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Introduction: Subthalamic nucleus (STN) is an effective target for deep brain stimulation (DBS) to reduce the motor
symptoms of Parkinson's disease (PD). It is important to identify firing patterns within the structure for a better under-
standing of the electro-pathophysiology of the disease. Using recently established metrics, our study aims to autono-
mously identify the discharge patterns of individual cells and examine their spatial distribution within the STN.
Methods: We recorded single unit activity (SUA) from 12 awake PD patients undergoing a standard clinical DBS sur-
gery. Three extracted features from raw SUA (local variation, bursting index and prominence of peak) were used
with k-means clustering to achieve the aforementioned unsupervised grouping of firing patterns.
Results: 279 neurons were isolated and four distinct firing patterns were identified across patients: tonic (11%), irreg-
ular (55%), periodic (9%) and non-periodic bursts (25%). The mean firing rates for irregular discharges were signifi-
cantly lower (p<0.05) than the rest. Tonicfirings were significantly ventral (p<0.05) while periodic (p<0.05) and
non-periodic (p<0.01) burstswere dorsal. The percentage of periodically bursting neurons in dorsal region and entire
STN were significantly correlated with off state UPDRS tremor scores (r = 0.51, p = 0.04) and improvement in bra-
dykinesia and rigidity (r = 0.57, p = 0.02) respectively.
Conclusion: Strengthening the application of unsupervised clustering for firing patterns of individual cells, this study
shows a unique spatial affinity of tonic activity towards the ventral and bursting activity towards the dorsal region
of STN in PD patients. This spatial preference, together with the correlation of clinical scores, can provide a clue to-
wards understanding Parkinsonian symptom generation.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The subthalamic nucleus (STN) is an established target in deep brain stim-
ulation (DBS) to control the motor symptoms of Parkinson's disease (PD). It
has been suggested that firing pattern changes in single unit activity (SUA)
within the basal ganglia could be a key in understanding the pathophysiology
of PD [1] and can assist in electrophysiological mapping of the structure [2].
Studies involving 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
treated non-human primates report an increase in oscillatory neuronal activ-
ity and instantaneous firing rates [3] alongwith an increase in bursting activ-
ity [4]. Based on these observations, Wichmann and DeLong suggested that
both the change in firing rate and firing patterns are relevant to the patho-
physiology of PD and investigating them have the potential to unravel the
ier Ltd. This is an open access artic
underlying neural network inducing PD manifestations [5]. In this regard,
various groups have reported different types of neuronal firing patterns in
the STN of Parkinsonian patients [2,3,6,7]. In particular, oscillatory firings
were separated fromnon-oscillating ones in [7],whereas others have focused
on identification of tonic (regular), irregular and oscillatory firing patterns
[6]. The majority of these studies characterized firing profiles in a binary
fashion. The metrics used to separate these profiles are modestly unclear
and, in several instances, chosen arbitrarily based on visual inspection such
as inter-spike interval (ISI) histograms or binary spike trains. Notwithstand-
ing, in total, three main firing patterns have been commonly described:
tonic, irregular and oscillatory [2,3,6,7]. Irregular firings are most common
in proportion, followed by tonic and then oscillatory [2,6]. Furthermore,
studies also investigated the spatial distribution of oscillatory firing patters
[7] as the dorsolateral STN is known to harbor the motor circuitry of STN,
whereas the ventromedial STN is associated with limbic circuitry [6].

Grouping of firing patterns into different categories manually is dif-
ficult as it is both time consuming and, in some cases, hard to achieve
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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using the limited information provided by an auditory/visual inspec-
tion. By using recently established metrics [8,9], our study aims to auto-
matically characterize the proportion and spatial distribution of four
firing patterns: tonic (T), irregular (I), periodic bursts (PB) and non-
periodic bursts (NPB) within the STN of PD patients revealing distinct
firing profiles in the territories of STN.
2. Materials & methods

2.1. Patients and recordings

The study was approved by the Institutional Review Boards at the
University of Houston and Baylor College of Medicine. Intraoperative
SUA was recorded from 12 awake PD patients (8 Male, 4 Female, Age: 54
±11.14 years) under local anesthesia as part of the standard clinical proce-
dure. Eight of the 12 patients underwent bilateral DBS implantation, and 4
had unilateral implants constituting 20 STN recordings in total. Patients
were asked to stop medication at least 12 h prior to the surgery. Three mi-
croelectrodes (NeuroProbe; AlphaOmega, Israel) were initially placed at
least 15 mm above the stereotactic target and advanced towards the target
depthwith 0.5mmsteps. SUAwas recorded from threemicro-electrode tra-
jectories using a bio-amplifier (Grapevine Neural Interface and Processor;
Ripple, UT) at 30 KHz. During the awake surgery, real time SUA traces
were displayed on a data-scope to help with the localization of the target
structure. The entry and exit of the STN was determined by a clinical neu-
rophysiologist by listening to and visually observing the firing patterns of
neurons. The dorsal borders of the STN in each patient were defined by in-
spection of SUA showing an increase in background activity and discharge
rates. The dorsal border was taken as reference and marked as 0 mm with
negative depth values ventral to it. Spatially, 0 mm to −2.5 mm was con-
sidered as the dorsal half of STN as previous studies show dominance of os-
cillatory activity in this area [7]. Other firings captured above or below the
electrophysiologically defined borders of the STN were not included in our
report. The de-identified data were transferred to a computer for offline
processing.
2.2. Data analysis

The neural data was analyzed offline in Matlab 2017b (Mathworks,
MA) using custom scripts and a publicly available spike sorting toolbox
[10]. Since the neurons are observed to display a non-stationary firing
behavior over time [2], we analyzed and clustered the raw segments
from all 3 tracks in 5 s intervals with a 2.5 s overlap. This procedure
helped us in capturing the neurons' non-stationary behavior and label
each segment separately based on its firing characteristic. Conse-
quently, rather than assigning each neuron to a single category such as
tonic or irregular, we clustered the segments and assigned them into
categories.

Following the high pass filtering of raw SUA data over 300 Hz, spike de-
tection and sorting were performed automatically by using WaveClus [10],
an open-source Matlab toolbox. Segments with a firing frequency of
<10 Hz and duration <3 s were discarded. Three features: (i) local varia-
tion [8]; (LV), (ii) bursting index [9]; (BI) and (iii) prominence of peak (P)
were used together with k-means [11] to group the spike trains. To analyze
the spatial distribution of discovered clusters statistically, Wilcoxon sign
rank test was performed within each firing pattern to check if the pattern
was significantly dorsal or ventral and to assess the difference in firing
rates between these patterns aswell as the intensity of bursting (BI) and reg-
ularity (LV) in dorsal and ventral regions. Correlation with Unified
Parkinson's Disease Rating Scale (UPDRS) was done using Spearman rank
correlation due to non-normality of the data. Three patients were excluded
from the correlation analysis since they were external referrals and access
to their detailed medical records and itemized UPDRS scores were limited
(see supplementary Table S1).
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2.2.1. Local variation (LV)
LV was used as a measure of regularity in firings and defined as:

LV ¼ 3
n−1

∑n−1
i¼1

Ii−Iiþ1

Ii þ Iiþ1

� �2

ð1Þ

where Ii and Ii+1 are the ith and i + 1st ISI. LV helped eliminate the issues
caused by variablefiring rates and non-stationarity [8]. LV approaches 0 for
a tonic firing neuron and 1 for a highly irregularly firing neuron.

2.2.2. Bursting index (BI)
Bursts were detected using a modified version of Max Interval Method

[9]. For burst initiation, ISI below 10 ms and a minimum of three consecu-
tive spikes were required along with an intra-burst pause period of at least
20 ms or a sum of 30 ms between the next two ISIs. The bursting index is
accepted as the ratio of the number spikes bursting to the number of spikes
with ISI >10 ms.

2.2.3. Prominence of peak (P)
Upon initial visual investigation of the raw SUA data we observed that

bursting can be both periodic and non-periodic. In order to distinguish be-
tween periodic and non-periodic bursts, a new feature called prominence of
peak was computed from the spike train power spectrum. The digital spike
train was convolved with a 10 ms Gaussian window and its power spectral
density (PSD) then calculated using Welch periodogram [12]. The peak
value of the PSD was detected between 3 and 40 Hz and its prominence
was calculated using:

d ¼ Pmax−P minð Þ2
P min

2 þ r
ð2Þ

P ¼ 1
ed

ð3Þ

where P is the prominence, Pmax is the peak value of PSD and P min is the
mean of the minimum values around this peak within an 8 Hz bandwidth.
A regularization parameter (r = 10−3) was used to eliminate small peaks
that might appear prominent due to a small background. Eq. (3) was used
to limit the prominence between 0 and 1 where values approaching 0 indi-
cate strong oscillatory activity.

2.2.4. Clustering
Clustering of firings into four categories was done using the k-means

method [11] in a 3D feature space. The features were normalized before
being subjected to the clustering algorithm. We varied the number of clus-
ters from 1 to 8 and computed the sum of within-cluster distances for each
index. When a relatively prominent elbow was observed in the graph, we
used that index to decide on the total number of clusters in the data.

3. Results

We analyzed 6705 s of data and successfully isolated 279 neurons (23
± 7 neurons per patient). After spike detection and sorting, neurons were
grouped into firing patterns and mapped onto the STN to investigate their
spatial distribution. Fig. 1A shows the border and depth definitions as
well as exemplary raw SUA recordings from various depths. Fig. 1B displays
a representative trace for each irregular, tonic, periodic and non-periodic
bursting firing pattern we studied. The clustering performed using the
three features provided a prominent elbow around four for the total sum
of intra-cluster spacing suggesting four distinct firing patterns (Fig. 1C).
To provide an example of their content, we show 3 raw traces from each
cluster as well. We observed that the largest cluster corresponding to 55%
of the neuronal spiking displayed irregular patterns, where the remaining
11% displayed a tonic pattern while other 34% were bursting with 25%
non-periodically and 9% periodically (Fig. 1D). Themean firing rates for ir-
regular firings (33.48± 17.7 Hz) were significantly lower (p<0.05) than



Fig. 1. (A) Representation of STN and raw SUA recordings from various depths (0 mm is the reference dorsal border). (B) Exemplary raw SUA data for four firing
patterns (I = Irregular, T = Tonic, PB = Periodic burst, NPB = Non-periodic burst). (C) Clustering result over 12 subjects (1371 segments) (LV = Local
Variation, BI = Bursting Index). Inset - Inter cluster distance plots for 1 to 8 clusters (x-axis: number of clusters, y-axis: sum of inter-cluster distance) and
three examples of raw SUA traces from each cluster. (D) Proportion of firing patterns distributed across 12 subjects. (E) Spatial distribution of firing patterns
across STN. The shaded areas indicate dorsal (0 to −2.5 mm) and ventral (−3.5 to 6 mm) regions of STN. (* Indicates significant difference between shaded
regions) (* = p < 0.05, ** = p < 0.01).
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the tonic firings (74.19 ± 33 Hz), periodic (82.35 ± 43.46 Hz) and non-
periodic bursts (57.57± 28.66 Hz). Visual observation of the spatial distri-
bution of these firing profiles (Fig. 1E) revealed that the irregular firings
were uniformly distributed throughout the STN. Interestingly, burst type
firings populated the dorsal STN whereas tonic ones tended towards the
ventral end. We observed that the amount of tonic activity rapidly in-
creased 3 mm below the dorsal border of STN and extended towards the
ventral region. Statistical analyses concluded that tonic firings were signif-
icantly ventral (p < 0.05) while periodic (p < 0.05) and non-periodic
bursts (p < 0.01) were significantly dorsal. However, it should be noted
that bursting patterns can still be observed within the ventral territory of
the STN. Similarly, our findings show that both bursting (BI: 0.86 ± 0.17
vs 0.79 ± 0.2) and regularity (LV: 0.31 ± 0.06 vs 0.21 ± 0.08) were sig-
nificantly different in the two regions of STN (p < 0.01) with bursting
being more intense in the dorsal region and tonic discharges being more
regular in the ventral region. Finally, as done in [7] we correlated the off
drug UPDRS part III scores and their improvement with medication with
firing characteristics and found that the percentage of dorsally located peri-
odic bursting neurons was significantly correlated with tremor (r=0.51, p
= 0.044). The percentage of periodic bursting neurons in the entire STN
was significantly correlated with the improvement in bradykinesia and
3

rigidity (r=0.57, p=0.02). Other UPDRS sub-scores did not show any sig-
nificant correlation (p > 0.05).

4. Discussion

In this study, using an unsupervised approach utilizing recently
established metrics, we identified and investigated the spatial distribution
of neurons within the STN of PD patients based on their firing patterns. In
addition to commonly reported irregular, tonic and bursting patterns
[2,6], we further divided the bursting category into oscillatory and non-
oscillatory bursts.Whilemost studies compare the spatial distribution of os-
cillatory units against non-oscillatory units [7], we expanded the investiga-
tion by looking at the spatial distribution of each of the four individual
patterns separately. An interesting and novel finding was the occurrence
of tonic firings towards the ventral region of STN. While the presence of os-
cillatory neurons in the dorsal region has already been established [7], our
study shows the occurrence of burst type of findings (be it periodic or non-
periodic) in the dorsal region as well. Our observations of irregular firings
dominating the set (55%), followed by non-periodic bursts (25%), tonic
(11%) and periodic burst firings (9%) were comparable to previous find-
ings [2,3]. The high fraction of bursting in ourfindings is also in accordance

Image of Fig. 1
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with the previously studied MPTP treated animal models [3,4] where the
main difference between healthy and Parkinsonian state was the emer-
gence of bursting activity and increased instantaneous firing rates. Similar
to the study conducted byWeinberger et al. [7], we found a significant cor-
relation between the percentage of periodically bursting dorsal neurons
with the off state tremor score and overall percentage of periodic neurons
with improvement in bradykinesia. Given the somatotopic organization
of STN [6], our observation of the predominance of bursting activity in dor-
sal STN and tonic activity in ventral region could be indicative of variable
disease manifestations such as motor and cognitive/limbic features of PD.
The study of pattern changes as well as their distribution within the struc-
ture thus could provide a better understanding of the more complex mech-
anisms underlying the disease.

We presented an automated approach that can isolate clusters of neu-
rons based on their firing profiles in the territories of STN. In practice
83% of centers around the world are using MER for electrophysiological
mapping to refine the final position of the chronic electrode [13]. Intraop-
erative decision making involves the conversion of single-unit neuronal ac-
tivity recorded at the microelectrode tip, into audio and visual signals. This
process of mapping is time consuming experience-based and depends criti-
cally on the ability of neurosurgeons or electrophysiologists to recognize a
variety of cues in the recorded neural activity. Multiplemicroelectrodes iso-
lating neurons with distinct firing patterns makes the interpretation of au-
ditory cues even more challenging. We propose that the presented
automated approach can be used to investigate the firing profiles of a
large number of neurons recorded simultaneously during DBS surgery.
We postulate that it may have utility in identifying the most favorable
track for macroelectrode implantation, and contact localization (i.e.
depth), while also providing additional insight regarding the relationship
of disease symptoms to different territories of the STN. Since the bursting
firings were biased towards the dorsal region, the track with larger number
of bursting neurons can be utilized for chronic DBS electrode placement.
Nevertheless, further research will be required to better define how this
technique can be applied to improve targeting of the dorsolateral STN
where the majority of patients will experience clinical improvement.

It must be noted that using existing clinical electrodes one can record
only 1–2 neuron at best per track at each depth thus limiting the number
of neurons isolated within the territories of STN of each patient. We antic-
ipate that, an increased patient population as well as future clinical elec-
trodes designs with multiple SUA recording contacts can improve the
sampling capacity and will likely provide advantages in establishing a
bridge between single neuronal activity and clinical observations.
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