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ABSTRACT
Background  Chronic kidney disease (CKD) is a global 
health concern characterised by irreversible renal damage 
that is often assessed using invasive renal biopsy. 
Accurate evaluation of interstitial fibrosis and tubular 
atrophy (IFTA) is crucial for CKD management. This study 
aimed to leverage machine learning (ML) models to predict 
IFTA using a combination of ultrasonography (US) images 
and patient biomarkers.
Methods  We retrospectively collected US images and 
biomarkers from 632 patients with CKD across three 
hospitals. The data were subjected to pre-processing, 
exclusion of sub-optimal images, and feature extraction 
using a dual-path convolutional neural network. Various 
ML models, including XGBoost, random forest and logistic 
regression, were trained and validated using fivefold 
cross-validation.
Results  The dataset was divided into training and test 
datasets. For image-level IFTA classification, the best 
performance was achieved by combining US image 
features and patient biomarkers, with logistic regression 
yielding an area under the receiver operating characteristic 
curve (AUROC) of 99%. At the patient level, logistic 
regression combining US image features and biomarkers 
provided an AUROC of 96%. Models trained solely on 
US image features or biomarkers also exhibited high 
performance, with AUROC exceeding 80%.
Conclusion  Our artificial intelligence-based approach 
to IFTA classification demonstrated high accuracy and 
AUROC across various ML models. By leveraging patient 
biomarkers alone, this method offers a non-invasive and 
robust tool for early CKD assessment, demonstrating that 
biomarkers alone may suffice for accurate predictions 
without the added complexity of image-derived features.

INTRODUCTION
Chronic kidney disease (CKD) causes signif-
icant morbidity and mortality worldwide, 
with global prevalence rates of 9.1% and 
697.5 million cases.1 It is characterised by irre-
versible damage to the renal tissue, which can 
ultimately lead to end-stage kidney disease, 
resulting in a substantial economic burden.2 

A previous study showed that accurate assess-
ment of renal interstitial fibrosis and tubular 
atrophy (IFTA) is crucial for diagnosing and 
managing CKD.3 IFTA severity is conven-
tionally assessed through renal biopsy, which 
remains the gold standard for obtaining 
detailed histopathological information. This 
procedure provides direct visualisation and 
quantification of IFTA but is time-consuming 
and subject to inter-observer variability. Addi-
tionally, renal biopsy is an invasive procedure, 
making it unsuitable for all patients.4

Medical ultrasonography (US) is a crucial 
diagnostic tool for kidney or ureteral struc-
tural diseases, which measures imaging 
parameters that provide vital information 
regarding renal function. Previous studies 
have explored different parameters such as 
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kidney size, cortical thickness and cortical echogenicity to 
estimate changes in estimated glomerular filtration rate 
(eGFR).5–12 A previous study revealed a significant posi-
tive correlation between eGFR and the mean renal length 
(r=0.66) and mean cortical thickness (r=0.85).5 Addi-
tionally, changes in the texture of the renal tissue on US 
images can also suggest changes in renal function. Never-
theless, interpreting US images of the kidney requires 
extensive training for clinicians, and the results may lack 
objectivity due to subjectivity.

Recently, artificial intelligence (AI) has emerged as 
a promising tool for predicting pathological results 
by leveraging data acquired through non-invasive 
methods.13 14 Deep learning using convolutional neural 
networks (CNNs) has also demonstrated good perfor-
mance in the analysis of medical US images. In a previous 
study, CNNs were used to grade the severity of inflamma-
tion in the long head of the bicep tendon.15 Moreover, 
one study relied on CNNs and consecutive comprehen-
sive non-stress echocardiography to predict cardiac func-
tion in patients to better understand ageing and prevent 
cardiovascular diseases.16 Similarly, a deep-learning algo-
rithm using kidney US images of a single centre accu-
rately quantified IFTA with 90% accuracy, indicating 
its potential as a non-invasive first-line investigation for 
kidney-disease assessment.17 However, there is a lack of 
studies conducted across multiple medical centres in 
leveraging AI for predicting pathological results through 
non-invasive data acquisition methods.

Our research aimed to leverage AI to predict the stage 
of IFTA using a combination of demographic data, labo-
ratory results and renal US images across diverse medical 
centres. Specifically, we focused on five key clinical 
biomarkers: age, sex, eGFR, serum albumin and kidney 
size. Renal US provides a non-invasive and readily avail-
able imaging modality that can capture detailed structural 
information regarding the kidneys. We compared three 
approaches: using only biomarkers, relying solely on US 
images and integrating both modalities for a comprehen-
sive analysis.

METHODS
Datasets
The dataset used in this study was retrospectively 
obtained from Taipei Medical University Hospital, 
Taipei Municipal Wanfang Hospital and Taipei 
Medical University Shuang Ho Hospital. Patients who 
underwent pre-biopsy US examination in the past 10 
years were included in the study. Renal ultrasound 
images obtained within 3 months before or after the 
renal biopsy, and the renal pathology reports closest 
to the biopsy date, were collected for each patient. 
The Joint Institutional Review Board Committee of 
Taipei Medical University (TMU-JIRB) approved the 
study (no. N202008034). Patient consent was waived 
by the permit of TMU-JIRB due to practical problems 
that most of the patients were lost to follow-up.

Patient selection
The data on key patient biomarkers including creat-
inine levels, age, sex and urine protein levels were 
extracted from our database. Additionally, the kidney 
size was obtained from US reports. We excluded images 
of patients with diabetic nephropathy to prevent inac-
curate identification of US image features due to 
enlarged kidneys.18 19 The IFTA can be stratified into 
four individual stages.20 A previous study showed that 
an IFTA of >25% is an indicator of progression to end-
stage renal disease.21 Hence, we used the combined 
IFTA stages to express the degree of renal damage, 
which ranged from 0 to 3. We divided the data into 
two groups: scores 0 and 1 were classified as the mild 
group and scores 2 and 3 were classified as the severe 
group, making the dataset a binary classification. A 
total of 632 patients with 6029 images were included.

Development of IFTA-classification pipeline
The development of the AI model involved four 
independent steps: (1) US image pre-processing, (2) 
sub-optimal image exclusion, (3) US image feature 
extraction and (4) ML-based IFTA classification with 
internal and independent validation. The detailed 
pipeline is shown in figure 1.

US image pre-processing
We used a Mask R-CNN to extract the kidney region to 
eliminate background interference from the muscles, 
adipose tissue, liver, spleen and bowel during IFTA 
prediction.22 We manually marked the kidney region 
in 2000 images (1800 for training and 200 for testing) 
for Mask R-CNN training.

Sub-optimal image or incomplete data exclusion
Based on previous studies,18 19 we excluded all 
US images from patients diagnosed with diabetic 
nephropathy because this condition can cause the 
kidneys to appear unusually large and functionally 
enhanced, potentially misleading our image feature 
extractor. Additionally, we removed images with signif-
icant artefacts such as prominent acoustic shadows 
or incorrect segmentations, as well as those in which 
the kidneys were not completely captured. Patients 
with incomplete IFTA data were excluded. After these 
exclusions, the remaining dataset consisted of 1895 
images from 266 patients.

US image features extractor
This training was conducted at the image level after 
data augmentation. The augmentation methods 
included rotation between −25° and 25°, horizontal 
flip, vertical shift, gamma correction, Gaussian blur, 
brightness adjustment and contrast-limited adap-
tive histogram equalisation,23 expanding the image 
dataset to 36 339 images. We trained a classification 
model using a dual-path convolutional neural network 
(DPCNN) on US images, which was well suited for US 
image classification tasks in a previous study.24 The 
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trained DPCNN model was then used as a feature 
extractor to generate a 2048-dimensional vector for 
each US image.

IFTA severity classification
ML-based IFTA classification
To classify the severity of the IFTA, we employed 
advanced ML models such as extreme gradient 
boosting (XGBoost),25 random forest26 and light 
gradient boosting machine (LightGBM).27 Ensemble 
methods were also implemented. We used a greedy 
search to find the best ML model and deployed five-
fold cross-validation and averaged the evaluation 
results on the test set.

These models were trained on three different types of 
input:
1.	 Patient biomarkers: the data on five key patient bio-

markers, including age, sex, eGFR, serum albumin and 
kidney size from US reports.

2.	 US image features: the 2048-dimensional vectors 
were extracted from the US images using the trained 
DPCNN model.

3.	 Combined inputs: a combination of five patient bio-
markers and US image features were employed.

By leveraging these diverse inputs, we aimed to enhance 
the performance and robustness of the IFTA-severity clas-
sification. The scripts were implemented using Python 3.6 
(Python Software Foundation) and executed on a system 
equipped with an RTX 2080 Ti Graphics Processing Unit.

Statistical analysis
To assess the differences in biomarkers among groups 
with different IFTA severity levels, we used indepen-
dent t-test for continuous variables and two-sided 
Pearson χ2 test for categorical variables. The model 
performance was evaluated using several metrics: 
accuracy, precision, recall (sensitivity), F1 score 
(calculated as the harmonic mean of precision and 
recall) and area under the receiver operating char-
acteristic curve (AUROC), which measures the 
ability of the model to discriminate between classes 
across all threshold values. To compare the AUROC 
between different models or groups, we applied the 
DeLong test,28 a non-parametric method, to assess the 

Figure 1  Overall classification pipeline F2048 represents a 2048-dimension feature vector from the feature extractor and BM5 
represents five key biomarkers. DPCNN, dual-path convolutional neural network; IFTA, interstitial fibrosis and tubular atrophy; 
ML, machine learning; ROI, region of interest.
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statistical significance of the difference between two 
AUROC values.

RESULTS

Study participants
A total of 266 patients were included in the study 
after applying the aforementioned exclusion criteria. 
We initially partitioned 60 patients with complete 
US images to serve as an independent test set to vali-
date subsequent models. The data of the remaining 
206 patients were used to train the image feature 
extractor. Patients with incomplete biomarkers were 
excluded from both the training and test sets. After 
the exclusion, 171 and 52 patients with complete US 
images and biomarker data were respectively used to 
train and to test the ML models. Detailed statistical 

information of the dataset for ML models is provided 
in table 1.

Classification using eGFR
We used eGFR alone as the baseline classification. The 
eGFR values were normalised and used for filtering. The 
optimal threshold for eGFR was determined by identi-
fying the value that maximised accuracy. The threshold 
of 40.7 mL/min/1.73 m2 yielded the highest accuracy at 
0.865. The confusion matrix and AUROC for using eGFR 
as the threshold are illustrated in figure 2. These results 
served as a baseline for further analyses.

Kidney Segmentation
Mask R-CNN model was used to perform kidney segmenta-
tion using a dataset of 200 images. For images containing 
intact kidneys, the model demonstrated performance 
comparable to that of manual annotation. Specifically, 

Table 1  Characteristics of the study groups

Characteristic

Participant, no. (%)

IFTA 0%–25% IFTA >25%

(n=129) (n=94) P value

Age, mean (SD), years 48.2 (16.1) 53.1 (16.2) 0.025

Sex  �   �   �

 � Female 59 (45.7) 43 (45.7) 1

 � Male 70 (54.3) 51 (54.3)

eGFR (mL/min/1.73 m2) 74.6 (39.7) 30.4 (25.2) <0.001

Serum albumin (g/dL) 3.3 (1.1) 3.6 (0.7) 0.011

Kidney size (cm) 10.5 (1.1) 9.9 (1.3) <0.001

eGFR, estimated glomerular filtration rate; IFTA, interstitial fibrosis and tubular atrophy.

Figure 2  (A) The confusion matrix of using eGFR to classify IFTA. B. The AUROC plot of using eGFR to classify IFTA. AUROC, 
area under the receiver operating characteristic curve; eGFR, estimated glomerular filtration rate; IFTA, interstitial fibrosis and 
tubular atrophy.
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the model achieved an Intersection over Union of 0.904 
and a Dice coefficient of 0.949, indicating high accuracy 
and reliability in segmenting kidney structures.

Feature extraction
For feature extraction, the DPCNN was trained on a 
dataset of 1456 images over 100 epochs, and the model 
with the lowest validation loss was selected as the feature 
extractor. This approach ensured that the extracted 
features were robust and representative of the underlying 
data.

Image-level IFTA classification
When using only US image features, the XGBoost model 
achieved the best performance with an accuracy of 76%, 
a precision of 72%, a recall of 63%, an F1 score of 67% 
and an AUROC of 91%. Combining US image features 
with patient biomarkers, the logistic regression model 
performed best, yielding an accuracy of 93%, a preci-
sion of 98%, a recall of 85%, an F1 score of 91% and an 
AUROC of 99%. Detailed results are presented in tables 2 
and 3 and online supplemental tables 1–9. Furthermore, 
based on the DeLong test, the models using the combined 
image and biomarker features showed statistically signifi-
cant improvements over those using only image features.

Patient-level IFTA classification
For patient-level classification, the predicted classes of 
all images from the same patient were averaged with a 
threshold of 0.5 used to determine the final classifica-
tion. Using US image features alone, the logistic regres-
sion model produced the best results, with an accuracy of 
81%, a precision of 100%, a recall of 62%, an F1 score of 
76% and an AUROC of 93%. Using patient biomarkers 
alone, the LightGBM model achieved the highest perfor-
mance, with an accuracy of 90%, a precision of 100%, a 
recall of 81%, an F1 score of 89%, and an AUROC of 95% 
and AUROC of 94.97%. When combining both US image 
features and patient biomarkers, the logistic regression 
model provided the best results, with an accuracy of 88%, 
a precision of 92%, a recall of 85%, an F1 score of 88% 
and an AUROC of 96%. Based on the DeLong test, the 
models combining image features with biomarkers did 
not show statistically significant improvements over those 
using biomarkers alone.

DISCUSSION
The development and validation of our AI algorithm 
involved a multistep process to ensure robustness and accu-
racy for both image-level and patient-level classifications. 

Table 2  Image-level and patient-level evaluation metrics of XGBoost

Image level Patient level

F2048+BM5 F2048 F2048+BM5 F2048 BM5

Accuracy 0.89 0.76 0.90 0.79 0.83

Precision 0.94 0.72 0.96 0.80 0.90

Recall 0.76 0.63 0.85 0.77 0.73

F1 score 0.84 0.67 0.90 0.78 0.81

AUROC 0.95 0.91 0.93 0.84 0.93

P value Ref <0.01 Ref 0.07 0.92

F2048 represents a 2048-dimension feature vector from the feature extractor and BM5 represents five key biomarkers. The p value denotes 
the result of the DeLong test, which compares the performance differences between different feature sets.
AUROC, area under the receiver operating characteristic curve.

Table 3  Image-level and patient-level evaluation metrics of logistic regression.

Image level Patient level

F2048+BM5 F2048 F2048+BM5 F2048 BM5

Accuracy 0.93 0.78 0.88 0.81 0.87

Precision 0.98 0.84 0.92 1 0.88

Recall 0.85 0.54 0.85 0.62 0.85

F1 score 0.91 0.66 0.88 0.76 0.86

AUROC 0.99 0.86 0.96 0.93 0.92

P value Ref <0.01 Ref 0.60 0.07

F2048 represents a 2048-dimension feature vector from the feature extractor and BM5 represents five key biomarkers. The p value denotes 
the result of the DeLong test, which compares the performance differences between different feature sets.
AUROC, area under the receiver operating characteristic curve.

https://dx.doi.org/10.1136/bmjhci-2024-101192
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The use of biomarkers alone yielded optimal results in our 
analyses, demonstrating that the structural insights from 
imaging did not significantly enhance predictive accu-
racy. The use of fivefold cross-validation helped minimise 
bias and optimise model performance, leading to high 
accuracy and AUROC scores across various classifiers.

Previous studies investigated the correlation between 
renal US images and IFTA scores.29 These studies found 
that sonographic parameters such as kidney length, echo-
genicity and parenchymal thickness demonstrated only 
weak-to-moderate relationships with interstitial fibrosis or 
tubular atrophy, with the highest Spearman correlation 
coefficient reaching 0.35. In another study, researchers 
proposed an AI model to predict IFTA scores based on 
renal US images.17 The UNet architecture was employed 
for US image segmentation, and the VGG19 and XGBoost 
models were used for feature extraction and image clas-
sification, respectively. The prediction model achieved 
a performance ranging from 0.8037 to 0.8927 in terms 
of accuracy, precision, recall and F1 score. However, this 
study relied on retrospective data from a single centre.

One of the major strengths of our study is the compre-
hensive dataset, which included a large number of images 
from a diverse patient cohort across multiple hospitals, 
enhancing the generalisability of our model. Additionally, 
our approach combines the analysis of US images with 
patient biomarkers to provide a valuable layer of infor-
mation that improves the predictive power of our models. 
This method demonstrated a robust performance across 
various ML techniques, consistently achieving an AUROC 
>90%. While it cannot entirely substitute human inter-
pretation and clinical expertise, it can serve as a valuable 
tool for assisting less-experienced physicians in providing 
accurate interpretations. Future research should focus on 
investigating the long-term impact and cost-effectiveness 
of this technology, as well as exploring effective ways to 
integrate it into existing clinical practices.

Despite these promising results, our study has several 
limitations. First, the retrospective nature of the study 
may have introduced biases related to data collection 
and patient selection, which may have affected the 
generalisability of our findings. Second, the exclusion 
of patients with diabetic nephropathy, while necessary to 
avoid misleading the model, may limit the applicability 
of our results to a broader population, particularly those 
with comorbid conditions. Third, the manual review 
process for image quality is subject to human error and 
variability, which can affect the consistency of the data 
used for training and validation. Fourth, while our model 
demonstrated high performance, with AUROC >90% 
in the independent test set, it needs to be validated in 
external cohorts to confirm its robustness and generalis-
ability beyond the studied population. Fifth, the lack of 
standardised pathology guidelines across hospitals in our 
country posed a significant limitation. As each pathology 
department follows different guidelines, detailed param-
eters such as IFTA foci density could not be consistently 
obtained or included in this study. Finally, follow-up 

data were not available in our study to assess the model’s 
capacity to predict long-term outcomes such as end-stage 
kidney disease (ESKD). Future studies should include 
follow-up information to evaluate the model’s potential 
for predicting ESKD and its broader clinical utility.

CONCLUSIONS
Our study presents a robust AI-based approach for IFTA 
classification that relies on patient biomarkers alone, 
demonstrating that image features do not significantly 
enhance predictive performance. The model demon-
strated high performance across various ML techniques, 
consistently achieving AUROC >90%. This method, based 
on biomarkers alone and developed using a comprehen-
sive dataset from multiple hospitals, has the potential 
to enhance early determination of IFTA without biopsy, 
avoiding unnecessary complexity from image features. 
Future studies should focus on validating the performance 
of the model in external cohorts to ensure its generalis-
ability and applicability to diverse clinical environments.
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