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Abstract: Glycosphingolipids (GSLs) are composed of a mono-, di-, or oligosaccharide and a ce-
ramide and function as constituents of cell membranes. Various molecular species of GSLs have
been identified in mammalian cells due to differences in the structures of oligosaccharides. The
oligosaccharide structure can vary depending on cell lineage, differentiation stage, and pathology;
this property can be used as a cell identification marker. Furthermore, GSLs are involved in various
aspects of the immune response, such as cytokine production, immune signaling, migration of
immune cells, and antibody production. GSLs containing certain structures exhibit strong immuno-
genicity in immunized animals and promote the production of anti-GSL antibodies. By exploiting
this property, it is possible to generate antibodies that recognize the fine oligosaccharide structure
of specific GSLs or glycoproteins. In our study using artificially synthesized GSLs (artGSLs), we
found that several structural features are correlated with the antibody-inducing activity of GSLs.
Based on these findings, we designed artGSLs that efficiently induce the production of antibodies
accompanied by class switching and developed several antibodies that recognize not only certain
glycan structures of GSLs but also those of glycoproteins. This review comprehensively introduces
the immune activities of GSLs and their application as pharmaceuticals.

Keywords: glycosphingolipids; immune response; anti-glycan antibody; very-long-chain fatty
acid; glycoprotein

1. Introduction

Glycosphingolipids (GSLs) are cell membrane components composed of a mono-, di-,
or oligosaccharide and a ceramide. Various molecular species defined by differences in
the oligosaccharide structure have been identified in mammalian cells/tissues [1]. These
differences in the oligosaccharide structure were found to be indicative of cell lineage,
differentiation status, and certain pathologic processes. Due to these function-related
differences in oligosaccharide structure, GSLs can be used as cell identification markers.
Indeed, several anti-GSL antibodies that specifically recognize certain glycan structures of
GSLs have contributed to stem cell research and the diagnosis of various cancers [2].

Pioneering studies in this area revealed that GSLs are immunogenic substances that
function as blood group [3] and cancer-associated antigens [2]. A number of antibodies
isolated from animals immunized with cancer cells were shown to react specifically with
GSLs expressed by those cells, leading researchers to recognize that GSLs are immunogenic
substances. Recent studies also revealed that the immunoglobulin repertoire of healthy
humans contains various anti-GSL antibodies [4,5], indicating that endogenous GSLs
function as antigens and induce B cells to produce antibodies. Although it is poorly
understood why mammalian immune cells produce antibodies against GSLs, which then
become self-antigens, a number of antibodies that recognize GSLs have been isolated by
exploiting this property.

Several immunization methods have been developed in order to efficiently generate
anti-GSL antibodies [6–8]. However, as these methods do not enable extensive control
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of the properties of the antibodies induced, such as their epitope affinity and specificity
and class/subclass, there is considerable room for significant improvement in anti-GSL
antibody technology. A deeper understanding of the mechanism of GSL recognition by the
mammalian immune system is needed for the development of high-performance anti-GSL
antibodies and the future use of these antibodies as pharmaceuticals.

We previously found that GSLs produced by vascular endothelial cells (ECs) under
conditions of inflammation exhibit strong antibody-inducing activity [9,10]. The primary
feature of these GSLs is that they contain C24 fatty acids [11,12]. A model study using arti-
ficially synthesized GSLs (artGSLs) containing ceramide mimetics with various structures
demonstrated that the length of the fatty acid is positively correlated with the immunogenic
potential of the GSL [13]. GSLs containing C24 fatty acids exhibit thymus-independent
type 2 (TI-2) antigen-like properties, which promotes class switching to IgG3 of antibodies
induced in immunized mice [14]. Further analyses showed that the oligosaccharide struc-
ture of the GSLs strongly affects class switching of induced antibodies [15]. Using artGSLs
that were designed based on these structural characteristics, we developed a method to
efficiently induce the production of antibodies that recognize not only the glycans of GSLs
as an epitope but also the same glycans on glycoproteins [13].

In addition to their antibody-inducing properties, GSLs are involved in various aspects
of the immune response, such as cytokine production, immune signaling, and recruitment
of lymphocytes to sites of injury. This review provides a comprehensive introduction to
recent studies related to GSLs and the immune response and potential medical applications
of GSLs, with a particular focus on our findings.

2. Structures and Cell Type/Tissue Distributions of Molecular Species of Mammalian GSLs

Figure 1 shows the general structure of mammalian GSLs, and Table 1 shows major
examples of GSLs identified as cell-surface antigens.
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Figure 1. Chemical structure and mammalian glycosphingolipid (GSL) biosynthetic pathway. (A) Chem-
ical structure of a typical mammalian GSL, globotriaosylceramide (Gb3Cer), shown as an example. (B)
Arrows and blue font indicate biosynthetic pathway and catalytic enzymes, respectively. Abbreviations:
GlcCer, Glcβ1,1Cer; GalCer, Galβ1,1Cer; LacCer, Galβ1,4Glcβ1,1Cer; GM3, Siaα2,3Galβ1,4Glcβ1,1Cer;
UGCG, UDP-glucose ceramide glucosyltransferase; UGT8, UDP glycosyltransferase 8; GAL3ST1,
galactose-3-O-sulfotransferase 1; B4GALT5/6, β-1,4-galactosyltransferase 5/6; B3GNT5, UDP-GlcNAc:
βGal β-1,3-N-acetylglucosaminyltransferase 5; A4GALT, α-1,4-galactosyltransferase; B4GALNT1, β-1,4-
N-acetyl-galactosaminyltransferase 1; ST3GAL5, ST3 β-galactoside α-2,3-sialyltransferase 5; ST8SIA1,
ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 1.
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Table 1. Glycosphingolipid (GSL) markers useful for cell identification.

GSL/Antigen
Structure

Major Expressing Cell or
Expressing Cancers Ref.

Gb3Cer/CD77
Galα1,4Galβ1,4Glcβ1,1Cer Burkitt lymphoma [16]

Gb4Cer/blood group P antigen
GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1Cer Erythrocytes [17]

Gb5Cer/SSEA-3
Galβ1,3GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1Cer Stem cells/iPS cells [18]

Sialyl-Gb5Cer/SSEA-4
Siaα2,3Galβ1,3GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1Cer Stem cells/iPS cells [18]

Fucosyl-Gb5Cer/Globo-H
Fucα1,2Galβ1,3GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1Cer Breast and other cancers [19,20]

Sialyl Lewisa/CA19-9-terminated GSL
Siaα2,3Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glcβ1,1Cer Gastrointestinal cancer [21,22]

GD3
Siaα2,8Siaα2,3Galβ1,4Glcβ1,1Cer Melanoma [23]

Gg4Cer (asialo-GM1)
Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1,1Cer Natural killer cells [24,25]

Major GSL antigens used to identify human cells are shown. Abbreviations: Cer, ceramide; Fuc, fucose; Gal,
galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; GlcNAc, N-acetylglucosamine; Sia, sialic acid.

GSLs are glycoconjugates in which a ceramide (N-acylsphingosine) is glycosidically
bound to a mono-, di-, or oligosaccharide glycan. The glycan moiety is located outside of
the plasma membrane of the cell due to its hydrophilicity.

The molecular species of GSLs are classified based on their glycan structure [26]. For
example, GSLs containing sialic acid are defined as gangliosides. Ceramide structures
are also diverse, and the expression of particular GSL molecular species of ceramides
is cell type and tissue specific. Monosialoganglioside GM3 (Figure 1B), the principal
initiation structure of gangliosides of the ganglio-series, is widely expressed in mammalian
cells and tissues. Complex gangliosides, which are synthesized by elongation of the
glycan in GM3, are found primarily in nervous system tissues [26,27]. Galactosylceramide
(GalCer/cerebroside) and sulfated GalCer (sulfatide) are also abundantly expressed in
nervous system tissues as components of myelin [28].

Globo-series GSLs are expressed primarily in blood cells/vessels and the kidney,
lung, and intestine, but their abundance is low in nervous system tissues [29,30]. Stage-
specific embryonic antigen (SSEA)-3 and -4, expressed specifically in undifferentiated
cells such as induced pluripotent stem cells, are also globo-series GSLs (Gb5Cer and sialyl-
Gb5Cer, respectively) [18]. GSLs containing sialyl-LewisX, sialyl-Lewisa, and VIM-2 glycans
are classified as lacto/neolacto-series GSLs [31,32]. These glycans function as adhesion
molecules on the surface of lymphocytes or cancer cells [31–33]. The lacto/neolacto-
series GSLs expressed in human erythrocytes are blood group substances composed of
ABO(H) blood group–type glycans [3,34]. Globo-series GSLs, also known as P blood group
substances, are the major GSLs in human erythrocytes [11,17]. Rodent natural killer cells,
which specifically express asialo-GM1, can be eliminated by administering anti–asialo-GM1
antibodies to the animals [24,25].

The molecular species of GSLs expressed in mammalian cells vary according to cell
differentiation status and pathologic processes. Undifferentiated cells such as stem cells
specifically express globo-series GSLs such as SSEA-3 and SSEA-4, whereas these GSLs
disappear during differentiation of the cells into somatic cells, which then express other
type of GSLs [18]. The type of GSL expressed in a given type of cell or tissues can also differ
depending on species. For example, murine stem cells express SSEA-1 (a GSL containing
LewisX glycan) [35,36], whereas this GSL antigen is not expressed by human stem cells [18].

Malignant transformation of cells is associated with structural alterations in GSL
glycans; cancer cells express different GSLs than their parent cells [2]. For example, disialy-
lated ganglioside GD3 is expressed in melanoma cells [23], Gb3Cer/CD77 is expressed in
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Burkitt lymphoma cells [16], and globo-H is expressed in breast cancer cells [19,20]. Thus,
these GSLs can be monitored as cancer-specific antigens.

A monoclonal antibody that recognizes sialyl-Lewisa as the epitope, NS19-9, was
generated by immunizing mice with SW1116 colorectal cancer cells, which specifically
express GSLs with sialyl-Lewisa glycan [21]. The NS19-9 antibody can be used to detect
a serum glycoprotein containing sialyl-Lewisa, which has been identified as a useful
diagnostic marker (CA19-9) for gastrointestinal cancers [22]. In addition to NS19-9, a
number of monoclonal antibodies that specifically recognize certain GSL glycan structures
as epitopes have been generated by immunizing host animals with various types of cancer
cells. These studies led researchers to realize that GSLs are immunogenic substances.

3. Role of GSLs in the Mammalian Immune Response

Recent research findings indicate that GSLs are involved in various aspects of the
immune response in mammals. Table 2 summarizes the primary findings.

Table 2. Functions of GSLs in mammalian immune cells.

GSL Target or Expressing
Cells Function Ref.

αGalCer NKT cells Stimulate cytokine
production [37]

VIM-2/sLeX-
terminated

GSLs

Human neutrophils,
other lymphocytes

Recruitment of
lymphocytes to sites of

injury
[32,38]

CD77/Gb3Cer B cells Regulate apoptosis [16]

LacCer Neutrophils Regulate signal
transduction [39]

Gangliosides T cells Regulate T-cell maturation [40]

Gb4Cer, GM3 ECs, adipocytes, mono-
cytes/macrophages Regulate TLR4 signaling [41–43]

Gb4Cer ECs
Induction of

anti-Gb4Cer/Gb3Cer
antibody production

[9]

Well-characterized GSL functions in mammalian immune cells are shown. Abbreviations: ECs, vascular endothe-
lial cells; NKT, natural killer T; TLR4, Toll-like receptor 4.

α-linked monosaccharyl ceramides such as α-galactosylceramide (αGalCer), isolated
from the marine sponge Agelas mauritianus and Sphingomonas bacteria, activate mam-
malian natural killer T (NKT) cells and promote cytokine production [37,44–48]. αGalCer
forms a complex with the CD1d molecule of antigen-presenting cells, which stimulates NKT
cells and induces them to produce cytokines [37]. NKT cells activated via this mechanism
produce various cytokines, such as IL-4 and IFN-γ, and induce both immunostimulatory
and immunosuppressive reactions. Additional research found that isoglobotriaosylce-
ramide (iGb3), which is present in rodent cells/tissues, has an effect similar to αGalCer [49].
In non-human mammals, endogenous ligands for NKT cells, such as iGb3, function in the
development of these cells. However, iGb3 is not found in humans [50], and GSLs that
function as endogenous ligands for NKT cells have not been clearly identified.

Sialyl-LewisX, VIM-2, sialyl-Lewisa, and other glycans with similar structures are
present as glycoproteins and GSLs on the surface of lymphocytes [32,33,38,51]. These
glycans function as ligands for selectins that are expressed in ECs during inflammation.
Adhesion of these glycans and selectins mediates the recruitment of lymphocytes to sites
of injury. In some cell types, such as human neutrophils and SW1116 human colon cancer
cells, only GSLs function as carriers of these selectin ligand glycans [21,32].
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Mangeney et al. found that a globo-series GSL, Gb3Cer/CD77, is a marker for ger-
minal center B cells that induce programmed cell death [16]. Gb3Cer/CD77 is also highly
expressed in germinal center B-cell-derived cancer Burkitt lymphoma cells. Taga and
Tétaud et al. showed that treatment of these cells with antibodies or verotoxins that specifi-
cally recognize Gb3Cer induces apoptosis [52,53]. These results suggest that Gb3Cer/CD77
plays a role in regulating programmed cell death associated with B cell maturation and
malignant transformation.

Nakayama et al. revealed that a LacCer-abundant microdomain is found in the plasma
and granular membranes of human neutrophils and that this domain mediates neutrophil
recognition of β-glucan and lipoarabinomannan expressed by pathogenic bacteria and
activates innate immune responses [39]. LacCer is thought to regulate the recognition of
these pathogen-derived glycans, and binding of the pathogen to LacCer induces neutrophil
responses such as chemotaxis, phagocytosis, and phagolysosome formation via signal
transduction involving Src family kinases. In contrast, Nagafuku et al. reported that
gangliosides expressed by T cells affect signal transduction via T-cell receptors [40].

Toll-like receptor 4 (TLR4) is a cellular receptor that recognizes lipopolysaccharide
(LPS), a component of the cell wall of Gram-negative bacteria [54]. TLR4 plays a fundamen-
tal role in pathogen recognition and subsequent activation of innate immune responses,
such as inflammation. Kondo et al. found that EC-expressed Gb4Cer attenuates LPS-TLR4
signal transduction by inhibiting the binding of LPS to TLR4 [41]. Nitta et al. reported that
renal inflammation mediated via TLR4 signaling is enhanced by Gb4Cer [42]. Kanoh et al.
also showed that GM3 affects TLR4 signaling in adipocytes and monocytes and that the
effect depends on the fatty acid structure of GM3 [43]. The effect of GSLs on TLR4 signaling
appears to depend on the combination of cell type and the GSL molecular species.

Stimulation of vascular ECs with the inflammatory mediator tumor necrosis factor–α
(TNFα) increases intracellular GSL expression via transcriptional regulation of related
genes [11,12,55,56]. Detailed analyses of GSL structures in TNFα-stimulated human um-
bilical vein ECs revealed that Gb4Cer containing C24 fatty acids is the major component
of induced GSLs. We investigated the biological activity of these GSLs and found that
Gb4Cer containing C24 fatty acids strongly induces antibody production in mice [9,10].
Figure 2 shows the reactivity to GSLs of serum antibodies of mice immunized with GM3
and human erythrocyte-derived Gb4Cer, which predominantly contains very-long-chain
fatty acids with 22–24 carbons [57].
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(A450). Abbreviations; BG, serum from untreated mice; D7, serum prepared from mice 
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Induction of antibodies against Gb4Cer containing C24 fatty acids was stronger than 
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tissues. Due to this strong antibody-inducing activity, mice immunized with Gb4Cer 
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antibodies that react with Gb3Cer, the precursor of Gb4Cer [9]. Saccharide antigens 
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Figure 2. Antibody-inducing activity of mammalian GSLs. (A) Chemical structures of GSLs used for
immunization experiments. GM3 containing C18:0 stearic acid (GM3-C18) was prepared by chemical
synthesis to be a uniform structure. Bovine milk-derived GM3 (GM3-BM) and human erythrocyte-
derived Gb4Cer (Gb4Cer-HE) predominantly contain very-long-chain fatty acids with 22–24 carbons.
(B) Reactivity of mice serum IgMs against immunizing GSL. Mice were immunized with each GSL,
and serum samples were prepared 7 days after immunization, as described previously [15]. Reactivity
of serum antibodies against immunizing GSLs was analyzed by ELISA (A450). Abbreviations; BG,
serum from untreated mice; D7, serum prepared from mice immunized with each GSL 7 days after
immunization. Diamonds indicate individual mouse serum samples (n = 6–11). Solid lines indicate
average reactivity of serum samples. Values include previously reported data [10].

Induction of antibodies against Gb4Cer containing C24 fatty acids was stronger than
that of antibodies against GM3, the major GSL widely expressed in mammalian cells and
tissues. Due to this strong antibody-inducing activity, mice immunized with Gb4Cer
containing C24 fatty acids produce a variety of antibodies, such as anti-Gb4Cer IgG3
and antibodies that react with Gb3Cer, the precursor of Gb4Cer [9]. Saccharide antigens
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generally induce the production of IgM without class switching, whereas those with strong
immunogenicity induce class switching to IgG3 in mice. These IgG3-inducing saccharide
antigens are known as TI-2 antigens [14]. Our findings indicate that Gb4Cer containing C24
fatty acids are TI-2 antigens. Recent studies using immunoglobulin preparations revealed
that human lymphocytes constitutively produce antibodies that react with Gb4Cer and
its derivatives [4,5]. These antibodies are thought to play a role in host defense because
Gb4Cer and its derivatives serve as host cell attachment sites for pathogenic bacteria,
bacterial toxins, and viruses [4]. As pathogen infection induces inflammatory responses in
ECs, we speculate that inflammation-induced cellular expression of Gb4Cer containing C24
fatty acids and its derivatives promotes the production of antibodies specific to Gb4Cer
and its derivatives. These induced antibodies are suspected to in turn function in host
defense against pathogen infection.

4. Antibody-Inducing Activity of GSLs

As the structure of GSLs is highly conserved across animal species, antibodies that
react with them become autoantibodies. The expression of autoantibodies can lead to the
development of autoimmune disease in the host; thus, the B lymphocytes that produce these
antibodies typically disappear during maturation or become non-responsive to antigens.
However, recent studies have shown that healthy humans and mice carry antibodies
against GSLs. B lymphocytes of mice immunized with GSLs strongly produce antibodies
that react with cellular GSLs as self-antigens, but in most cases, no adverse health effects
are observed in these mice. Although it remains unclear why such an immune response
would be induced in mammals, it can be exploited to generate anti-GSL antibodies.

Various immunization methods have been established for the efficient production
of anti-GSL antibodies in host animals using GSLs adsorbed to acid-treated Salmonella
minnesota or lipid A–containing liposomes [6,7]. Using these methods, antibodies that
specifically recognize the glycan moiety of a GSL as an epitope have been generated.
Our recent study demonstrated that both artificially designed GSLs and natural GSLs
derived from mammalian cells can be used to generate anti-glycan antibodies by these
immunization methods [8–10,13,15,58]. By optimizing the structure of an artificial (art)
GSL, efficient generation of antibodies that recognize specific glycoprotein glycans can be
achieved [8,13,15].

In studies using mice as the host, repetitive immunization with artGSLs efficiently
promoted the production of antibodies that specifically recognize the glycan structure of
the target artGSL. A variety of antibodies was found to be induced in immunized mice,
some of which reacted with glycoproteins containing glycans with the same structures
as the GSLs used for immunization [13,15]. The antibody-inducing activity of a GSL
depends on its structure. For example, Figure 2 shows the immunogen reactivity of serum
antibodies in mice immunized with Gb4Cer derived from human erythrocytes (Gb4Cer-
HE) and GM3 containing different fatty acids (GM3-C18 and bovine milk–derived GM3
[GM3-BM]). Gb4Cer derived from human erythrocytes predominantly contains C24 fatty
acids, and its structure is associated with strong immunogenicity. Antibodies are induced
in immunized mice much more strongly against Gb4Cer than GM3. A weak but similar
tendency was observed with GM3-C18, which contains only stearic acid, and GM3-BM,
which predominantly contains very-long-chain fatty acids with 22–24 carbons. These
results indicate that C24 fatty acids and Gb4Cer-type glycans are correlated with strong
antibody-inducing activity of GSLs.

The effect of C24 fatty acids on the antibody-inducing activity of GSLs was also
demonstrated in model experiments using artificially synthesized GSLs [13]. In an analysis
using artGSLs in which ceramide mimetics with simple alkyl structures were bound to
6SLN trisaccharide as a model (Figure 3), 6SLN-C12L containing C24:0 lignoceric acid
induced the production of antibodies against the immunizing artGSL more efficiently than
a derivative containing C18:0 stearic acid (6SLN-C12S).
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Figure 3. Antibody-inducing activity of artificially synthesized GSLs (artGSLs). (A) Chemical
structures of artGSLs used for immunization experiments. The ceramide mimetics C12S and
C12L are composed of a saturated C12-sphingosine mimetic and stearic acid (C18:0) or ligno-
ceric acid (C24:0), respectively. These ceramide mimetics are bound to the oligosaccharide via
a β-linkage. Abbreviations: 6SLN, 6′-sialyl LacNAc/Neu5Acα2,6Galβ1,4GlcNAc; sLeX, sialyl
LewisX/Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc; LeX, LewisX/Galβ1,4(Fucα1,3)GlcNAc; CF4, core-
fucosylated tetrasaccharide/Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAc. (B) Reactivity of mice serum
IgMs against immunizing GSL. Mice were immunized with each artGSL, and serum samples were
prepared 7 days after immunization, as described previously [15]. Reactivity of serum antibodies
against immunizing GSLs was analyzed by ELISA (A450). Abbreviations; BG, serum from untreated
mice; D7, serum prepared from mice immunized with each GSL 7 days after immunization. Dia-
monds indicate individual mouse serum samples (n = 8–13). Solid lines indicate average reactivity of
serum samples. Values include previously reported data [13,15].

The ceramide mimetic C12L efficiently enhanced the antibody-inducing activity of
the corresponding artGSL even when conjugated to glycans with different structures. Al-
though 6SLN conjugated with C12L primarily induces the production of IgM antibodies in
mice, it also rapidly induces the production of IgG class antibodies against immunizing
artGSLs [13]. Surprisingly, mice immunized with a conjugate of C12L with CF4 tetrasac-
charide (which is the structure found in the stem region of glycoproteins with N-linked
glycosylation) more strongly produced IgG class antibodies compared to mice immunized
with other GSLs/artGSLs [15]. In contrast, production of IgM in mice immunized with
CF4-C12L was lower than that in mice immunized with other GSLs/artGSLs, indicating
that this artGSL efficiently induces class switching in B lymphocytes. Further studies using
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CF4-C182L, a derivative of CF4-C12L, demonstrated that hydroxylation of the sphingosine
portion of C12L enhances the efficiency of IgG induction. However, CF3-C182L, a deriva-
tive of CF4-C182L in which the β-mannose of the non-reducing terminal of CF4-C182L has
been removed, exhibited minimal antibody-inducing activity (Figure 4).
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Figure 4. IgG-inducing activity of CF4-C12L and its derivatives. (A) Chemical
structures of CF4-C12L derivatives used for immunization experiments. The ceramide
mimetic C182L is composed of C18-phytosphingosine and lignoceric acid. The ce-
ramide mimetic is bound to the oligosaccharide via a β-linkage. Abbreviations: CF4,
core-fucosylated tetrasaccharide/Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAc; CF3, core-fucosylated
trisaccharide/GlcNAcβ1,4(Fucα1,6)GlcNAc. (B) Reactivity of mice serum IgGs against immunizing
GSL. Mice were immunized with each artGSL, and serum samples were prepared 7 days after immu-
nization, as described previously [15]. Reactivity of serum antibodies against immunizing GSLs was
analyzed by ELISA (A450). Abbreviations; BG, serum from untreated mice; D7, serum prepared from
mice immunized with each GSL 7 days after immunization. Diamonds indicate individual mouse
serum samples (n = 6–10). Solid lines indicate average reactivity of serum samples. Values include
previously reported data [15].
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These results indicate that fine structures of both the oligosaccharide and ceramide
portions of artGSLs/GSLs affect their antibody-inducing and class-switching activity.

In mice immunized with artGSLs, antibodies that specifically react with glycoproteins
containing the same glycan structure as the immunizing artGSL are induced. As the
fine structures of artGSLs affect their antibody-inducing activity, we hypothesize that
by optimizing the artGSL structure, a variety of useful anti-glycan antibodies could be
produced using this technology.

5. Anti-GSL Antibodies in Infectious and Immune Diseases

In the gastrointestinal tract, a wide variety of bacteria and their products such as
bacterial toxins interact with the glycoconjugates in mucosal and epithelial cells [59]. For
example, the major subtypes of Shiga-like toxin produced by enterohemorrhagic Escherichia
coli preferentially bind to Gb3Cer and Gb4Cer expressed on the surface of epithelial and
endothelial cells, and cause hemorrhagic colitis and hemolytic uremic syndrome character-
ized by microvascular endothelial damages in the kidney and brain [29,60]. Gb3Cer and
Gb4Cer are GSLs characterized by an α-1,4-galactose structure, and it has recently been
found that antibodies that recognize α-galactose structures are constitutively produced in
humans and mice [4,5,9,61]. As this α-1,4-galactose mediates the interaction of bacteria
and their products with the gastrointestinal tract, it is speculated that these antibodies are
involved in host defense.

Anti-ganglioside antibodies are associated with the pathophysiology of autoimmune
diseases such as Guillain-Barré syndrome and its variant Miller Fisher syndrome [62].
The appearance of these autoantibodies is associated with infection with pathogens such
as Campylobacter jejuni, cytomegalovirus, Epstein-Barr virus, and Hemophilus influenzae.
Although insufficient information is available regarding the neurological manifestations of
COVID-19, there are many case reports that describe Guillain-Barré syndrome (GBS) as
an acute presentation of SARS-CoV-2 [63–66]. Increased serum titer of anti-ganglioside
antibodies was also found in SARS-CoV-2-infected patients with neurological manifesta-
tions [66,67].

Anti-ganglioside antibodies are also found in the sera of vaccinated subjects. The
vaccination campaign against the H1N1-type influenza A with Pandemrix vaccine in several
European countries reported a clear increase in narcolepsy cases [62,68]. Although its role
in the pathological process is still unclear, anti-ganglioside antibodies, in particular, anti-
GM3 and anti-GM4, were found in the sera of 18.1% of patients with Pandemrix-induced
narcolepsy [68].

Galactose-α-1,3-galactose (α-Gal) is an oligosaccharide that was first described as a
cause of immunoglobulin E (IgE)-mediated anaphylaxis in cases of first-in-man reactions
to the monoclonal antibody cetuximab [69–72]. The α-Gal present in mammalian glycopro-
teins and GSLs, also causes an unusual delayed allergic reaction 3–6 h after ingestion of
mammalian meat in individuals with IgE antibodies against α-Gal [70–73]. As GSLs are
slowly digested and absorbed, the GSL form of α-Gal is considered to be associated with
this characteristic delay [73].

6. Application of Anti-GSL Antibodies to Pharmaceuticals

The antibody-inducing activity of GSLs can be exploited to produce antibodies against
various cell surface glycan antigens that serve as cell identification markers. A number of
studies examining the development of antibodies using GSLs as immunogens and several
methods for generating anti-glycan antibodies have been reported to date.

CA19-9, a cancer-associated serum glycoprotein antigen containing sialyl-Lewisa gly-
can and used as a diagnostic marker for gastrointestinal cancer, can be detected using the
NS19-9 antibody [21]. NS19-9 is a monoclonal IgG1 generated by immunizing mice with
SW1116 colon cancer cells that express GSLs containing sialyl-Lewisa. The GSL antigens
SSEA-3 and SSEA-4, which are widely used as stem cell markers, can be detected using
antibodies generated by immunizing with mouse embryos or human teratocarcinoma
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cells expressing these GSL antigens [74]. In this way, it is possible to generate antibodies
that recognize a specific glycan as the epitope via immunization with cells expressing
specific GSLs. In contrast, several methods for generating anti-glycan antibodies using
neoglycolipid analogues of GSLs as immunogens have also been reported. Ozawa et al.
reported that immunizing mice with a neoglycolipid in which an oligosaccharide was
reductively conjugated to phosphatidylethanolamine (PE) induced antibodies that recog-
nized glycoconjugates containing this oligosaccharide [75]. The advantage of this method
is that neoglycolipids can be easily synthesized by conjugating an oligosaccharide and
PE via a simple chemical reaction. Subsequently, Murakami et al. reported an alternative
enzymatic method for conjugating oligosaccharides to PE [76]. With the artGSL proposed
by us, the induction efficiency and class switching of anti-glycan antibodies can be con-
trolled by optimizing the fine structures of the glycan and ceramide [13,15]. However,
as high-performance antibodies generated using these methods are generally IgM class,
further research will be required to efficiently generate IgG-class anti-glycan antibodies
that are practically useful as bio-pharmaceuticals.

Huang et al. reported that the immunogenicity of globo-H oligosaccharide, a cancer-
associated glycan found in a mammalian GSL, can be enhanced by conjugation with protein
carriers such as KLH or CRM197 [77]. They reported that these conjugates efficiently
induced the production of IgG antibodies that reacted with globo-H and its derivatives
in immunized mice. These globo-H conjugates are being considered for use as a vaccine
to prevent breast cancer [77,78]. It was also reported that production of IgG-class anti-
GSL antibodies can be efficiently induced by immunizing GSL-deficient mice with target
GSLs [79–84].

Some previously developed anti-GSL IgG antibodies are being applied and studied as
antibody therapeutics for the treatment of melanoma and neuroblastoma. Ch14.18 (dinu-
tuximab) and Hu3F8 (naxitamab) are chimeric and humanized IgG antibodies, respectively,
that were developed from anti-GD2 IgG3s isolated from mice and specifically recognize
ganglioside GD2 [85–87]. Dinutuximab has been approved by the US Food and Drug
Administration, and Ch14.18 produced in CHO cells (dinutuximab-beta/Qarziba) has been
approved by the European Medicines Agency for the treatment of high-risk neuroblastoma.
Hu3F8 is also undergoing clinical trials to verify its efficacy. The application of an anti-GD3
chimeric antibody (KW2871/ecromeximab) that specifically reacts with GD3 expressed on
malignant melanoma cells is also being investigated [88]. KW2871 was developed based
on anti-GD3 IgG3 isolated in mice [89,90].

As IgM antibodies exhibit strong antitumor effects, the use of anti-GSL IgMs for anti-
body therapeutics has been examined. Clinical trials of the human anti-GM3 IgM L612 [91]
are underway for treatment of GM3-positive human melanoma [92,93]. Patients infused
with this antibody after surgery were reported to have no side effects or signs of recurrence
for 5 years. Furthermore, with the artGSL technology that we are developing, it would
be possible to efficiently generate IgM antibodies that specifically recognize the glycan
moieties of glycoproteins [13,15]. Such anti-glycan IgMs that react with glycoproteins
could also be used as antibody therapeutics. For example, the human monoclonal IgM
mAb216, which recognizes glycosylation epitopes on B lymphocytes, is undergoing clinical
trials to evaluate its potential for therapeutic application in treating B-cell precursor acute
lymphoblastic leukemia [94]. mAb216 binds to B lymphoblasts in patients with acute
lymphoblastic leukemia and enhances the effects of drugs such as vincristine and exerts
cytotoxicity against cancer cells in conjunction with complement.

We consider anti-glycan IgM a promising candidate for use as a next-generation
bio-pharmaceutical and are thus working to develop technologies to better utilize IgM
antibodies. In particular, we are trying to promote the application of anti-glycan IgMs
as diagnostic agents and pharmaceuticals by establishing purification methods necessary
for downstream processes. In our recently established IgM purification method using
porous zirconia particles, anti-glycan IgMs can be purified without impairing their antigen-
binding activity in a gentle process using phosphate buffers in neutral pH ranges [95].
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The porous zirconia particles have pores similar in size to one unit of immunoglobulin,
and the surface of the particles is modified with EDTPA, which has a specific affinity for
immunoglobulins. These properties make it possible to purify IgM with high purity from
antibody preparations containing serum. We have demonstrated that various IgM and IgG
clones that specifically recognize glycan epitopes on glycoproteins and GSLs generated
by immunizing mice with GSLs or artGSLs can be easily purified without loss of activity
using this system.

7. Concluding Remarks

Technologies for inducing the production of antibodies that specifically recognize
fine structures of glycans could facilitate the development of new diagnostic methods
and therapeutic for cancers and infectious diseases related to glycoconjugates. Although
previous efforts to develop anti-glycan antibodies have led to the development of several
pharmaceuticals, there remains considerable room for improvement in the technology.
Furthermore, many details regarding how the mammalian immune system recognizes
glycans remain unclear. GSLs have properties that are readily recognized by the mam-
malian immune system; thus, GSLs are suitable molecules for investigations examining
how the immune system recognizes glycans. We believe that findings obtained through
fundamental and applied studies of GSLs will contribute substantially to the development
of next-generation pharmaceuticals.
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