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Growing studies have implicated the association of ubiquitination-related genes (UbRGs) with the cancer progression and the
long-term survival of patients. However, the prognostic values of UbRGs in lung adenocarcinoma (LUAD) have not been
investigated. Our study aimed to establish a ubiquitination-related model for prognosis prediction and internal mechanism
investigation.(e transcriptome expression profiles and corresponding clinical information of LUAD were obtained from TCGA
and GEO datasets. Differentially expressed genes (DEGs) were screened between LUAD specimens and nontumor specimens.
Kaplan–Meier analysis and univariate assays were carried out on DEGs to preliminarily screen survival-related UbRGs. (en, the
LASSO Cox regressionmodel was applied to develop a multigene signature, which was then demonstrated in two GEO datasets by
the use of Kaplan-Meier, ROC, and Cox analyses. We estimated the immune cell infiltration in tumor microenvironment via
CIBERSORTand immunotherapy response through the TIDE algorithm. In this study, a total of 71 ubiquitination-related DEGs
were identified. Nine UbRGs, including TUBA4A, TRIM2, PLK1, ARRB1, TRIM58, PLK1, ARRB1, CCNB1, TRIM6, PTTG1, and
CCT2, were included to establish a risk model, which was validated in TCGA and GEO datasets. (e multivariate assays
demonstrated that the 9-UbRGs signature was a robust independent prognostic factor in the overall survival of LUAD patients.
(e abundance of CD8 Tcells, activated CD4 Tmemory cells, resting NK cells andmacrophages was higher in the high-risk group,
and the TMB of high-risk group was statistically higher than the low-risk group. Multiple drugs approved by FAD, targeting
UbRGs, were available for the treatment of LUAD. Overall, we identified a nine ubiquitination-related gene signature, and the
signature may be applied to be a potential biomarker for CD8 T cells response and clinical responses to immune checkpoint
inhibitors for LUAD.

1. Introduction

Lung cancer is a fatal malignancy and one of the primary
causes of tumor-related mortality, with 2,205,000 new cases
and 1,790,000 deaths in 2020 worldwide [1]. Among different
types of lung cancers, non-small-cell lung cancer (NSCLC) is
the most prevalent accounting for around 85% of all lung
cancers [2, 3], of which, lung adenocarcinoma (LUAD) is the
most common form. In recent years, significant advancement
in treatment has been made, most notably in the field of
targeted therapy, and immunotherapy has developed as a new

therapy [4, 5]. However, these two approaches are only able to
help a small percentage of LUAD subtypes, and the overall
survival rate of LUAD patients is still low [6, 7]. Several
research studies have shown that LUAD had a heterogeneous
condition with unique genetic and transcriptome traits
among individuals, and it is still difficult to anticipate how an
individual would fare with LUAD [8]. In light of this, it is
absolutely necessary to locate reliable diagnostic indicators,
treatment targets, and prognosis factors.

In response to physiological signals, biological processes
known as dynamic modulation of proteins and
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posttranslational modification of proteins take place [9, 10].
Both of these processes are closely controlled. One example
of this type of dynamic modulation is the process of
ubiquitination, which tags proteins as candidates for
breakdown by the proteasome [11]. (is process also
changes the proteins’ location, affecting their activity and
either promoting or inhibiting protein interactions [12].
(erefore, ubiquitination is essential for a wide variety of
physiological activities, such as cell survival, differentiation,
and innate and adaptive immune responses [13, 14]. An
abnormal control of inflammatory pathways by ubiquitin
has been documented in a variety of diseases, including
malignancies and autoinflammatory diseases, and there is
growing evidence to support this hypothesis [15, 16].
(erefore, addressing defective parts of the ubiquitin system
as a potential treatment for inflammatory diseases, malig-
nancies, and infectious diseases is an approach that holds
a lot of promise. Furthermore, the creation of targetable
molecular subtypes and risk stratification tools by making
use of ubiquitination-related genes (UbRGs) has a great deal
of promise [17, 18]. On the other hand, as far as we are
aware, there are no studies done in the past that investigated
whether there was a correlation between ubiquitination and
the prognostic evaluation and molecular subtypes of LUAD.

In light of the fact that the ubiquitin proteasome is an
essential component in the process of protein degradation
and is intimately connected to cancer, we have made the
decision to investigate the part that all of the known UbRGs
play in LUAD. In this study, we conducted an analysis of the
TCGA and GEO datasets to choose various UbRGs that were
distinctly related to the outcomes of LUAD patients. We
finished this work by employing a number of different
statistical approaches. Based on the above results, we de-
veloped a novel and reliable risk model for the prediction of
the outcomes of LUAD patients based on the screened
UbRGs.

2. Materials and Methods

2.1. Ubiquitination-Related Genes and Gene Expression Data
Collection. In this study, according to the relevance score
greater than 5, 759 ubiquitination-related genes (UbRGs)
were obtained from GeneCards database (https://www.
genecards.org/).

(emRNA expression data and clinical characteristics of
LUAD patients were obtained from TCGA and GEO. (e
TCGA-LUAD cohort included 59 normal and 535 LUAD
patients, which were used for gene differential expression
analysis. Among 535 LUAD patients, 49 patients were re-
moved for unknown survival or survival time less than 30
days, and the remaining 486 patients were used for sub-
sequent analyses. Two GEO cohorts, including GSE30219
(83 patients) and GSE31210 (226 patients), were used as
validation cohorts. Additionally, gene methylation data were
downloaded from TCGA.

2.2. Gene Differential Expression and Functional Enrichment
Analyses. Differential UbRGs were screened using “limma”

R package (logFC filter� 1and FDR filter� 0.05). (en, GO
and KEGG analyses were conducted in Metascape website
(https://metascape.org) [19]. (e interaction between pro-
teins was explored in STRING website (https://string-db.
org).

2.3. Ubiquitination-Related Genes Signature Construction.
To construct an UbRG signature for survival prediction,
univariate Cox regression analysis was performed to identify
significant prognostic UbRGs. (en, a risk-score signature
was developed using the least absolute shrinkage and se-
lection operator (LASSO) analysis, which can minimize
the risk of overfitting. (e expression value of LASSO-
selected genes and correlation coefficients were used:
risk-score� esum(each gene’s expression× corresponding coefficient).
According to the median of risk-score, high-risk (HR) and
low-risk (LR) groups were established. Survival
(Kaplan–Meier method) analysis and ROC analysis were
performed to test the prediction performance and stability of
the signature. Univariate and multivariate assays were
carried out to examine the independence of the signature.

2.4. Immune Landscapes Related to the Signature. To cal-
culate the proportion of 22 tumor infiltrating immune cells,
the CIBERSORTalgorithm, which calculates the proportion
of cells in the sample based on the expression of cell bio-
markers [20], was performed. We also investigated the re-
lationship between signature genes and immune cells. (e
score of immune-related functions in each sample was
calculated using a single sample gene set enrichment analysis
(ssGSEA).

2.5. Immune Gene Expression and Immunotherapy Response
Prediction. (e application of immune checkpoint inhibitor
(ICI) has achieved great success in tumor treatment. At
present, it mainly includes PD-1 and its ligands and CTLA4
and its ligands. In this study, we compared the expression of
PD-1, PD-L1, PD-L2, and CTLA4 between the two risk
groups to predict the difference in response to ICI between
the two groups. Antigen presentation is a key step in ini-
tiating immune response. We explored the difference of the
expression level of 21 HLA genes between the two groups.

(e response to anti-PD-1 and anti-CTLA-4 can be
estimated with the TIDE (tumor immune dysfunction and
exclusion) algorithm [21]. (e TIDE score was more ac-
curate than the PD-L1 expression level in predicting the
response to ICI drugs [22]. (e higher the TIDE score, the
worse the effect of antitumor immunity. We obtained the
TIDE score of LUAD from the website (https://tide.dfci.
harvard.edu).

2.6. Clinical Characteristics Subgroup Analysis. Subgroups
were established according to the age, gender, and stage (≤65
and >65, female and male, stage I-II and stage III-IV), re-
spectively. (e survival analysis was conducted to test the
applicability of the signature in different clinical charac-
teristics subgroups.

2 Journal of Oncology

https://www.genecards.org/
https://www.genecards.org/
https://metascape.org
https://string-db.org
https://string-db.org
https://tide.dfci.harvard.edu
https://tide.dfci.harvard.edu


2.7. Mutation Landscapes Related to the Signature. Tumor
mutation burden (TMB) can also predict the effect of ICI
therapy. (e mutation landscape of the two groups was
compared. (e mutation landscapes of the two groups and
signature genes were visualized using “maftools” package.

2.8. Gene Set Variation Analysis (GSVA). We carried out
gene set variation analysis (GSVA) using “GSVA” R pack-
ages to examine the variation in biological process activities
in the studied samples based on the RNA-seq data in TCGA
[23].(e study samples were divided into high- and low-risk
subgroups and the comparison between them was per-
formed in the signature scores of the gene sets.

2.9. Targeted 9erapy Drug Prediction. We also obtained
drug sensitivity information from CellMiner database
(https://discover.nci.nih.gov/cellminer/). (en, we selected
targeted therapy drugs for signature genes.

2.10. Statistical Methods. All statistical analyses were con-
ducted using R software (version 4.1.3). Gene differential
expression analysis, immune gene expression analysis, and
the comparison of ssGSEA scores were performed using the
Mann–Whitney test. (e relationship between the targeted
drug and signature genes was explored using the Pearson
correlation test. (e log-rank test and K–M analysis were
applied to compare the OS between groups. P< 0.05 was
considered statistically significant.

3. Results

3.1. Gene Differential Expression and Functional Enrichment
Analyses. Total 71 UbRGs were differentially expressed, and
50 of these genes were visualized in heatmap (Figures 1(a)
and 1(b)). (e correlation between genes was found
(Figure 1(c)). Functional enrichment analysis showed that
these 71 UbRGs were largely related to cell cycle, protein
modification, and catabolic process (Figure 1(d)). Our
findings suggested that 71 UbRGs may be involved in tumor
progression.

3.2. Ubiquitination-Related Genes Signature Construction.
(ere were 22 genes associated with prognosis, including 2
protective genes and 20 risk genes (Figure 2(a)). (e sig-
nature was: risk-score � (0.009846853 × TUBA4A) +
(−0.049465962 × TRIM2) + (0.119625281 × TRIM58) +
(0.101087198 × PLK1) + (−0.144720934 × ARRB1) +
(0.043147457 × CCNB1) + (0.235201367 × TRIM6) +
(0.074733269 × PTTG1) + (0.048466834 × CCT2)
(Figures 2(b) and 2(c)). (e AUCs of the TCGA-LUAD
cohort at 1, 2, and 3 years were 0.705, 0.676, and 0.688,
respectively (Figure 2(d)). (e AUCs of two validation
cohorts at 1, 2, and 3 year were 0.827, 0.742, and 0.768
(GSE30219) and 0.648, 0.727, and 0.676 (GSE31210)
(Figures 2(e) and 2(f)), respectively. Compared with several
available clinical characteristics, the AUC of the signature
was the highest, which was 0.739 (Figure 3(a)). Survival

analysis of all data cohorts revealed that the survival
probability of the LR group was higher than that of the HR
group (Figures 3(b)–3(d)). Univariate and multivariate Cox
regression analysis results indicated that the signature could
independently predict the prognosis of LUAD patients
(Figures 3(e) and 3(f )).

3.3. Immune Landscapes Related to the Signature. In the two
risk groups, the abundances of CD8 Tcells, activated CD4 T
memory cells, resting NK cells, and macrophages were
higher in the HR group, and the abundances of plasma cells,
activated NK cells, and monocytes were higher in the LR
group (Figure 4(a)).

Compared with the low expression group, the infiltration
of CD8 T cells was higher in the high CCNB1/CCT2/PLK1/
PTTG1 expression groups, the infiltration of resting CD4 T
memory cells was higher in the high ARRB1/CCNB1/
TRIM2 expression groups, and the infiltration of activated
CD4 Tmemory cells was higher in the high CCT2/TRIM6/
TUBA4A expression groups. Additionally, the infiltration of
monocytes was higher in the high ARRB1/TRIM2/TRIM58
expression groups (Figure S1).

(e ssGSEA results demonstrated that there were dif-
ferences between the two risk groups in APC co-inhibition,
T cell co-inhibition, inflammation promoting, and so on
(Figure 4(b)).

3.4. Immune Gene Expression and Immunotherapy Response
Prediction. (e expressions of PD-1, PD-L1, PD-L2, and
CTLA4 were all higher in the HR group (Figure 4(c)). (e
TIDE score of the HR group was lower than that in the LR
group (Figure 4(d)). (e expressions of HLA-D and HLA-A
were higher in the HR group (Figure 4(e)). (ese results
indicated that the HR group responded better to ICI therapy
than the LR group.

3.5. Mutation Landscapes Related to the Signature. (e TMB
of the HR group was statistically higher than that of the LR
group, indicating that the HR group responded better to ICI
therapy than the LR group, which was consisted with the
results of immune analysis (Figure 5(a)). (e mutation
analysis of signature genes showed that there were mutations
in TRIM6, TRIM58, CCT2, TRIM2, and PLK1, while there
was no mutation in CCNB1, TUBA4A, PTTG1, and
ARRB1(Figure 5(b)). (e specific gene mutations of the two
risk groups were significantly different (Figures 5(c) and
5(d)). (e mutation rate of TP53 was high as 57%, while it
was 30% in the LR group. (e Missense mutation was the
highest mutation type in both groups. (e data of SNP
revealed that the most common type of the two risk groups
was C>A.

3.6. Clinical Characteristics Subgroup Analysis. It has been
found that the signature was suitable for different clinical
groups. In the subgroups of gender and stage, the survival
probability of the HR group was lower than that than of the
LR group (Figures 6(a)–6(d)). In the subgroups of age, the
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survival analysis results of the >65 group were statistically
different, but there was no difference in the ≤65 group
(Figures 6(e) and 6(f )).

3.7. Gene Set Variation Analysis. (e results of GSVA
showed that multiple metabolic-related pathways (cysteine
andmethionine metabolism, pyrimidine metabolism, and so
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Figure 1: Visualization of differentially expressed UbRGs and functional enrichment analysis. (a) Heatmap. (b) Volcano. (c) Gene in-
teraction prediction. (d) Functional enrichment analysis.
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on), P53 signal pathway and RNA degradation, were active
in the HR group. Other multiple metabolic-related pathways
(fatty acid metabolism, nitrogen metabolism and so on),
PPAR signaling pathway and GNRH signaling pathway,
were active in the LR group (Figure 6(g)).

3.8. Targeted 9erapy Drug Prediction. Multiple drugs were
screened out and the first 16 results were visualized (Fig-
ure 7). It showed that CCNB1, CCT2, PLK1, and PTTG1
were all sensitive to 6-thioguanine. ARRB1 and TRIM2 were
sensitive to dabrafenib, while TUBA4A was resistant to it.
TRIM6 was sensitive to gefitinib. Apart from cladribine and
fludarabine, TRIM58 was resistant to many drugs. (e
specific results are provided in the supplementary table
(Table S1). (ese analyses above can provide reference for
the selection of clinical therapeutic drugs.

4. Discussion

With a survival rate of fewer than 18% after five years,
LUAD, which is characterized by a tendency toward an
advanced stage and metastatic tumor, has worse survival
outcomes than many other forms of cancer [24, 25]. Patients
diagnosed with LUAD at an early stage can, in theory, better
survive from the disease; however, this category only

accounts for 25–30% of LUAD cases [26, 27]. In the early
stages of LUAD, surgical resection with or without further
adjuvant chemotherapy is considered as the cornerstone of
therapeutic treatment, and the TNM stage is the most useful
marker to predict outcomes traditionally [28]. In contrast,
survival rates are highly variable, even among LUAD pa-
tients in the same stage who have received the same
treatment; this highlights the genetic diversity of patients
with LUAD.

In recent years, a large number of cancer-related re-
search studies have focused on a few functional gene profiles
that have been found to have a significant impact on the
development and progression of cancer [29, 30]. Impor-
tantly, several studies have reported the important roles of
ubiquitination-related genes in the development of various
tumors including LUAD. For instance, the levels of UBE2C
in tissues with NSCLC were found to be considerably greater
than those in equivalent normal tissues. An increased level of
the UBE2C expression is linked to angiogenesis and a bad
prognosis. In addition, aberrant activation of UBE2C en-
hanced cell proliferation, clonogenicity, and invasive growth
of NSCLC [31]. Jia et al. reported that RFWD3 was over-
expressed in gastric carcinoma, and its knockdown inhibited
the proliferation and migration of gastric carcinoma cells
through modulating AKT, ERK/P38, and Slug pathways
[32]. In the current research study, we used the mRNA
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Figure 2: Construction and verification of the ubiquitination-related genes signature. (a) Prognosis-related UbRGs. (b) and (c) LASSO
analysis. (d-f ) ROC curves of data cohorts: (d) TCGA-LUAD. (e) GSE30219. (f ) GSE31210.
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Figure 3: Testing the performance of the signature. (a) Multiple ROCs. (b-d) Survival analysis: (b) TCGA-LUAD. (c) GSE30219.
(d) GSE31210. (e) Univariate Cox regression analysis. (f ) Multivariate Cox regression analysis.
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Figure 4: Immune landscapes related to the signature. (a) Immune cell infiltration analysis. (b) Immune-related function analysis.
(c) Expression level of four immune checkpoints in the two risk groups. (d) TIDE scores of the two groups. (e) Expression level of
HLA genes.
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expression data of 71 UbRGs from the TCGA datasets and
the LASSO regression analysis to construct a 9-UbRGs
predictive signature. A functional study demonstrated
that the differentially expressed UbRGs were closely asso-
ciated with cancer and revealed that the dysregulation of
ubiquitination is critical in the initiation and progression of
cancer. Importantly, the high-risk patients with LUAD had
shorter OS than the low-risk patients.(e predictive value of
the signature was validated by employing two different
internal validation cohorts (GSE30219 and GSE31210
datasets) because there was a risk that the signature was
overtrained while it was being constructed. (e results
suggested that the novel signature was robust and re-
producible in patients with LUAD. Because the area under
the curve (AUC) in both the TCGA dataset and the vali-
dation dataset was more than 0.7, it was clear that the new

signature had a degree of success in predicting survival. (e
novel signature showed promise as a potential independent
prognostic factor, according to the results of both univariate
and multivariate analyses, which were used to evaluate the
TCGA dataset of patients diagnosed with LUAD.

(e LUAD TME status can be determined by analyzing
the relationship between immune cell infiltration and the
LUAD gene signature, which was previously thought to be
a useful indicator for predicting disease outcomes and
immunotherapy response in malignancies [33, 34]. In this
study, by using the CIBERSORT algorithm, we were able to
determine the relative abundance of 22 distinct types of
immune cells that were present in the LUAD sample.
According to the findings of our study, the high-risk group
had a tendency to have a lower immune cell infiltration rate,
which suggests that the activation of immune cells may have
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a positive correlation with a better prognosis. We observed
that the abundance of CD8 Tcells, activated CD4 Tmemory
cells, resting NK cells, and macrophages was higher in the
HR group.(e ssGSEA results demonstrated that there were
differences between the two risk groups in APC co-
inhibition, T cell co-inhibition, inflammation promoting,
and so on. In the therapeutic treatment of a variety of
malignancies, ICIs have demonstrated efficacy that is en-
couraging [35, 36]. Cancer patients who are being treated
with ICIs would benefit from the identification of predictive
biomarkers due to the fact that different individuals dem-
onstrated varying responses to ICIs. Although PD-L1 has
been suggested as a marker that was favorably related to the
efficacy of ICI, the use of PD-L1 alone is not sufficient for
diagnosing cancer in patients. Jiang et al. created the TIDE
algorithm to predict the responses to ICIs by characterizing
dysfunctional T cells and infiltrating the cytotoxic T lym-
phocytes (CTLs) level [21]. (is was done in order to de-
termine how well the algorithm would work. In our study,
we discovered that immunological checkpoints had a sig-
nificantly higher level of expression in the high-risk group
when stratified by a novel signature. Patients with similar
expression levels of immunological checkpoints might be
distinguished from one another using the novel signature.
(e fact that a low-risk group’s TIDE score was much lower
than that of the high-risk group confirmed our hypothesis,
which stated that a high TIDE score suggested a suboptimal
response to ICI treatment. As a result, the signature of the
UbRG might make it easier to implement ICI for the
treatment of LUAD.

(e identification of the TMB is now a regular experi-
ment, thanks to the advancement of technology that allows
for DNA sequencing [37]. Several clinical investigations
have shown that the TMB can be used as a predictor of how
well ICIs would work as treatments [38, 39]. (is role of the
TMB as a biomarker has been established. In recent years,
TMB has been demonstrated to be an important marker for
predicting response to immune checkpoint inhibitors in
several types of tumors, such as cervical cancer, rectal cancer,
and bladder cancer [40–42]. In addition, there are a growing
number of researchers who are beginning to investigate the
connection between TMB and LUAD [43, 44]. TMB was
found to have a close relationship with immune-mediated
survival in LUAD. We observed that the TMB of the HR
group was statistically higher than that of the LR group,
indicating that the HR group responded better to ICI
therapy than the LR group, which is consistent with the
results of immune analysis.

Increased expressions of several genes related the long-
term survivals were related to increased drug resistance for
a number of chemotherapy drugs that are approved by the
FDA, such as decitabine, homoharringtonine, pipobroman,
lxazomib citrate, and tamoxifen [45, 46].(ese findings were
based on the analysis of data from NCI-60 cell lines. Hence,
we also observed some prognostic genes that were related to
increased drug sensitivity of a few drugs. It showed that
CCNB1, CCT2, PLK1, and PTTG1 were all sensitive to 6-
thioguanine. ARRB1 and TRIM2 were sensitive to dabra-
fenib, while TUBA4A was resistant to it. TRIM6 was

sensitive to gefitinib. Apart from cladribine and fludarabine,
TRIM58 was resistant to many drugs. (ese analyses above
can provide reference for the selection of clinical
therapeutic drugs.

However, our research has some limitations that must be
taken into account. First, our research relied heavily on data
obtained from TCGA, in which the majority of patients were
either White or Asian. (e application of our findings to
patients of other ethnicities should be approached with
extreme caution. Second, in vitro and in vivo experiments
were needed to further confirm our findings.

5. Conclusion

Our study identified a prognostic signature based on nine
UbRGs to predict the overall survivals of LUAD patients. It
was confirmed that there was a close association between the
risk scores and the progression and immune infiltration of
LUAD. Because it is possible to estimate the IC50 of che-
motherapeutic medicines using the signature, the signature
may have some clinical importance. (e prognostic signa-
ture has the potential to accurately predict the outcome in
LUAD and may make it easier to establish tailored therapy
programs for the immune system.
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