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Abstract

Finding small homogeneous subgroup cohorts in large heterogeneous populations is a critical 

process for hypothesis development in biomedical research. Concurrent computational approaches 

are still lacking in robust answers to the question “what hypotheses are likely to be novel and 

to produce clinically relevant results with well thought-out study designs?” We have developed 

a novel subgroup discovery method which employs a deep exploratory mining process to slice 

and dice thousands of potential subpopulations and prioritize potential cohorts based on their 

explainable contrast patterns and which may provide interventionable insights. We conducted 

computational experiments on both synthesized data and a clinical autism data set to assess 

performance quantitatively for coverage of pre-defined cohorts and qualitatively for novel 

knowledge discovery, respectively. We also conducted a scaling analysis using a distributed 

computing environment to suggest computational resource needs for when the subpopulation 

number increases. This work will provide a robust data-driven framework to automatically tailor 

potential interventions for precision health.
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I. INTRODUCTION

MUCH of successful biomedical research relies on identifying key predictive factors 

within specific populations [1]. Discovering subgroups within a large-scale population 

and being able to explain what differentiates them from that population is essential 

in precision medicine or designing relevant clinical trials. The National Academy of 

Medicine [2] urges the research community to target high-need patients from smaller 

homogeneous subgroups for precision health with better outcomes. Moreover, today, studies 

of randomized clinical trials and meta-analysis of literature suggest that six of the top ten 

highest-grossing drugs in the US are effective for less than 12% of patients and even the 

most effective drugs from that list have positive outcomes in only 25% of patients [1]. 

This “imprecision medicine” practice not only harms certain populations of patients, it 

also burdens the healthcare system financially. While there are complex issues related to 

the ineffectiveness of these drugs, using data analytics methods will streamline the drug 

development process by guiding it with data-driven evidence [3]. By finding meaningful 

and homogeneous subgroups prior to conducting clinical trials, researchers can further 

study focused populations and identify potential risk factors from complex data sources 

to create tailored treatments [4]. In fact, it is rare for a clinical trial hypothesis to be 

“spot-on” for a large group of patients due to complex combinations of ethnic, demographic, 

genetic, chronic, behavioral, and environmental specificities. Many medical discoveries have 

been byproducts of failed clinical trials that, while producing disappointing overall results, 

revealed surprising responsiveness from certain patient subgroups during post-trial analyses 

[1]. However, there are two major barriers to such tailored care: the effort required to 

identify meaningful subgroups of patients for clinical trials/outcome research, and the high 

cost of developing interventions for such small populations. These barriers go hand in 

hand due to the complexity and resources needed to efficiently identify subgroups and the 

possibility to repurpose interventions, such as drug repositioning.

In addition to manually defining cohorts, many techniques have been developed to identify 

cohorts from a large population [5]. The premise of the existing cohort discovery methods 

often starts with a pre-defined pair of populations, such as diseased and non-diseased 

groups, and then discovers cohorts from the populations. Machine learning approaches 

could be potential solutions for tackling this subgroup cohort discovery task [6]. One 

branch of the methods is rule-based cohort discovery. Lee et al. [7] used discriminant 

analysis and Niemann et al. [8] applied SD-Map algorithm [9] and hierarchical clustering 

to automatically create rules to classify the pre-defined populations. The second branch 

of methods applied machine learning algorithms for disease prediction or risk factors 

discovery. Hielscher et al. [10] introduced a constraint-based subspace clustering algorithm 

called DRESS to discover and score candidate spaces on an epidemiological cohort study. 

Li et al. [11] used topology-based networks to cluster subtypes of type 2 diabetes. 

Although the latest developments in deep learning approaches have been extensively and 

successfully applied in speech recognition [12], computer vision [13], radiology [14], and 

many additional health-related applications in recent years [15], those black box models 

are valuable in applications where reasoning is not necessary. However, in biomedical 

research and health care applications, high-level explanations are critical and the recent 
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enhancements in deep learning to improve interpretability, such as attention mechanism 

[16], influence functions [17], are still insufficient to allow for potential intervention.

To bridge the knowledge gap, in this paper, we introduce a unique exploratory mining 

approach, shown in Fig. 1, that enables the broad biomedical research community to answer 

the following questions: Which subgroups of patients might benefit from interventions that 
are likely to be effective for the selected populations? Our contribution is the development of 

a suite of computational methods that are pipelined in a distributed computing environment 

to tackle the issues of identifying and prioritizing cohorts of patient subpopulations and 

revealing explainable contrast patterns for potential interventions. The impact of this work 

is to allow researchers and clinicians to intelligently slice and dice through hundreds of 

thousands of potential subgroups and focus on only those subgroups which are evidence-

based, data-driven, and statistically significant with actionable potential. We believe this 

capability will enable the biomedical research community to acquire advanced medical 

knowledge and produce innovative treatments at a much faster pace than what is currently 

possible.

II. RELATED WORKS

In the field of data mining, prominent contributions have been made by researchers in 

three categories of methods, namely subgroup discovery [18], contrast mining [19] and 

contrast set mining [20] to identify significant subgroups or reveal the differences between 

two or more subgroups using supervised rule learning [21]. The first category of data 

mining methods in subgroup discovery aims to identify subgroups [22] in the form of Cond 
⇒ Targetvalue [23] for a predefined user-specific population (Targetvalue). This category 

of subgroup discovery attempts to explore the combinatory space to detect a meaningful 

cause that leads to the target population or a general description of that target population 

(Cond). Frequent pattern mining-based methods, such as Apriori-SD [24] and SD-Map 

[9] have been applied in the subgroup discovery process to prune the exploratory space 

and reduce computational complexity. The second category of methods in contrast mining 

attempts to identify contrast patterns (CPs) of features which differentiate two groups by 

exploring patterns which have an imbalanced prevalence between the groups [25]. The initial 

method to discover contrast patterns was proposed by Dong et al. using the property of 

borders to mine frequent contrast patterns and the concept of ‘jumping emerging patterns’ 

for classifications [25]. Techniques using emerging patterns and jumping emerging patterns 

have been utilized in many areas, such as bioinformatics [26] and chemical modeling [27]. 

Contrast patterns can also be extracted using tree structures to shorten the computation time, 

such as ratio tree [28] and CP-tree [29]. The third category of methods in contrast set mining 

attempts to discover the differences between several subgroups [20]. It requires the user to 

specify a list of subgroups G1, G2, … , Gn to extract the combinations of characteristics 

that differentiate the groups from each other [30]. Contrast set mining was first introduced 

by Stephen et al. who reported a framework called STUCCO [20] which allowed for the 

exploration of the contrast set space using a breadth-first strategy and heuristic pruning 

rules to reduce the search space to a manageable size. However, both clusters of methods 

in contrast mining and contrast set mining are limited to finding the differences between 

pre-defined subgroups.

Liu et al. Page 3

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, traditional statistical analysis, such as logistic regression model, has been widely 

used [5]. Furthermore, with the utilization of natural language processing (NLP) tool to 

extract terms or concept from clinical text, the accuracy of cohort retrieval and identification 

increases significantly compared to using structured data alone [31].

Conversely, unsupervised clustering [32] and network analysis methods [11] add the 

capability of discovering sub-clusters from the data without preset class labels. However, 

while they are valuable in many biomedical applications, there are still limitations for two 

reasons: (1) sub-clusters are discovered based on degree of separation without taking into 

consideration the characteristics of each cluster to form control and treatment groups; and 

(2) there are combinatorial explosion issues involved with identifying clusters of subgroups 

from all potential subpopulations, which can result in hundreds of thousands or even 

millions of all potential groups.

From what is available in the computing community, subgroup discovery, contrast mining 

and contrast set mining all require a clear and pre-defined target. This limits the impact of 

discovery results particularly in biomedicine where the successful assessment of explainable 

interventions from viable subgroups plays a key role in advancing the field. In this paper, 

our definition of cohort is broader than the setting used in the traditional cohort discovery 

research since our work is to discover new target populations which are normally pre-

defined in the previous approaches. In the remainder of this paper, we will interchangeably 

use cohort and population subgroup for the discussions of the algorithm and computational 

experiments.

The rest of this paper is organized as follows. Section III introduces mapping raw 

biomedical data into clinically explainable and mineable space. Section IV describes the 

algorithm for the deep exploratory mining process consisting of the Floating and Path 

Expansion approach, effective contrast pattern extraction, and subgroup prioritization using 

J-value. Section V illustrates a distributed computing algorithm, which is necessary due 

to the large search space in subgroup selection and pattern extraction, to streamline the 

mining process, Section VI reports results of computational experiments on data sets from 

synthesized test sets and biomedical datasets in autism spectrum disorder. Section VII 

concludes the results and discusses future work.

III. DATA MAPPING

To ensure the meaningfulness of data analytics results, we utilize the population, 

intervention, comparison, and outcome (PICO) guideline [33] to map raw data into mineable 

information that resembles the key components of the biomedical research hypothesis 

generation procedure which should be targeting a concrete research direction with a high-

level hypothesis. As shown in Fig. 1, raw data can be extracted from electronic health 

records, biomedical images, or genomics data during the data mapping process. This process 

defines two types of variables: population variables (P) to divide patient populations into 

subgroups and measurement variables (M) to describe the main characteristics (patterns) of 

the subgroups. Depending on the research question, the population variable can include 

co-morbidities and chronic conditions while measurement variables may include lab 
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results, intervention procedures, device signals, single nucleotide polymorphisms (SNPs), 

expression data, etc. In this work, we assume all the variables in the dataset contain only 

categorical attributes. For all types of variables, the categorization of variables is based 

on the literature or known grouping guidelines, such as age, BMI, glucose level, etc. For 

variables lacking categorization guidelines that are clinically meaningful, we select methods 

that are appropriate for the domain, such as equal-width, equal-density, entropy-based, 

or adjacent pairs-based algorithms. To deal with missing data, we performed multiple 

pre-processing steps: 1. For the genomic dataset, genotype imputation is a commonly used 

method in gene association studies [34]. We used Beagle (version 4.1), a bioinformatics 

tool, to infer genotypes that were missing from our data [35], [36]. 2. For phenotype fields, 

we omitted patients with too many missing values and used ‘NA’ as a new category to 

represent missing values if that variable does not have too many missing values. However, 

‘NA’ variables are never used to form subgroups.

Given a collection of population variables P = {P1, P2, … , Pn}, each variable Pi has a set of 

categories Ci = {Ci,1, Ci,2, … , Ci,ik}, where 1 ≤ i ≤ n and ik is the cardinality of Ci. For each 

population variable Pi, any two exclusive category values Ci,m, Ci,n ∈ Ci can form a contrast 

subgroup pair (Ci,m ↔ Ci,n). By adding a new inclusion constraint Pj with its pair (Cj,k ↔ 
Cj,l), Cj,k, Cj,l ∈ Cj, to the original subgroup selection criterion, a more focused subgroup 

pair ((Ci,m Λ Cj,k) ↔ (Ci,n Λ Cj,l)) can be formed. The contrast subgroup can be described 

using a contrast-subgroup pair in the form of (Ci,m Λ … Λ Cj,k) ↔ (Ci,n Λ … Λ Cj,l), where 

Ci,m, Ci,n and Cj,k, Cj,l are categories from population variables Pi and Pj, respectively. The 

first term of a contrast subgroup (Ci,m Λ … Λ Cj,k) describes the traits of the first group and 

the second term describes the traits of the second group. For example, (Female Λ Young) ↔ 
(Male Λ Young) is a contrast-subgroup pair comparing young females versus young males. 

It is described by two population variables in gender and age. Female, Male are categories of 

gender and Young is a category of age. The contrast subgroup must satisfy two conditions:

a. The categories in the first and second subgroups are in one-to-one positional 

correspondence. (i.e., the ith values in the first and second subgroup are both the 

category values of the population variable i.)

b. The population variables in each subgroup are exclusively distinct. (i.e., the 

population variable can be used at most once within each subgroup.)

Condition (a) guarantees that the two groups are comparable in clinical applications to target 

cohorts of patients that meet the recruitment criteria for clinical trials. Condition (b) ensures 

selected subgroups have exclusive patient samples. In many biomedical research questions, 

subgroup pairs often share common population categories except only one or a limited 

number of categories that make studies manageable and controllable, for example ((Female 
Λ Young) ↔ (Male Λ Young)) with the shared population category Young of age population 

variable. This data-mapping pipeline is developed to take a raw data file and a data definition 

file (assigning types and potential categories for each variable) to create a mineable data 

source for the deep exploratory mining process. This pipeline is designed to be generic to 

handle multiple genotype and phenotype data formats.
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IV. DEEP EXPLORATORY MINING

In this section, we introduce the methods underpinning the Deep Exploratory Mining 

Process to automatically crawl a large number of subgroups from the entire population 

space and to result in a sizable candidate pool of patient population subgroups. As shown in 

Fig. 1, the process consists of the following three components.

A. Floating and Path Expansion

This module provides a three-level algorithmic approach. The top-level method, Guided 
Cascading Shotgun, applies a large number of second-level Floating Contrast Subgroup 
Selection processes, each of which is supported by a series of third-level Inclusion and 

Exclusion procedures.

Given np population variables with an average of nc categories per variable (e.g., blood 

pressure (BP) variable has nBP = 4 categories based on the American College of Cardiology 

(ACC) guideline [37]), there are nc
np potential subgroups. This number could grow to an 

unmanageable scale. Therefore, the core of the subgroup selection process is to efficiently 

and automatically identify candidate pairs of subgroups to target certain patient subgroups. 

The algorithm executes an extended floating selection process [38], which executes a series 

of inclusion and exclusion processes and is expected to provide solutions closer to the global 

optima than a “greedy” approach can achieve [39], based on the assessment of the quality of 

contrast patterns between pairs of subgroups. This extended approach features a unique pair 

of inclusion and exclusion functions that are designed to assess contrasts between cohorts.

As shown in Algorithm 1, Lines 2-6 call the INCLUSION function to choose a base for 

the floating selection as an initiation step. Then the algorithm alternatively executes a series 

of inclusion (Lines 8-9), exclusion (Lines 10-15), and continue exclusion processes (Lines 

16-22) which are based on assessments of the quality and quantity of contrast patterns 

between a pair of contrast subgroups for the selected population variables. As shown in the 

INCLUSION function, Lines 3-4 of the function use categories Ci = {Ci,1, Ci,2, … , Ci,n} of 

a population variable Pi ∈ P(D) to generate the contrast subgroup pair set CPairi = {(Ci,1 ↔ 
Ci,2), (Ci,1 ↔ Ci,3) … , (Ci,n−1 ↔ Ci,n)}. Lines 5-6 of the INCLUSION function describe 

how each pair (Ci,m, Ci,n) is added to the selected contrast subgroup to form a temporary 

selected contrast subgroup (SCGtemp). Incidentally, the selected contrast group SCGtemp is 

in the form of (Ci,m Λ … Λ Cj,k) ↔ (Ci,n Λ … Λ Cj,l), where Ci,m, Ci,n and Cj,k, Cj,l 

are categories from population variables Pi and Pj, respectively. The entire population S is 

split into three subgroups based on SCGtemp (Line 7 of the INCLUSION function)–a pair 

of contrasting subgroups SG1, SG2 and the outer group of remaining populations Souter = 

S − {SG1, SG2}. In the next two sections, we will focus on methods of extracting contrast 

patterns from the pair of subgroups SG1, SG2. To ensure the patterns are truly unique in the 

selected subgroups, their prevalence within the subgroups has to be statistically significant 

in comparison with the outer group. To evaluate the significant difference between the 

pair of subgroups, an assessment function calculates the J value (to be formulated in the 

next subsection) after contrast patterns are mined (Lines 8-9 of the INCLUSION function). 

Lines 12-13 of the function choose the selected contrast group with the highest J value 
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(SCGhighest) as the best contrast subgroup and update SCG with it. If the selected population 

variable is added to the population variable list, it will not be considered in the later 

inclusion process (Line 14). Similarly, the EXCLUSION function loops over the selected 

contrast subgroup SCG and excludes each contrast subgroup pair to form a temporary 

selected contrast group SCGtemp and calculate its J value as shown in Lines 3-8 of the 

EXCLUSION function. If removing a population variable results in the highest J gain, as 

shown in Line 11, the EXCLUSION function will drop the variable from the subgroup 

inclusion list. This iterative process performs the inclusion and exclusion steps alternately 

with a stop criterion (J(k) − J(k − 1))/J(k) ≤ α for iteration k or the number of contrast 

subgroup variables is greater than maximal number of variables l as shown at Line 7 in 

Algorithm 1.

The traditional floating selection algorithm [38] picks the best variable resulting in the 

highest evaluation value (Jhighest) to include or exclude a population variable for the 

improvement of the objective goal through an iterative process to find an optimal solution, 

which is likely to be local. However, in biomedical discoveries, identifying a single cohort 

of patients for clinical trials is neither sufficient nor realistic. Taking advantage of the 

advancement of computing power, we have developed the Guided Cascading Shotgun 
(GCS) approach to explore hundreds to thousands of potential subgroup cohorts which 

are comparably valuable during the Floating Contrast Subgroup Selection process. This 

GCS approach, which features deep exploration of the search space, is different from the 

traditional floating selection process, which seeks for a single suboptimal solution. As 

shown in Fig. 2, the Path Expansion process will explore multiple paths. Starting from a 

root node with an empty SCG, the algorithm forms several contrast subgroup pairs (Ci,m 

↔ Ci,n) based on any two exclusive category values Ci,m, Ci,n for population variable Pi. 

This approach then allows the subgroup discovery process to explore many potential paths 

(pellets in a shell) using an expanding factor p ∈ [0, 1]. The total number of candidate paths 

is determined by the following:

Ntrack = Max SmoreJ , SℎigℎJ , (1)

where |SmoreJ| = ⌈n * p⌉ is the number of paths for top (100 * p)% from all n possible paths 

and ShighJ = {ni| J(ni) ≥ Jhighest * (1 − p), i = 1, 2 , … , n} is the number of paths where J 
values are among the top (100 * p)% of the highest J value for all n possible paths. Ntrack 

takes into consideration both the quantity and quality of the candidate paths. Each candidate 

path (pellet) in the second layer is represented by a solid circle and will then continue 

the exploration process through another layer of inclusion and exclusion processes to add 

(the pellet upgrades to a shell and then aims at the next layer of targets) or remove one 

population variable. A population variable selection tree is built to track which variables and 

categories are selected for subgroup comparisons. While the non-candidate paths indicated 

by double solid circles will not be expanded anymore.
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Algorithm 1:

Floating Contrast Subgroup Selection.

Inputs:

P(D): Population variable set for dataset D.

J(k): Contrast between subgroups with k variables.

α: stopping criteria for the algorithm.

l: maximal number of population variables for contrast subgroups.

Output: Selected Contrast Group SCG

  1:  SCG ← ϕ; k ← 0; J(k) ← 0;

  2:  // Initiation Step:

  3:  WHILE k < 2 DO

  4:   INCLUSION (P(D), SCG)

  5:   k ← k + 1

  6:  END

  7:  WHILE ((J(k) − J(k − 1))/J(k) > α AND k < l DO

  8:  // Inclusion Procedure:

  9:   Pinclude = INCLUSION (P(D), SCG)

10:  // Exclusion Procedure:

11:   Pexclude = EXCLUSION (P(D), SCG)

12:   IF (Pinclude = Pexclude) THEN

13:    k ← k + 1

14:    J(k) ← SCG’ J value

15:   ELSE

16:  // Continued Exclusion Procedure:

17:   Pexclude = EXCLUSION (P(D), SCG)

18:   IF (Pinclude = Pexclude) THEN

19:    k ← k + 1

20:    J(k) ← SCG’ J value

21:   ELSE repeat Continue Exclusion Procedure

22:  END

Function INCLUSION (P(D), SCG)

  1:  CCGS: candidate contrast group set

  2:  CCGS ← ϕ;

  3:  FOREACH population variable Pi ∈ P(D) DO

  4:   Compose a set of contrast pairs CPairi based on Pi’s categories

  5:   FOREACH contrasting pair (Ci,m, Ci,n) ∈ CPairi DO

  6:    SCGtemp ← SCG + ((Ci,m, Ci,n))

  7:    Divide data D into (SG1, SG2) based on SCGtemp

  8:    J(SCGtemp) ← CONTRAST_MINING (SG1, SG2)

  9:    Add SCGtemp to CCGS
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10:   END

11:  END

12:  Select the highest J-value contrast groups SCGhighest from CCGS

13:  SCG ← SCGhighest

14:  Remove the population variables of SCGhighest from P(D)

Function EXCLUSION (P(D), SCG)

  1:  CCGS: candidate contrast group set

  2:  CCGS ← ϕ;

  3:  FOREACH contrasting pair (Ci,m, Ci,n) DO

  4:   SCGtemp ← SCG − ((Ci,m, Ci,n))

  5:   Divide data D into (SG1 SG2) based on SCGtemp

  6:   J(SCGtemp) ← CONTRAST_MINING (SG1, SG2)

  7:   Add SCGtemp to CCGS

  8: END

  9: Select the highest J-value contrast groups SCGhighest from CCGS

10: SCG ← SCGhighest

11: Add the population variable of SCGhighest back to P(D)

As shown in Fig. 2, the Path Expansion process starts a root node of the cohort selection 

tree to perform a population variable inclusion step, which forms the first layer of nodes 

containing contrast subgroups with only one population variable. For example, the node 

(C1,1 ↔ C1,2) is to compare two subgroups based on the 1st and 2nd categories of the first 

selected population available. By adding one more population variable to the first layer, the 

second layer then contains a pair of contrast subgroups with two population variables. In the 

figure, the node ((C1,1 Λ C2,n) ↔ (C1,2 Λ C2,n)) is obtained by adding the nth category of 

the second selected population variable to the previous node. After an additional inclusion 

process, the Path Expansion process creates a node with ((C1,1 Λ C2,n Λ C3,1) ↔ (C1,2 Λ 
C2,n Λ C3,1)) subgroup pair at Layer 3. A later node on the path has a subpopulation of any 

prior node on the same path. Afterwards, a series of inclusion and exclusion processes are 

performed to add or remove population variables for a pair of smaller or larger cohorts. For 

example, by dropping the second population variable of the node ((C1,1 Λ C2,n Λ C3,1) ↔ 
(C1,2 Λ C2,n Λ C3,1)) in Fig. 2, we may achieve a better contrast subgroup pair ((C1,1 Λ 
C3,1) ↔ (C1,2 Λ C3,1)) with a higher J value compared to the previous one. As shown in 

Fig. 2, the new node after the exclusion ((C1,1 Λ C3,1) ↔ (C1,2 Λ C3,1)) is a duplicate of 

the one in the second layer. If a set of population variables has been evaluated previously or 

pre-defined by clinicians as trivial known subgroup pairs, the duplicated subgroup signified 

by a single dashed circle is pruned from the tree structure to avoid repetitive effort for 

contrast mining (a shell will be disabled if it aims at a target previously hit.) This pruning 

process in conjunction with the stopping criterion in Algorithm 1 (Line 7) ensures the 

algorithm will finish without entering an “oscillation” cycle.
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Without searching the entire space to obtain a complete assessment of all cohorts, this 

floating and path expansion algorithm utilizes a floating selection process, which is less 

greedy and more computational feasible, to systematically evaluate and select a large 

number of subgroups using the metrics described in the following section.

B. Contrast Pattern Mining

The main purpose in identifying pairs of subgroups is to discover significant contrasts that 

are likely to provide biomedical researchers with insights about interventions. Contrasts 

between a pair of subgroups could include different biomarkers between patient populations 

with certain phenotypic groups, as well as significant socioeconomic factors between 

disparity groups. To assess the differences between a pair of contrast subgroups, we 

extend the concepts of contrast mining methods [25] between two pre-defined subgroups to 

discover patterns with significant difference in prevalence. The following process describes 

the CONTRAST_MINING() function as listed in the INCLUSION and EXCLUSION 

pseudo codes. We use support and growth rates [25] for the initial evaluations of contrast 

patterns frequently appearing in one group but seldom in the other group. Given a data 

collection (D) of all patients and a collection of n measurable variables M = (m1, m2, … , 

mn} discussed in Section III, a patient’s record r ∈ D contains some instances of the subset 

of measurement variables. The total number of records in D is noted as |D|. A pattern 

appearing in r is a set of categories of several measurable variables, such as p = (mi,k, 

… , mj,l}, where mi,k is a category of measurable variable mi and mj,l is a category of 

measurable variable mj. The support of a pattern p from D is the ratio of the number of 

records containing p to the total number of records in the collection, denoted as

Support(p, D) = D, p
D (2)

Given two exclusive subgroups SG1 and SG2, a contrast pattern cp is the pattern whose 

support differs significantly between the two subgroups. If the support of cp in SG1 is s1 and 

the support of cp in SG2 is s2, the degree of its differences can be represented by growth 

defined as follows:

Growtℎ cp, SG1, SG2 = Max s1, s2
Min s1, s2

(3)

The range of growth is [1, +∞). The bigger the differences, the greater the growth. To 

normalize the growth value, we extend the tanh function [40].

GrowtℎNorm = tanh Growtℎ cp, SG1, SG2
Growtℎmax

∗ Growtℎmax,
(4)
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where Growthmax is the estimated maximal growth rate of a contrast pattern appearing in 

random contrast subgroup selection or a user-defined upper bound. After the normalization, 

the growth value is in the range [0, Growthmax).

Each contrast pattern between the pair of subgroups has to be frequent in at least one of the 

subgroups and its prevalence difference must be significant. Let α and β be the thresholds 

for support and growth rate, respectively. To ensure that a cp is frequent and has a significant 

prevalence difference between a pair of subgroups, the condition (Support(cp, SG1) ≥ α 
OR Support(cp, SG2) ≥ α) AND (Growth(cp, SG1, SG2) ≥ β) must be held. Applying this 

condition will identify two sets of contrast patterns CP1 and CP2 for the selected pair of 

subgroups SG1 and SG2. In addition, for each contrast pattern cpn with multiple measurable 

variables, the subset of the pattern cpi ⊆ cpn will be kept when Growth(cpi, SG1, SG2) − 

Growth(cpn, SG1, SG2) > 0. Those selected contrast patterns are called effective contrast 

patterns and are utilized to evaluate each pair of subgroups during the floating and path 

expansion procedure discussed in Section IV.A. The selection of an α value is based on the 

clinical application. For example, in a population health study, the appropriate value of α 
should consider sufficient size of population affected by the pattern; while in a rare disease 

study, the value of α could be as low as 0.05% to ensure the target populations with that 

pattern are not neglected in the process. When the population size drops to a certain number, 

a high α value should be applied to ensure the contrast patterns are commonly shared by the 

majority of patients in the small-sized subpopulation. The selection of β value is normally 

greater than 2.0 to ensure that the extracted contrast patterns appear at least twice as often in 

one subpopulation compared to the other.

C. Subgroup Prioritization Using J-Value

The outcome of the path expansion algorithm (Section IV.A) results in hundreds or even 

thousands of candidate subgroup pairs. To prioritize the subgroup pairs from the candidate 

pool for clinical trials or future studies, we evaluate the aggregated contributions of the 

extracted contrast patterns within each pair of subgroups (Section IV.B) based on two 

factors: (1) number of contrast patterns and (2) significance of those patterns.

To evaluate the overall quality of a set of contrast patterns that are significantly more 

frequent in one subgroup than in another subgroup, we use the quantitative indicator J value 

inspired by the g-index, which is commonly used to evaluate the productivity of a scholar 

[41]. If a researcher has published a set of articles (cp patterns), the g-index is measured by 

ranking them in decreasing order based on their citations (growth rate for each cp pattern). 

If a contrast subgroup has a set of cp patterns (articles), the J value is measured by ranking 

them in decreasing order based on their growth rate and then by taking the largest number 

such that the top J cp patterns (top g articles) cumulatively received at least J2 (g2 citations) 

scores. The J value is defined as follows:

J2 ≤ ∑
i ≤ J

GrowtℎNorm(cpi, SG1, SG2) (5)
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In the biomedical area, researches could focus on small subpopulations to target treatment 

for a small group of patients for precision medicine, such as one with rare diseases (1 

of 2,000 or less), or to study a population for health disparities between urban and rural 

groups (tens of thousands of subjects). To consider this population size factor, we applied 

the concept of Bayesian Average [42] that will allow us to set priority based on population 

size. For a contrast group with population size n and an original evaluation value of Jori, the 

size-modified J value is defined as:

Jsize − modified = N ∗ Jori + M ∗ J
N + M , (6)

where N = n, 1
n , N = n when a larger population is preferred and N = 1

n  when a smaller 

population is preferred. J is the average evaluation value and M is the average population 

size of randomly picked contrast subgroups prior to the path expansion process. Given k 

random selected contrast subgroups, J = ∑i = 1
k Ji/k and the M = (s1 + ⋯ + sk)/k, where J1, 

… , Jk is the original evaluation value Jori of the random selected contrast subgroups and s1, 

… , sk are their population sizes.

At the final subgroup prioritization step, all candidate contrast subgroups are ranked based 

on their J values.

V. DISTRIBUTED COMPUTING ALGORITHMS

Due to the combinatory challenges encountered when exploring subgroups from all 

population variables (P) (tens of thousands of potential subgroup pairs) and extracting 

contrast patterns from a large number of measurement variables (M) (millions of potential 

patterns), we utilize a distributed computing framework for this project. There are two 

computationally expensive procedures which can be accelerated: (1) the Floating Path 

Expansion as shown in Fig. 2, and (2) the Effective Contrast Pattern Extraction for detection 

used in J value calculation. Our method is implemented in Apache Spark [43] which allows 

us to take advantage of high throughput computing resources. As depicted in Fig. 3, to find 

effective contrast patterns, we first apply the FP-Growth algorithm [44] which is proven 

efficient using an elegant prefix tree to mine the frequent patterns in a selected contrast 

subgroup with two groups SG1 and SG2. We then aggregate these patterns to calculate 

their growth rates. The patterns that satisfy the conditions in Section IV.B are selected as 

candidates and used to calculate the J value.

By applying Floating Contrast Subgroup Selection (Algorithm 1), the contrast subgroup 

with the highest J value is discovered first, and then the Guided Cascading Shotgun 

Approach is used for Path Expansion process to obtain the top-K results with high J values. 

This process is implemented in a distributed in-memory computing environment to load 

paths and their mined patterns in large-memory clusters.
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VI. EXPERIMENTS

We evaluate the deep exploratory mining method using both synthesized and autism research 

[45] datasets for cohort discovery and ranking. Because discovery from real datasets is 

challenging to assess other than by validating it through existing literature, we used a 

synthesized data set to evaluate the coverage of randomly pre-defined cohorts using a range 

of expansion factors and computational resource needs. For the autism research dataset, the 

assessment is mainly on the discovery of new findings, which are considered novel based on 

the autism literature.

A. Synthetic Data – Cohort Coverage and Computing Resources Assessments

To explain the setting of the synthesized data set, we use Fig. 4 to pictorially describe the 

concept of the data creation process. The synthesized dataset, with size |D|, contains |P| 

population variables and |M| measurement variables. Each population variable (e.g., age) 

has Pc category values (e.g., age groups for a certain intervention) and each measurement 

variable (e.g., lab test values) has Mc categories (e.g., low, normal, and high).

We first created N pairs of pre-defined subgroups as artificial cohorts with significant 

contrasts from the measurements between each pair. The length (inclusion criterion) of pairs 

of subgroups varied from 1 to k population variables. In total, we created N/k subgroup 

pairs for each length. The sample size of a contrast subgroup was |T| using a uniform 

distribution. We assigned contrast patterns to each pair of subgroups to ensure that those 

subgroups contain pre-defined high contrast patterns. Each contrast pattern was frequent in 

at least one of the subgroup pairs with a significant growth rate. By following the Apriori 
property of the association rule mining process, a short pattern had a higher or equal support 

value (frequency) than its superset. All subgroup pairs were randomly formed and various 

measurement associations with different lengths were randomly assigned to each subgroup 

pair. Other measurements were then filled with random categories using the Gaussian 

distribution. In addition, to test the robustness of our methods, we intentionally assigned 

various levels of overlaps between pairs of subgroups with an expectation to increase the 

difficulty of the deep exploratory mining in identifying overlapped subgroups.

In our synthesized data creation process, we set |D| = 106, |M| = 100, Pc = Mc = 10, k = 

5 and |T| ~ U[0.01 × |D|, 0.1 × |D|]. The maximal subgroup length k = 5 was determined 

based on our empirical observations from real biomedical applications in cohort studies. We 

defined the subgroup sample size |T| that varied from 1% to 10% of the total data size. 

In addition, we chose four pools of population variables |P| ∈ {5, 10, 15, 20} to test the 

effectiveness of the method. For each pool, we set the number of subgroup pairs N = 10, 20, 

30, and 40.

To test whether the deep exploratory mining method is able to identify the majority of the 

artificial cohorts and to assess the necessary computational resources to achieve the goal, 

we performed the subgroup cohort discovery method on a collection of synthesized datasets 

with a different number of population pools using a set of expansion factors ranging from 

5% to 20%. The Support threshold α is set as 0.5 and Growth threshold β is set as 2 in 

the experiment. These expansion factors from the “Guided Cascading Shotgun” approach 
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(Section IV.A) were used to evaluate how “deep” the approach should explore to ensure a 

certain coverage of the artificial cohorts. For each pool of population variables, the deep 

exploratory mining experiment was repeated five times and the average of the coverages was 

calculated. Ideally, the deep exploratory mining process should be able to identify all cohorts 

with a small expansion factor.

As shown in Fig. 5, the coverages were improved when the expansion factors increased, 

as expected. However,100% coverage was not reached even with a 20% expansion factor 

which consumed a significant amount of computing resources. Manually inspecting the 

cohorts newly discovered by the method but not in the pre-defined sets, we observed that the 

“Guided Cascading Shotgun” approach discovered other potential paths, which had better 

contrasts than some of the artificial cohorts. When the exploration went deeper – for 10% 

and 20% expansion factors, the coverages were above 72%, and 94%, respectively. For 

this synthesized data set, an expansion factor larger than 20% may not provide sufficient 

economic benefits to cover those “left out” subgroup cohorts that are not so meaningful as 

the newly discovered ones.

In Fig. 6, we compared the running times of the different pools of population variables with 

a 20% expansion factor using 6, 12, 18, 24, and 30 computational nodes. Each node was 

allocated an Intel Xeon CPU E5-2670 v3 @ 2.30 GHz with a 21-core processor and 105 GB 

RAM for the computing time study. Fig. 6 shows that the running time of different numbers 

of population variables had a noticeable gap because the search space increases when 

more population variables were added to the experiments. A larger number of population 

variables clearly requires more computing nodes to reduce the extra running time due to the 

combinatorial search space. From the figure, the running times, using six computing nodes, 

between the data sets with 5- and 20-population variables are about 7.53 hours and 4.42 

days, respectively. When the number of computing nodes was doubled, the running time for 

data set with 5-population variables reduced by 25% (1.92 hours) while the running time 

for a data set with 20-population variables significantly reduced by 40.6% (43.11 hours). 

As shown in the figure below, the datasets with small number of population variables do 

not require extensive computing resource due to relatively much smaller search space than 

those with large number population variables. Therefore, adding more computational nodes 

does not significantly reduce the running time. It is worth noting that the number of samples 

in the subgroup cohorts insignificantly affects the running time compared to the number 

of population variables and expansion factors. Figs. 5 and 6 provide a general assessment 

for researchers seeking to allocate appropriate computing resources based on number of 

population variables and coverage expectations.

While there is no method that provides precisely the same function of our approach 

for a fair comparison, in Supplement 4.A, we compared the results of our method with 

hierarchical clustering [46] and network analysis [47] which are “bottom-up” approaches 

using measurable variables to form clusters where common population variables are 

considered novel cohorts. We used a subset of the synthesized data set to evaluate coverage 

of pre-defined subgroups. Results are reported in Supplement 4.A.
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B. Autism Data Set – Novel Discovery Assessment

Autism Spectrum Disorder (ASD) is a developmental disorder which results in lifelong 

impairments and disability in social skills, repetitive behaviors, and speech and 

communication issues [48]. About 1 in 59 children are diagnosed with some form of 

ASD according to the CDC’s Autism and Developmental Disabilities Monitoring (ADDM) 

Network [49]. ASD is comprised of many different subgroups both genetically and 

phenotypically, and there is an urgent need to subcategorize ASD patients and tailor 

treatments for each patient [36], [50], [51].

In our real case study, we use the Simons Foundation Autism Research Initiative (SFARI) 

Simon’s Simplex Collection (SSC) [45]. The data contains 2591 families with exactly one 

child diagnosed with autism (proband) while the parents and siblings are unaffected. The 

data contains demographic information, family history and several behavior assessments and 

diagnostic aids as phenotype data. Also, the genotype data is collected from all probands and 

their 7605 unaffected family members. In this experiment, we chose 15 phenotype features 

as population variables consisting of cumulative scores, IQ scores, language development, 

emotion or behavior problems, assessment subscales, developmental milestones and physical 

attributes, and pre-selected 10,000 Single Nucleotide Polymorphisms (SNPs) by utilizing 

genome-wide SNP prioritization to preliminarily discover novel associations related to 

Autism. Those SNPs are used as measurement variables to differentiate subgroup cohorts. 

By performing the deep exploratory data mining method with a 20% expanding factor, we 

discovered 142 contrast subgroups. Running times were 1.58 days, 20.28 hours, 14.31 hours, 

11.64 hours, and 9.67 hours using 6, 12, 18, 24, and 30 computational nodes, respectively, 

with the same five settings of computational resource used in the synthesized data set.

From the discovered subgroup cohorts, we separated and ranked contrast subgroups for 

single-, double-, and triple-population variable settings and picked the top two most 

contrasted subgroups from each of them as listed in Table I. We used Fisher’s exact test 

[52] to assess statistical significance of the identified genes and listed their P values in 

Supplement 1. We listed the top 10 subgroup pairs ranked by their J values for each 

population variable setting in Supplement 3. To empirically prove that the significant 

genes are unique on a specific side of a subgroup pair, we treat the family members as 

outgroup and check the gene significance by comparing with the outgroup. We searched 

those significant genes in AutDB, an evolving database for the autism research community 

[53], and PubMed abstracts of autism related publications. From all discovered genes or 

gene combinations in the top 20 subgroup cohorts, 11.57% of 415 relevant genes are in 

AutDB, nearly 20.72% were identified through the PubMed search, and the remaining genes 

were considered novel. We then further studied each contrast subgroup pair to find whether 

there are any publications to support those contrast subgroups and significant genes. Table 

I lists six subgroup pairs for cohorts with single-, double-, and triple-population variables, 

using support threshold as 0.2 and growth rates 2.5, 3.0, and 4.0, respectively. In the table, 

“No. of Discovered Genes” reports the number of distinct genes identified by the algorithms, 

“No. of Genes in AutDB” lists the number of identified genes is in the AutDB, and “No. of 

PubMed Articles” lists the numbers of articles studied the selected population variables of a 

pair of subgroups without restriction of quantifiers, such “Low,” “Mid,” or “High.”
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Single-Population-Variable Subgroup Pairs: Our algorithm identified two contrast 

subgroups [Low SSC Full Scale IQ] versus [High SSC Full Scale IQ] with five significant 

genes discovered using a 2.5 growth rate threshold. One of them is listed in the AutDB. 2242 

articles meet the search criterion “(autism OR asd) AND (IQ OR “intelligence quotient”)” 

from PubMed. While there are 104 articles having genetic discussions with the subgroup 

(low IQ and high IQ), there is no article discussing the relationship between IQ with 

any of the five discovered genes. The five genes are considered novel for this pair of 

subgroups. A further study of the contrast patterns showed that gene combinations (SIRT2, 

CSGALNACT1) (support: 0.209 vs 0.075) and (ARHGAP24, ATP10B) (support: 0.214 vs 

0.078) appear 2.7 more times in the [Low SSC Full Scale IQ] subgroup than the [High SSC 

Full Scale IQ] subgroup. The gene ARHGAP24 is known to be associated with ASD based 

on the AutDB and PubMed search while SIRT2, CSGALNACT1, ATP10B are new genes 

discovered by our methods. The mined results will provide the autism community potential 

directions to conduct in-depth study for the topic related to high or low intelligence quotient 

(IQ), such as Chiocchetti AG et al.’s investigation of the functional common variants of 

glutamatergic genes between cohorts of lower (IQ ≤ 70; LIQ) and higher intellectual ability 

(IQ > 70; HIQ) cohorts [54].

In the table, we also report the statistics for another pair of single-population-variable 

subgroup cohorts related to “Normal/Late to Speak Sentences” for language impairment, 

which is an established topic in the autism research community [55], [56]. We found that 

the co-occurrence of genes (PIEZO1, ACSS3) (support: 0.078 vs 0.237) is 3.04 times 

greater in the language impairment subgroup (Late to Speak Sentences) compared to the 

normal one (Normal to Speak Sentences). Gene combination (SCN5A, ACSS3) (support: 

0.078 vs 0.217) is 2.78 times more prevalent in the language impairment subgroup while 

(EDARADD, PPP2R2B) (support: 0.240 vs 0.092) is 2.6 times more prevalent in the 

unaffected group.

Double-Population-Variable Subgroup Pairs: Our algorithm identified a pair of 

contrast subgroups [Mid RBS-R Overall Score AND Low CBCL6 Social Score] versus 

[Low RBS-R Overall Score AND Low CBCL6 Social Score] with 44 significant genes 

discovered using a 3.0 growth rate threshold. Three of them are listed in the AutDB. 

898 articles were retrieved using a search criterion, listed in Supplement 2, from the 

PubMed using lexical variations of the double population variables. Among them, 179 

articles had some genetic discussions and four papers mentioned discovered genes-GATA3, 

KIRREL3, CLSTN2 are associated with this pair of subgroups [57]–[60]. We found that 

gene combination (KIRREL3, SRGAP3) (support: 0.208 vs 0.052) is 4.00 times more 

prevalent in those with a mid-range Repetitive Behaviors Scale – Revised scores (RBS-R) 

and who have a low CBCL6 social scores as compared to the group, which has a low 

Repetitive Behaviors Scale – Revised scores (RBS-R) but also has a low CBCL6 social 

scores. Gene combination (PTPRF, SRGAP3) (support: 0.327 vs 0.078) is 4.19 times more 

prevalent in the group with mid-range Repetitive Behaviors Scale – Revised scores (RBS-R) 

while (CLSTN2, WDFY4) (support: 0.054 vs 0.208) is 3.81 times more prevalent in the 

group with low Repetitive Behaviors Scale – Revised scores (RBS-R). Genes KIRREL3, 

SRGAP3, CLSTN2 and WDFY4 are associated with autism in the PubMed Search, and 
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gene PTPRF has not been reported in the autism literature so far. Also, gene KIRREL3 is 

associated with the accessory olfactory system, which controls social, sexual interactions 

and is related to repetitive behaviors in mice [60], [61], and is a candidate gene for 

social and language delay in autism patients [62]. Gene SRGAP3 is also a risk gene for 

schizophrenia and associated with impaired social behavior [63]. Gene CLSTN2 is also 

suggested for a possible role in the psychopathological mechanisms of autism [59].

In the same group of Table I, we also report the statistics for another pair of double-

population-variable subgroup cohorts relating “Low/High ABC III Stereotypy Scale” and 

“Late to Use Words.” We found that the gene combination (GRIN2B, ASB1) (support: 0.053 

vs 0.208) appeared to be 3.94 times more prevalent in autistic patients scoring a high on 

the ABC III Stereotype scale (Aberrant Behavior Checklist Stereotypic Behavior) and who 

are late to use words as compared to the group with a low ABC III Stereotype scale scores 

and that is also late to use words. GRIN2B is shown in AutDB and ASB1 and is known to 

be autism related through PubMed Search, where GRIN2B is reported to be associated with 

verbal fluency and linguistic processes [64]. However, none of the 44 significant genes were 

reported in the literature related to the specific subgroup populations.

Triple-Population-Variable Subgroup Pairs: Our algorithm identified a pair of 

contrast subgroups [Mid Vineland II Daily Living AND High Height Z Score AND High 

ADIR C Total] versus [High Vineland II Daily Living AND High Height Z Score AND High 

ADIR C Total] with 22 significant genes discovered using a 4.0 growth rate threshold. Four 

of them are listed in the AutDB. However, no article meets the search criterion, listed in 

Supplement 2, from the PubMed using lexical variations of the triple population variables.

The co-occurrence of genes (KCNQ4, KCNH1) (support: 0.213 vs 0.019) appears 11.52 

times more in the group which has “Mid-range Vineland II daily living scores, a high height 

score and a high ADIR C Total Score” than the group which has “High Vineland II daily 

living scores, a high height score and a high ADIR C Total Score.” Genes combination 

(PPM1E, TET2) (support: 0.265 vs 0.037) is 7.15 times more frequent in the group with a 

mid-range Vineland daily living score. Gene TET2 is associated with autism in the PubMed 

Search while genes KCNQ4, KCNH1 and PPM1E are considered new discoveries which are 

not reported in the autism literature yet.

In the same group of the table, we also report the statistics for another pair of triple-

population-variable subgroup cohorts related to “Med/High CBCL6 Rule Breaking Score,” 

“Low CBCL6 Activities Score,” and “High SRS-P Total Score.” Co-occurrence of genes 

(FHIT, ZNF578) (support: 0.206 vs 0.034) appears 6.08 times as much in the group with 

mid-range rule breaking scores than in the group with high rule breaking scores. The gene 

combination (CNTN5, KIAA1211L) (support: 0.276 vs 0.051) appears 5.43 times more in 

the group with mid-range rule breaking scores. These new findings will provide suggestions 

to the autism research community to focus on more targeted subgroup cohorts which were 

not investigated previously.
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To conduct a comparison of unsupervised clustering methods for cohort discovery, we 

applied the hierarchical clustering and network analysis on the full Autism data set and the 

results are discussed in Supplement 4.B.

VII. CONCLUSION

In almost all biomedical research activities, finding small homogenous subgroups within 

a large heterogeneous population is a critical process for hypothesis formulation. Patient 

sample heterogeneity plagues efforts to target individualized treatments by masking critical 

individual and subgroup variation within samples. Genomic variation, epigenetic influences, 

molecular metabolic factors, and demographic and social factors differ widely within 

patient populations and can be important indicators of treatment response. The success of 

identifying optimal subpopulations is expected to result in much more promising findings 

for tailoring treatment than simply looking at the population as a whole for precision health 

research.

In this paper, we present a novel deep exploratory mining framework for subgroup cohort 

discovery. This framework consists of a floating and path expansion process, contrast 

pattern mining, and subgroup prioritization using J-value. This work demonstrates a 

robust automatic cohort prioritization process by strategically exploring multi-dimensional 

population variables to form meaningful subgroups, which have explainable and 

highly contrasted genotypic/phenotypic patterns that may benefit from intervention. We 

implemented the framework and deployed it in a distributed computing environment to 

ensure an efficient mining process. A series of computational experiments was conducted to 

assess the resource needs for various dimensions, such as complexity of the data (number of 

potential population variables) and availability of computing power (number of nodes). To 

test the capability of the work, we perform computational evaluation on both synthetic and 

autism datasets. The ranked cohorts from the synthesized data set show the high percentage 

of coverage of pre-set subgroups, as well as novel findings of subgroups that were identified 

only by the framework with patterns having better contrasts than those in the pre-set data. 

In addition, the results from the autism data set demonstrate novel discoveries of genes 

that are new to the autism research community [36]. The mined subgroup cohorts and 

relevant genetic patterns will provide the community with data-driven and statistically tested 

knowledge to develop hypotheses for more in-depth wet lab studies or clinical trials.

While categorization in the data mapping process makes the findings explainable, it poses 

limitation related to the loss of information granularity. Applying imputation to estimate 

missing values in the autism study could bring bias to the data set. Our future works are 

to develop a pattern mining module to handle continues measurable variables using fuzzy 

thresholding [65] to avoid artificial crisp partitioning in categorization. Moreover, we plan to 

embed the cost and impact on intervention development, such as drug repositioning [66], in 

the J value calculation, to tailor meaningful cohorts of patients. In addition to applications 

in genomics, we will extend our work to perform cohort discovery from electronic health 

record, medical images, and other biomedical data modalities.
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This framework will provide the broad biomedical research community with a means to 

develop strategies to identify homogeneous subgroups within heterogeneous populations 

prior to conducting costly bench experiments or clinical trials. It has the potential to enable 

targeted treatments to improve outcomes, reduce costs, and minimize morbidity associated 

with misdirected interventions.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The overall system architecture of the distributed exploratory mining workflow. The 

architecture can be divided into three parts—data mapping, deep exploratory mining and 

distributed computing. The expert is involved in the data mapping part to map raw data into 

the mineable space, then the formatted data is fed to the deep exploratory mining process 

using a Big Data ecosystem. Contrast subgroups are selected and their contrast patterns are 

mined in the distributed environment. Finally, all selected contrast subgroups are evaluated 

based on their effective contrast patterns using an evaluation function J.
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Fig. 2. 
The Guided Cascading Shotgun approach for the path expansion process, which explores 

multiple paths in each inclusion and exclusion procedure for cohort selection.
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Fig. 3. 
Distributed pattern mining for a contrast subgroup using an Apache Spark high performance 

computing environment.
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Fig. 4. 
The generation of a synthesized dataset containing subgroup pairs where contrast patterns 

have various overlapping factors in the measurement (M) space with varying length of 

patterns. There are N/k subgroup pairs for lengths from 1 to k randomly assigned to the 

dataset.
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Fig. 5. 
The coverage of all artificial cohorts discovered by the algorithm on the synthesized data. 

Each synthesized dataset has one million records. Synthesized data with the population 

variable numbers range from 5 to 20. The expanding percentage ranges from 5% to 20%.
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Fig. 6. 
The running time of different numbers of population variables with expanding factor equals 

to 20% based on 6, 12, 18, 24, and 30 computational nodes.
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