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Abstract: Carbon nanotube (CNT)-based cold cathodes are promising sources of field emission
electrons for advanced electron devices, particularly for ultra-high-resolution imaging systems, due
to their high brightness and low energy spread. While the electron field emission properties of
single-tip CNT cathodes have been intensively studied in the last few decades, a systematic study
of the influencing factors on the electron beam properties of CNT cold cathodes and the resolution
of the secondary electron images has been overlooked in this field. Here, we have systematically
investigated the effect of the structural properties of a CNT cold cathode on the electron beam
properties and resolution of secondary electron microscope (SEM) images. The aspect ratio (geometric
factor) and the diameter of the tip of a vertically standing CNT cold cathode significantly affect
the electron beam properties, including the beam size and brightness, and consequently determine
the resolution of the secondary electron images obtained by SEM systems equipped with a CNT
cold cathode module. Theoretical simulation elucidated the dependence of the structural features of
CNT cold cathodes and electron beam properties on the contribution of edge-emitted electrons to
the total field emission current. Investigating the correlations between the structural properties of
CNT cold cathodes, the properties of the emitted electron beams, and the resolution of the secondary
electron images captured by SEM equipped with CNT cold cathode modules is highly important and
informative as a basic model.

Keywords: carbon nanotube; field emission; electron beam; electron microscope

1. Introduction

Field emission electron sources have attracted enormous research attention in the
field of electron emission and electron devices, due to their inherent merits, including high
brightness, coherence, and low energy spread [1–5]. Owing to those advantages, distin-
guished from conventional thermionic electron sources, field emission electron sources,
i.e., cold cathodes, have been considered as a promising component for advanced micro-
scope systems, enabling ultra-high-resolution imaging at the nano- or atomic scales [6–8].
As the best choice for cold cathode materials, carbon nanotubes (CNTs) have drawn much
research attention due to their highly efficient electron field emission properties, originat-
ing from the synergistic effect of high electrical conductivity and high aspect ratio [9–14].
Especially, the small radius of curvature of the tip of CNT cold cathodes induces a sub-
stantial field enhancement effect and decreases the operating voltage of the field emission
devices. It is beneficial for a miniaturized electron emission source to be able to be driven
stably up to few micro-amperes of current [15–20]. Moreover, mature CNT synthesis
techniques have achieved uniform large areal arrays and site-selective vertically aligned
structures. Despite the suitable features of CNTs for high-performance cold cathodes, there
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have been difficulties in realizing CNT cold cathodes for ultra-high-resolution microscope
systems due to the lack of a systematic study on the correlation between the imaging
resolution and the properties of electron beams emitted by such cathodes.

Ultra-high-resolution imaging systems using electron beams require two vital condi-
tions: high electron emission current and small enough probe size [21]. In this regard,
it is necessary to investigate the electron emission current and electron probe size of elec-
tron beams generated from CNT cold cathodes in order to realize CNT cold cathode-based
ultra-high-resolution imaging systems. It is especially important and valuable to study verti-
cally aligned individual CNT cold cathodes as a basic model to develop sophisticated CNT
cold cathodes. Even though a CNT cold cathode effectively enhances the electric field at
the tip of the one-strand electron field emitter by removing the screening effect, it is usu-
ally unstable with high field emission current value or long-term electron emission [22].
This leads to a lack of systematic and reliable studies on the electron emission current and probe
size of individual CNT emitters. Moreover, precise control of the location and reproducible
shape engineering of CNT cold cathode are also required to guarantee reliability.

In this work, we studied the effects of the structural properties of CNT cold cathodes
on the electron beam properties and the resolution of secondary electron images. CNT cold
cathodes were grown on silicon substrates via plasma-enhanced chemical vapor deposition
(PECVD) with patterned Ni catalysts, offering precise control of the location of vertically
aligned CNTs. The aspect ratio and the tip diameter of the CNT cold cathode significantly
affects the diameter and brightness of the electron beam. CNT cold cathodes show high
field emission current, high beam brightness, and small beam diameter with increasing
aspect ratio (high geometric factor, βgeo) and decreasing tip diameter. In theoretical study,
a simulated electron trajectory consistent with empirical results indicates that the βgeo and
the tip diameter of the CNT dominate the size and areal uniformity of the resultant electron
beam. Consequently, the resolution of images obtained with a CNT cold cathode module
mounted in a scanning electron microscope (SEM) system improves with high βgeo and
small tip diameter.

2. Materials and Methods

The used CNT cold cathode was composed of a vertically standing, one-strand and
cone-shaped CNTs grown on a highly doped n-type silicon (100) substrate. The location of a
CNT cold cathode was controlled to be in the center of the Si substrate, cut into a 4× 4 mm2

piece. The structure of the emitters was determined by the growing conditions. A nickel dot,
3–5 µm in diameter and fabricated by a conventional photolithography process, determined the
position of the CNT cold cathode. The advantage of CNT field emitters is that the number of
emitters can be precisely adjusted, allowing control of the electron emission current value by
adjusting the number of CNT field emitters [23].

The location of the CNT cold cathode on the Si substrate was controlled by the predeter-
mined locations of 20 nm-thick Ni catalysts, using a photolithography technique. The prepared
Ni patterns were annealed to produce seeds for the growth of CNTs [24,25]. The CNT cold
cathodes were grown using a triode-type, direct current, plasma-enhanced chemical vapor
deposition (DC-PECVD) system. The emitter grown by PECVD is characterized by a cone
shape, as shown in Figure 1. The CNT cold cathodes grows from several nano-sized nickel
grains and merges into one at the tip end [26]. After the forming process, CNTs are grown in
the DC-PECVD system, and the emitter structure can be adjusted according to the growing
conditions. Several parameters determine the structure of a CNT cold cathode: seed size,
temperature, pressure, plasma current, and gas ratio [27]. These growing conditions are listed
in Table 1. Under such conditions, we can grow CNTs by determining the range of βgeo of CNT
cold cathodes.
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account the space charge effect using the second order finite element method [29]. 
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was 250 μm. 
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Figure 1. SEM images of CNT cold cathodes: (a) geometric factor 1560 (1560-CNT) and (b) 550-CNT
cold cathode. (c) Magnified image of (a) at tip region; (d) magnified image of (b).

Table 1. Summary of carbon nanotube (CNT) growing conditions.

Geometric
Factor

C2H2:NH3
(SCCM)

Voltage (V)
(Grid/Substrate)

Pressure
(Torr)

Dot Size
(µm)

Growing
Time (min)

2800–3500 16:160 300/−600 2 3 100
600–1500 16:160 300/−600 3 5 60

~500 16:200 300/−600 2.5 5 90

Figure 1 shows scanning electron microscope (SEM) analysis of CNT cold cathodes
with two βgeo values, 1560 and 550. The geometric field enhancement factor is determined
by the apex tip radius and height, and is defined as the height of the emitter divided by the
radius of the tip [14,28]. A 1560 emitter has a height of 39 µm and a tip radius of 25 nm, and
a 550 emitter has a height and radius of 27.5 µm and 75 nm. Based on those parameters,
we modeled the SOURCE 2D simulation (Munro’s Electron Beam Software, London, UK)
to analyze the characteristics of the trajectory, the emission current, and the brightness of
the electron beam. The SOURCE 2D simulation was calculated, taking into account the
space charge effect using the second order finite element method [29].

The evaluation of the electron emission properties was conducted in diode mode,
with a homemade phosphor screen, under high vacuum level (<10−7 torr). We carried out
comparative analyses of the electron emission characteristics and emission patterns in the
diode structure with several βgeo values. The distance from CNT cold cathode to anode
was 250 µm.

To observe the structure of CNT cold cathodes, SEM analysis was conducted
(Hitachi S-4700). We used a DC power supply (Spellman SL1200, Keithley 248) and
multimeter (Agilent 34401A, Keithely 6485) to measure the field emission characteristics.
The electron emission characteristics were analyzed using the Fowler–Nordheim (F–N)
theory. The electron emission pattern was observed by optical microscope.

3. Results and Discussion

The basic field emission characteristics were measured in the diode structure with the
phosphor anode for evaluation of the CNT cold cathode. Figure 2a,b show comparisons



Nanomaterials 2021, 11, 1918 4 of 10

of the field emission characteristics and FN plots according to βgeo values, respectively.
The CNT field emitters with βgeo values of 1560 and 550 showed 1 µA of emission current
at 950 and 2250 V, respectively. The slope of the FN plot of the 1560 CNT cold cathode was
−35006, and the slope of the 560 was −48725 in the linear region of Figure 2b. The CNT
emitter with high βgeo showed high emission current at lower voltages. The difference in
the field emission properties is attributed to the lower threshold voltage at the edge of the
emitter tip. It indicates that the enhancement of the applied electrical field is facilitated by
the CNT with small tip size, compared with the CNT with large tip size. Also, the height
of the emitter itself is an important parameter. Therefore, many studies refer to a high
aspect ratio (βgeo) as a very important variable. Figure 2c shows a comparison of electron
emission patterns at a current of 1 µA. The CNT field emitters with βgeo values of 1560 and
550 show 55 µm of the beam size at 950 V and 114 µm at 2250 V, respectively.
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Figure 2. Comparison of field emission properties. (a) Field emission properties; (b) F–N plot;
(c) captured image of field emission patterns on phosphor screen at 1 µA of emission current.

The source of electrons for an electron microscope can be evaluated by character-
izing simple electron emission, including the solid angle, the virtual source size, and
the brightness of the electron beam. In our previous study, we studied reduced bright-
ness (Br) calculation using electron emission patterns to evaluate CNT cold cathodes [30].
Br measures the spot size and the amount of emission current that can be concentrated
at a particular solid angle. It is a function of the virtual radius source size, the brightest
part of the emitted electron beam, and the current densities corresponding to the beam
potential [31]. The virtual source radius is the area where electrons are generated. The
high brightness means that the electrons are emitted at a narrow solid angle, the size of
the starting beam trajectory is small, and there is a large amount of emission current at
low voltage. Thus, Br is expressed by the following equation [32], where JΩ is the angular
current density and rv is the virtual source radius:

Br =
JΩ

πrv2V
. (1)

The electron beam pattern was observed by optical microscope and was measured
with an image analysis tool to obtain the correct beam size. Beam size values of 55 µm and
114 µm were obtained from the full width at half maximum (FWHM) value at the bright
spot using Gaussian four-peak parameter fitting [33]. As a result of emission patterns, the
solid angles of 1560- and 550-CNT emitters were 0.053 and 0.2 sr, respectively, at an emission
current of 1 µA. To calculate the virtual source radius, we refer to Fowler–Nordheim (F–N)
theory, which understands the field emission phenomenon mathematically. Its emission
current (J) density is as follows [34]:

J = 1.54× 10−6 F2

∅ exp

(
−6.83× 10−7∅3/2

F

)
(2)
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F = βV (3)

βgeo = m + h/R (4)

where F and ∅ are the local electric field and the work function in electron volts, respectively.
R is the radius of curvature, h is the height of the emitter, and m is a variously taken constant
of 0, 2, or 3; m converges to 0 if the height of the emitter is considerably greater than the
curvature radius (h >> R). This βgeo calculation method was first proposed by Vibrans
(1964) [35]. As indicated in the F–N equation, two parameters affect the field emission
properties of a field emitter. The work function of CNTs is widely known to be 5 eV [36,37].
These two variable values are reflected in the tunneling parameters (d) and are important
factors in calculating the virtual source radius [38]:

d = 1.54× 10−6 ehF
4π
√

2m∅× t(y)
(5)

t(y) = 1 + 0.1107y1.33 (6)

rv =

√
3Rd
ekF

(7)

where t(y) and y are slowly varying functions of F and ∅ [39]. The electric field applied
to the CNT cold cathode depends on the structure of the emitter (βgeo). The tunneling
parameters of the CNT emitter range from 0.1 to 0.3 eV. The rv of the spherical cap structure
is determined by d, the physical source diameter of field emitter and the local electric field,
and k is the field enhancement related factor, which frequently takes a value of five [40].
The physical source diameter (R) of the CNT cold cathode was 50 and 150 nm, as shown
in Figure 1, and we could calculate that rv was 0.8 and 1.3 nm for the CNT cold cathode,
respectively. As a result, the theoretical angular current density of the 1560- CNT cold
cathode was 20.89 µA·sr−1 and Br was 1.08 × 1010 A·m−2·sr−1·V−1 at an applied voltage
of 950 V. For the 550- CNT cold cathode, Br was 3.7 × 108 A·m−2·sr−1·V−1 at an applied
voltage of 2250 V and the angular current density was 5.09 µA·sr−1. The smaller the value
of βgeo, the higher the required driving voltage, resulting in a larger beam diameter and
wide angular current density.

SOURCE 2D simulation is a useful tool with which to analyze and design electron
sources. This tool is available for all types of electron sources, from point cold cathodes to
high-current piercing. The simulation study calculates the space charge distribution based
on the Poisson equation, and electron trajectories are computed by direct ray tracing [28].
Figure 3a,b shows the beam trajectories of the CNT cold cathodes with 1560 and 550 βgeo.
The figure inset images show the computed electron emission at the tip region. The basic
variable parameters are set to the same values, including CNT work function, energy
spread, and temperature. The comparative simulation results are highly dependent on
the structure of the field emitter. Based on the measured field emission characteristics,
the trajectory and beam brightness were computed at an emission current of 1 µA. The
distance between source plane and anode was 200 µm and the maximum beam size was
258 µm (Figure 3a) and 381 µm (Figure 3b), respectively. Figure 3c shows the computed I-V
curve based on the experimental values. The SOURCE 2D simulation is computed for the
launch point of electron emission at the tip region, which is named the maximum half arc
length, as shown in Figure 3d (dashed black line in the first image). The maximum half arc
length of the 1560- CNT cold cathode was 48 nm, and the current density at the apex of
the tip was the highest, calculated as 1.1 × 104 A·cm–2. For the 550 emitter, the maximum
half arc length was 110 nm and the current density at the edge of the tip was the highest.
Figure 3d shows the beam trajectory and emission current density at the CNT tip with
various diameters. As the tip diameter increased, the current density at the edge region
was enhanced. This indicates that a small-sized CNT tip is highly beneficial to obtain a
well-focused and high-density electron beam.
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(b) The CNT cold cathodes with a geometric factor of 550. (c) Comparison of simulated I-V curve.
(d) Emission current density at tip region with tip diameter.

We evaluated the electron emission characteristics and designed an optimized electron
beam module based on the protocol reported in our previous study [29]. The CNT cold
cathode was applied to an electron microscope imaging device as an electron source.
Figure 4a shows the configuration of the system for secondary electron imaging. Typical
SEM systems are composed of an electron source, two condenser lenses (CLs), an objective
lens (OBJ), and a stage for a sample in a vacuum chamber. The CL serves to demagnify
the electron beam and determines the probe size and resolution. The OBJ serves to adjust
the working distance. The distance between the electron gun part and OBJ is 400 mm and
working distance is 2 mm. Figure 4b shows a schematic illustration and real optical image
of the electron beam module with a CNT cold cathode. As shown in real optical images
in Figure 4c, the electron beam module consists of CNT cold cathode on the cathode and
a mesh-type gate electrode with holes 300 µm in diameter where the CNT cold cathodes
are precisely aligned at the center of the aperture. The distance between the gate electrode
and the cathode was adjusted to 250 µm, and the anode of the SEM system was located
8 mm below. The lens units and the sample stage in the chamber were connected to the
ground. Thus, the electron beam was driven in the range of negative voltage. A wobbling
process is generally required to minimize CL aberration, in order to obtain high-resolution
images. For precise evaluation of the electron beam characteristics of each CNT cold
cathode, secondary electron imaging was carried out with only the as-emitted electron
beam from the CNT cold cathode and all CLs turned off.
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Figure 4. (a) Schematic diagram of normal SEM equipment with single CNT emission gun.
(b) CNT electron gun cartridge. (c) Captured image of gun part and alignment with gate elec-
trode and single CNT emitter.

Figure 5a–d shows scanning secondary electron images of copper (Cu) mesh grids
(2000) captured during the aging process, obtained by the CNT cold cathode. All SEM
images were measured without the CL operation. The electrons were emitted at 10−8 torr
at the gun part with acceleration voltage (Vacc) of 5 kV. The resolution of the SEM image
was improved with aging time. Figure 5a shows the first image obtained at an emission
current of 0.5 µA. The image shows an undesired alternating light and dark line, indicating
that the emission current is unstable. Interestingly, the resolution and definition of the
measured SEM image increased with aging time. Figure 5e shows the electrical aging
process of the CNT cold cathode. The emitter had a βgeo of 790 and the relative extraction
voltage (∆V) was 900 V. In the initial 6 h, the average emission current was 0.5 µA in
constant voltage mode (∆V = 900 V), and the current fluctuation was 25%. After 10 h, the
average emission current increased to 1 µA, and the current stability was shown to be 15%,
which was more stable than the initial one. The stabilized electron emission current yielded
improved images, as shown in Figure 5d. It is rationalized with the recovery of defect
sites in the CNT cold cathode. After the electrical aging process, the ratio of defect peak to
graphite peak increased in the Raman result [41].
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Figure 5. Scanning secondary electron image with CNT cold cathode gun. (a–d) SEM images of Cu
grid mesh (2000) during aging process. (e) Electron emission current stability in constant voltage
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Figure 6 shows SEM images obtained with the CNT cold cathodes with different
βgeo values; the emitter in Figure 6a had a tip diameter of 100 nm and height of 39.5 µm
(βgeo = 790), and the one in Figure 6b had a tip diameter of 50 nm and height of 28.9 µm
(βgeo = 1156). Figure 6(a-1–c-1) show SEM images obtained at an acceleration voltage of
5 kV and 1 µA of emission current. The SEM image in Figure 6a was obtained after the
aging process. Figure 6(a-2) shows 1000×magnified SEM images of the region of the dashed
square yellow line in Figure 6(a-1). Figure 6(b-1,b-2) shows SEM images obtained with the a
CNT cold cathode in Figure 6b under identical conditions as in Figure 6a. Figure 6c shows
SEM images obtained with a CNT cold cathode with a tip diameter of 125 nm and height of
26.1 µm (βgeo = 417). Despite the higher emission current of 3 µA than in the previous cases,
the resulting SEM image was severely blurred, as shown in Figure 6(c-1). Even under three
times higher emission current, a high-magnification image could not be properly obtained.
This means that the beam brightness is low due to structural limitations.
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Figure 6. Comparison of scanning secondary electron images with structural properties of CNT cold
cathodes. SEM images of a CNT cold cathode with: (a) βgeo = 790, ∆V = 1200 V; (b) βgeo = 1560,
∆ V = 900 V; and (c) βgeo = 417, ∆ V = 2100 V. (a-1–c-1) SEM images of Cu grid mesh (2000) at 5 kV
acceleration voltage and 1 A emission current. (a-2) A 1000× magnified image of dashed square area
in (a-1). (b-2) A 1000×magnified image of dashed square area in (b-1). (c-2) SEM image obtained at
5 kV and 3 A emission current.

The electron beam spot size can be calculated using the SEM images by a method
proposed by the American Society for Testing and Materials (ASTM) [42]. The beam
spot size was calculated using the contrast ratio of the sharp edge of the mesh line in
Figure 6(a-2,b-2). The minimum and maximum values were recorded accordingly, and the
20% and 80% values were calculated. The distance between 20% and 80% was obtained
using a commercially available image analysis program. The contrast slopes were 43 and
117, respectively. Using this, the electron beam spot size (probe size) was calculated as
0.37 and 0.25 µm, respectively. Relatively large spot size of the electron beam with respect
to the virtual source size of 0.8 nm and 1.3 nm can be elucidated with the widespread
trajectory of electrons by the change of the equivalent potential line near the tip of a CNT
cold cathode and the screening effect among emitted electrons. It can be seen that the CNT
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cold cathodes with higher aspect ratios have higher brightness, which in turn leads to
images with higher resolution. It has been shown that the structural properties of the CNT
electron source eventually lead to differences in resolution.

4. Conclusions

We investigated the effect of the structural properties of CNT cold cathodes on the electron
beam properties and resolution of secondary electron images. The 1560- CNT cold cathode,
with a high βgeo and small tip diameter, produced a focused electron beam with high brightness
and small beam diameter, consequently allowing us to obtain SEM images of high resolution,
compared with the SEM images obtained by the 417- CNT cold cathode with a low βgeo and
large tip diameter. The theoretical study reveals that the contribution of spreading edge-emitted
electrons to the total emission current increases with increasing tip diameter. The simulation
results rationally explain the limited image resolution obtained by a SEM system equipped with
a 417- CNT cold cathode module. Our results indicate that the geometrical factor of the CNT
cold cathode is an important influencing factor to obtain ultra-high-resolution images using
secondary electron imaging system.
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