tool of biosensors, nanozymes have
attracted great attention because of their lower cost, higher
stability and more convenient preparation than protein
enzymes. Inorganic nanomaterials with various enzymatic
activities, such as ferromagnetic NPs, AuNP@MoS2QD gold
NPs, and MoS2 Nanoribbons, have been explored as
biosensors (Wei and Wang, 2013; Woo et al., 2013; Nirala
et al., 2015; Liu et al., 2018; Vinita et al., 2018; Ding et al., 2019).

The Immunosensor
Yang et al. synthesized iron and nitrogen co-doped CDs (Fe-N-
CDs), which with peroxidase activity. 3,3′,5,5′-
tetramethylbenzidine (TMB) was catalyzed to blue in the
presence of hydrogen peroxide. On this basis, Fe-N-CDs

conjugated antibody was applied to detect carcinoembryonic
antigen (CEA) by immunosorbent assay. The detection limit
was as low as 0.1 p g/mL within 5 min (Yang et al., 2017).
Based on the similar principle of enzyme-linked
immunosorbent assay, iron and cobalt co-doped CDs with
high peroxidase-like activity and palladium-iridium nanocubes
with CDs as reference fluorophores can detect histamine and
cardiac troponin I, respectively (Tan et al., 2019; Li et al., 2021).
Even more striking, Guo et al. used Fe3(PO4)2·8H2O-CDs-FA
hybrid nanoflower realized the naked eye immunoassay of as few
as 25 HeLa cells (Guo et al., 2019).

The Colorimetric Biosensor
Based on the above TMB discoloration principle, Fe-N/C single-
atom nanozyme was used to screen alkaline phosphatase activity
in the range of 0.05–100 U/L, with a detection limit of 0.02 U/L
(Chen Q. et al., 2020). The cascade colorimetric biosensor
combined with cholesterol oxidase demonstrated excellent
selectivity and high sensitivity to the target in the
concentration range of 0.01–1.0 mM. The detection limit was
as low as 7 mM (Zhao et al., 2019). Both V2O5-CDs
nanocomposites and palladium/CDs composites (Pd-CDs)
have also been proved to bind glucose oxidase and realize the
colorimetric glucose sensing with a detection limit as low as
0.2 μM (Honarasa et al., 2019).

The Fluorescent Sensors
CDs have demonstrated significant application value in
fluorescence detection due to their numerous unique physical
and photochemical properties, and CDs-based nanozymes also
exhibit fluorescence detection characteristics (Zhan et al., 2020).

Lu et al. synthesized Fe-doped CDs (Fe-CDs). Oxidative OPD
(ox-OPD) can be generated when the oxidase substrate
o-phenylenediamine (OPD) coexists with H2O2. Therefore, a
dual fluorescence emission detection system can be established
based on fluorescence characteristics of Fe-CDs and Ox-OPD.
The results indicated that the limit of detection for cysteine was as
low as 0.047 μM in the concentration range of 0.25–90 μM (Lu
et al., 2020).

The Electrochemical Sensors
The advantages of electrochemical sensors include linear output,
low power consumption, good resolution, repeatability, and
accuracy (Chen et al., 2019; Teymourian et al., 2020; Wang Q.
et al., 2021). Additionally, applying CDs-based nanozymes to
electrochemical sensors is a hot topic.

The realization of electrochemical sensing based on CDs-
based nanozymes is often the modification of electrodes. Wang
et al. immobilized horseradish peroxidase on a glassy carbon
electrode by simply mixing carbon nanodots and cobalt-iron
layered double hydroxides (Wang et al., 2015). Qin et al. used
hydroxyl-rich carbon dot-assisted gold nanoparticles (CDs
@AuNP) as a marker of copper deposition reaction, and
cooperated with chitosan to modify glassy carbon electrode
(Qin et al., 2018). Hu et al. used coordination reaction and
surface adsorption to prepare ferrous and ferrous ion modified
CDs to regulate heterogeneous nucleation process of iron
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oxide, and its enzyme-like activity was more than 6 times
higher than that of pure Fe2O3 nanomaterials (Hu et al., 2021)
Fatemeh Honarasa et al. prepared Fe3O4/CeO2/C-dot
nanozyme with more complex structure, and its modified
multi-walled carbon nanotube/ionic liquid paste (MWIL)
electrode was used for electrocatalytic determination of
H2O2, showing a linear range of 2.0 × 10−8 ∼ 1.0 × 10−6 M
(Honarasa et al., 2021).

Compared with metal/metal oxide NPs or materials, CDs have
the disadvantages of low product yield, difficulties in purification
and precise size control, which significantly affect applying CDs-
based nanozymes in biosensors.

THE APPLICATIONS OF CDs-BASED
NANOZYMES IN DETECTION

The Colorimetric Detection
Biomolecules such as H2O2, ascorbic acid, uric acid, and
pyrophosphate have also been developed to detect the
nanozyme complex CDs method.

Yang et al. synthesized carbon-based AuPd bimetallic
nanocomposite (AuPd/C NC) with good catalytic activity and
peroxidase activity. H2O2 can be detected in a wide linear
concentration range of 5–500 µM and 500 µM–4 mM (Yang
et al., 2016). Zhuo et al. demonstrated that manganese (II)
doped CDs (Mn-CDs) have a similar catalytic ability to
oxidase. They could be utilized for quantifying ascorbic acid in
a concentration range of 50–2,500 nM based on the principle of
“TMB discoloration reaction” (Zhuo et al., 2019). Shu et al.
demonstrated that carbon quantum dots (CQDs) also exhibit
peroxidase activity but with a narrower detection range and lower
detection limit (Shu et al., 2020). Liang et al. synthesized carbon
quantum dots co-doped with iron and nitrogen (Fe@NCDs). In
the presence of H2O2, the response was linear in the uric acid
concentration range of 2–150 μM (Liang et al., 2020). Chen et al.
prepared nanozymes with complex CDs exhibiting peroxidase
simulation properties, which could catalyze o-phenylenediamine
oxidation in the presence of H2O2. The process was inhibited by
pyrophosphate (PPI), and the degree to which it was inhibited
could be monitored using the colorimetric method with
generated yellow product 2,3-diaminophenazine (Chen Q.
et al., 2020).

Although nanozyme-based colorimetry is a rapid method for
detecting glutathione, it lacks the high efficiency and low toxicity
of nanozyme. Luo et al. prepared Fe3O4/CNDs hybrid NPs with
excellent peroxidase-like catalytic activity, and they could
produce a rapid color reaction on glutathione (Luo et al.,
2019). Similar studies have focused on peroxidase-like
nanomaterials, which require H2O2 addition. Because H2O2 is
extremely unstable, quickly decomposes, and even reacts with
assay, applying this nanozyme mimicking peroxidase remains
limited. Therefore, Jin et al. prepared titanium dioxide/carbon
point oxidase nanozyme. The nanozyme possessed abundant
thermodynamic metastable Ti atoms on MXene. The oxygen
vacancy in TiO2 on carbon matrix surface can facilitate O2

adsorption in solution, generating ROS, thereby quickly

oxidizing TMB to TMBox in the absence of H2O2 to detect
glutathione (Jin et al., 2020).

Collaborative Detection by Colorimetric
Method and Fluorescence Method
Although colorimetric and fluorescence methods possess high
selectivity, high sensitivity, low cost, and simplicity, such methods
follow single-mode signal readout. It is easy to be disturbed by the
environment and challenging to meet accurate bioassay
requirements. In this case, colorimetric/fluorescence two-
channel measurement provides a more reliable strategy for
detecting H2O2 and related biomolecules.

Su et al. prepared for the first time a multifunctional hemin@
CDs hybrid nanozymes (hemin@CDs) with peroxidase-like
activity and fluorescence signal properties (Su et al., 2020).
This is a two-channel fluorescent probe for H2O2 and H2O2-
based biocatalytic systems. It catalyzes the oxidative coupling of
4-aminoantipyrine and phenol in the presence of H2O2, resulting
in a pink quinone imine dye with a maximum absorbance at
505 nm. The probe can be deployed to detect glucose and
xanthine due to the conversion of glucose/xanthine into H2O2

catalyzed by related oxidase.
Ren et al. synthesized active copper-containing CDs (Cu-CDs)

with inherent laccase-like activity. Unlike Su et al.‘s work, this is a
novel enzyme reaction that catalyzes phenylenediamine
oxidation by laccase substrates, resulting in a typical color
change from colorless to brown. Cu-CDs were further
employed as a fluorescent probe for unlabeled hydroquinone
(H2Q) detection. The results indicate that a linear relationship is
good in buffers with different pH values of 0.05–20 mM and
1–30 mM (Ren et al., 2015).

To further overcome the problem of obtaining fluorescence
utterly dependent on a single signal output and a low signal
background ratio in the method mentioned above, Yang et al.
prepared CDs-doped CeO2 (CeO2-CDs) with peroxidase activity
and fluorescent carbon dot. Fluorescent o-phenylenediamine
(OPD), a peroxidase substrate, can be catalyzed by cerium
oxide and cadmium sulfide to produce fluorescent
o-phenylenediamine (palladium oxides). UV-Vis absorption of
palladium oxides partially overlays the fluorescence emission of
cadmium sulfide, reducing its intensity under the effect of an
internal filter (Yang Z. et al., 2021). Based on this principle, a
sensitive and selective fluorescence assay for the ratio of H2O2 to
cholesterol was developed.

Collaborative Detection by Colorimetric
Method and Surface-Enhanced Raman
Scattering (SERS) Method
Gold and silver are typical SERS substrates. The SERS activity of
precious metals/CDs nanocomposites was enhanced by improving
probe molecule adsorption and amplifying electromagnetic fields.

Wang et al. prepared silver-CDs (Ag-CDs) nanocomposites
with excellent peroxidase and SERS activity. The nanocomposite
can be used to determine uric acid (UA) levels (Wang et al., 2019).
In addition, the chain-like Au/CDs (GCDs) nanocomposite was
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simulated using finite-difference time-domain (FDTD) method to
demonstrate how the aggregation of gold NPs enhanced the
electromagnetic field, thereby increasing SERS signal based on
diamond-like nanocomposite. The nanocomposite enables glucose
detection at a concentration of 5 × 10−7M (Gan et al., 2021). All these
demonstrated that the synergistic method based on colorimetric
reaction and SERS detection possessed the advantages of a low
detection limit, a wide detection range, and high accuracy, which
made the detection results more reliable and accurate.

Double Emission Carbon Spot Detection
Using a two-carbon point system as a peroxide-mimicking
enzyme and a fluorescent probe, combining carbon point with
catalytic activity or carbon point with fluorescence quenching
effect greatly improves the sensitivity of the detection method.

Dhamodiran Mathivanan et al. synthesized double emission
carbon spots of enzyme simulated N/Cl-CDs and N/Zn-CDs.
N/Cl-CDs exhibited apparent intrinsic peroxidase-like activity,
catalyzing OPD oxidation by H2O2 to form the yellow product 2,
3-diaminophenazine. N/Zn-CDs exhibited significant fluorescence
properties, with a quantum yield of 27.52% (Mathivanan et al., 2020).
Using similar construction,Wang et al. constructed a double-carbon
point system with fluorescent CDs (N/Cl-CDs) and copper-doped
CDs (N/Cu-CDs) that function as peroxide mimic and fluorescent
probe and can fluoresce in hydroquinone determination. The
fluorescence quantum yield of N/Cu-CDs was 37%. Compared

with the study of Dhamodiran Mathivanan et al., the
fluorescence quantum yield was significantly improved. N/Cl-CDs
exhibits inherent peroxidase-like activity and catalyzes
hydroquinone oxidation to p-benzoquinone and intermediates to
determine H2Q (Wang X. et al., 2020).

Although nanozymes with complex CDs have the advantages of
rapid response, high sensitivity, and simplicity when applied to
molecular detection, they possess some limitations and are
unsuitable for in vivo and continuous analyses. However, they lay
the foundation for enzyme-dependent biological research. In future
studies, it is necessary to enhance the substrate specificity of CDs
complex nanozymes by modifying their functional groups.

To clearly describe the application performance of CDs-based
nanozymes in the field of detection, we summarized the existing
reports in Table 1.

DISSCUSSION

In the past 10 years, CDs-based nanozymes have progressed in
expanding the types of nanozymes, understanding the reaction
mechanism, and regulating their catalytic performance, but
numerous problems remain.

1) There is limited information on the biological characteristics
of CDs-based nanozymes in vivo. The biological effects of

TABLE 1 | Summary of the application of CDs-based nanozymes in detection.

Detection method Sample Linear range Detection limit References

Colorimetric Detection H2O2 5–500 µM 0.16 μM Yang et al. (2016)
500 µM-4 mM

– Glutathione 0.058 μM – Luo et al. (2019)
– – 0.5–25 μM 0.2 μM Jin et al. (2020)
– Ascorbic acid 50–2500 nM 9 nM Zhuo et al. (2019)
– – 1.0–105 μM 0.14 μM Shu et al. (2020)
– Uric acid 2–150 μM 0.64 μM Liang et al. (2020)
– Pyrophosphate – 4.29 nM Chen et al. (2020b)

Ion
Collaborative detection by colorimetric and fluorescence
methods

H2O2 – 0.11 µM (colorimetric method) Su et al. (2020)
0.15 μM (fluorescence method)

– – 1.67 µM-
2.01 mM

0.35 µM Yang et al. (2021b)

– Glucose – 0.15 μM (colorimetric method fluorescence
method)

Su et al. (2020)

– Xanthine – 0.11 μM (colorimetric method) Su et al. (2020)
0.12 μM (fluorescence method)

– Hydroquinone (H2Q) 0.05–20 mM 1 μM Ren et al. (2015)
1–30 mM

– Cholesterol 1.66 µM-
1.65 mM

0.49 µM Yang et al. (2021b)

Collaborative detection by colorimetric and SERS
methods

Uric acid – 1–500 μM (colorimetric method) Wang et al. (2019)
0.01–500 μM
(SERS method)

– Glucose – 5 × 10–7 M Gan et al. (2021)
Double emission carbon spot detection O-phenylenediamine – 0.58 μM Mathivanan et al.

(2020)
– H2O2 – 0.27 μM Mathivanan et al.

(2020)
– Hydroquinone (H2Q) 1.0–75 μM 0.04 μM Wang et al. (2019)

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7480445

Jin et al. Carbon Dots-Based Nanozymes

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


CDs-based nanozymes should be systematically described,
including their cytotoxicity, in vivo properties, biological
distribution, and pharmacokinetics to facilitate their broad
applications in cancer treatment, ROS removal, and
inflammation alleviation.

2) The detailed system mechanism of CDs-based nanozymes
remains unclear, and the relationship between the catalytic
mechanism and its structure requires further investigation.
By studying their structures, it is feasible to integrate
enzyme-like activities and catalytic mechanisms of
various nanozymes. In addition, a well-defined
coordination structure can provide a clear experimental
model for studying the underlying mechanism, and
computational simulation can better design nanozymes
with CDs.

3) To date, most CDs-based nanozymes exhibit only oxidoreductase-
like activity. Given the numerous enzyme-catalyzed biochemical
reactions in nature, it is necessary to further develop novel CDs-
based nanozymes with a wider range of enzyme activities. In
addition to stimulating proteases, it may be a breakthrough
direction to broaden the simulation objects of nucleic acid-

based enzymes, such as graphene oxide, as a photocatalytic
nuclease, which could cleave DNA.
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