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ABSTRACT
Large language models (LLMs) have demonstrated 
emergent human-like capabilities in natural language 
processing, leading to enthusiasm about their integration 
in healthcare environments. In oncology, where 
synthesising complex, multimodal data is essential, LLMs 
offer a promising avenue for supporting clinical decision-
making, enhancing patient care, and accelerating research. 
This narrative review aims to highlight the current state 
of LLMs in medicine; applications of LLMs in oncology for 
clinicians, patients, and translational research; and future 
research directions. Clinician-facing LLMs enable clinical 
decision support and enable automated data extraction 
from electronic health records and literature to inform 
decision-making. Patient-facing LLMs offer the potential 
for disseminating accessible cancer information and 
psychosocial support. However, LLMs face limitations that 
must be addressed before clinical adoption, including risks 
of hallucinations, poor generalisation, ethical concerns, 
and scope integration. We propose the incorporation of 
LLMs within compound artificial intelligence systems to 
facilitate adoption and efficiency in oncology. This narrative 
review serves as a non-technical primer for clinicians to 
understand, evaluate, and participate as active users who 
can inform the design and iterative improvement of LLM 
technologies deployed in oncology settings. While LLMs 
are not intended to replace oncologists, they can serve as 
powerful tools to augment clinical expertise and patient-
centred care, reinforcing their role as a valuable adjunct in 
the evolving landscape of oncology.

CURRENT STATE OF LARGE LANGUAGE MODELS IN 
MEDICINE
Introduction
Large language models (LLMs) are artifi-
cial intelligence (AI) systems focused on the 
generation of natural language. The field of 
oncology is well-positioned to benefit from the 
incorporation of LLM technologies, especially 
given its emphasis on the synthesis of diverse 
data types such as clinical, imaging, labora-
tory and genomic reports integrated with 
the psychosocial elements of patient-centred 
medicine. This narrative clinical primer aims 
to provide a background for the application of 
LLMs in cancer care and lay the groundwork 
for their adoption in clinical oncology. Our 
narrative review adopts a practical approach 

by offering step-by-step examples of LLM tool 
integration into clinical oncology workflows 
as well as discussion of contemporary trends 
including compound AI systems with human-
in-the-loop designs, multi-modal LLMs, and 
emergent regulatory frameworks to fill the 
gap between conceptual overviews and clin-
ical realities. We identified relevant studies 
and potential applications by conducting a 
comprehensive but non-systematic search of 
academic databases (PubMed, MEDLINE, 
EMBASE, Google Scholar) using variations 
of the keywords ‘large language model’, 
‘generative artificial intelligence’, ‘oncology’ 
and ‘cancer’. We also cross-referenced bibli-
ographies of retrieved articles and drew on 
expert clinical and AI knowledge within the 
author team to ensure coverage of emerging 
and notable studies within the scope of large 
language model development and applica-
tions in oncology.

History of NLP and LLMs
Natural language processing (NLP) describes 
the computer-aided analysis that enables 
comprehension and generation of human 
language. In the early 2000s, the first iter-
ation of language generators employed 
statistical models that estimated the likeli-
hood of the next word in a sequence, based 
on frequency of occurrence in the training 
data.1 To leverage the scale of large natural 
language datasets such as unstructured 
text in electronic health records (EHRs), 
machine learning-based NLP approaches 
used mathematical models to extract high-
level patterns from data to make inferences. 
The evolution of natural language processing 
from rule-based algorithms to contemporary 
large language models is shown as a timeline 
in figure 1.

Deep learning, inspired by biological neural 
networks, refers to a sub-field of machine 
learning models that learn high-level patterns 
from input data to mimic human-like data 
processing. Transformer-based LLMs, such as 
BERT2 and RoBERTa3 in the late 2010s as well 
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as GPT in 2020,4 were critical developments in NLP that 
exhibited human-like performance in sentiment analysis, 
question answering, feature extraction, language trans-
lation and text summarisation. In clinical contexts, this 
ability to ingest significant volumes of textual information 
was first applied to electronic medical records (EMRs); 
LLMs’ ability to process and analyse free text elements 
enabled clinicians to rapidly create structured datasets, 
streamline clinical coding, mine academic literature and 
develop predictive models based on extractable patient 
features.5 Oncology-specific applications of NLP models 
focused initially on case identification (ie, identifying 
past patients with specific or rare medical characteristics 
not captured by structured data fields), enhanced cancer 
staging and codification of staging parameters and the 
identification of specific clinical outcomes.6 As conversa-
tional capabilities improved, NLP research in oncology 
turned towards patient-facing applications, including 
cancer screening campaigns and patient education after 
diagnosis.7 The significance of these advances in NLP, 
and their contribution to human advancement, was most 
recently underscored by the Nobel Committee’s decision 
to award the 2024 Nobel Prize in Physics to Drs Hopfield 
and Hinton, pioneers in the development of the artificial 
neural networks employed in modern LLMs.

LLMs recently entered the public consciousness with 
OpenAI’s 2022 release of ChatGPT 3.5, an AI chatbot 
based on the GPT LLM that is credited as the fastest-
growing consumer software application in history.8 Today, 
there are three common categories of clinical LLMs: (1) 
zero-shot, generalist LLMs that can perform diverse NLP 
tasks with no pre-training, (2) fine-tuned LLMs that have 
been trained on custom medical datasets to perform 
specialised tasks and (3) LLMs equipped with in-context 
learning or retrieval-augmented generation techniques 
to enable more accurate recall of medical information 
from a knowledge base.

Development and validation of clinical LLMs
Standard workflows for the development of clinical 
LLMs involve model selection, fine-tuning for domain-
specific tasks, validation in clinical contexts and deploy-
ment in real-world settings as summarised in figure  2. 
First, clinical LLM applications are typically built using 
foundational LLMs developed by academic and industry 
developers, including Google (Gemini), Meta (Llama), 
OpenAI (GPT) and Anthropic (Claude).9 Some of the 
most popular LLMs are open-source (eg, Llama2 by 
Meta), allowing users to modify their underlying architec-
ture, while others remain proprietary and allow limited 
interactions through an application programming inter-
face (eg, GPT-4 by OpenAI).

Second, domain-specific LLMs are developed through 
transfer learning, where foundational LLMs are fine-
tuned or trained on specialised datasets, such as clinical 
notes and EHRs, to function for specialised tasks. Exam-
ples of clinical-focused LLMs include Google’s Med-
PaLM, which focuses on providing high-quality responses 
to medical questions,10 and ClinicalBERT, a model which 
predicts hospital readmission within 30 days by analysing 
clinical text.11 Furthermore, a recent study by Wang et al 
demonstrated superior performance of fine-tuned LLMs 
in the field of radiation oncology, where they outper-
formed baseline foundational LLMs on tasks related to 
treatment regimen generation, treatment modality selec-
tion and ICD-10 code generation.12 Likewise, Ferber et al 
demonstrated the superior performance of fine-tuned 
LLMs compared with baseline foundational LLMs in 
the field of medical oncology when assessed on manage-
ment guidelines of pancreatic, colorectal and hepatocel-
lular cancers.13 LLM outputs can be further optimised by 
providing model outputs with a few examples through 
few-shot learning as well as rewarded to steer LLMs 
towards more truthful and less toxic outputs based on 
human feedback through reinforcement learning.14

Figure 1  Timeline of Natural language processing development in medicine.
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Third, LLMs are commonly internally validated 
through one of three classes of metrics on a human-
annotated benchmark dataset, including multiple-
classification (classification of text into multiple 
groups), token-similarity (similarity of generated text 
with reference text) and question-answering (identi-
fying the answer to a specific question).15 However, 
these methods do not capture real-world clinical effi-
cacy, and external validation against expert oncologist 
decision-making remains essential. Extrinsic evalua-
tions of LLM performance have included compari-
sons against trained healthcare professionals across 
test scores or standard of care, measures of clinical 
efficiency or subjective ratings of performance,16 
with recent recommendations that models be stress-
tested via exposure. to diverse clinical scenarios and 
patient populations to ensure generalisability before 
real-world deployment.17 Indeed, a recent cross-
sectional study analysing eight LLMs demonstrated 
an 85% accuracy rate on examination-style multiple 
choice questions from the American Society of 
Oncology; however, 81.8% of the incorrect questions 
were rated as having a medium to high likelihood 
of moderate to severe harm.18 Another validation 
study focused on molecular tumour boards found 
that LLMs offered equivalent treatment recommen-
dations to clinicians 25% of the time, with a further 
37.5% of recommendations as plausible alternative 
treatments. In generating these recommendations, 
however, 17% of articles referenced by LLMs were 
hallucinations, reinforcing the need for clinician 
supervision.19 Most recently, researchers have been 
working towards standardising the human evaluation 
of LLMs in healthcare. For example, the QUEST 
framework proposed by Tam was developed through 
a systematic review of prior evaluation guidelines 
and addresses gaps in reliability, generalisability and 
applicability of these guidelines across a variety of 
medical specialties.20

APPLICATIONS OF LARGE LANGUAGE MODELS IN ONCOLOGY
Clinician decision support
Emergent themes of clinician-facing applications of LLMs 
in oncology include serving as clinical decision support 
tools for diagnosis, screening and prevention, treatment 
and management, and automated data extraction and 
processing for clinician review.9 Common themes and 
highlighted examples of potential LLM applications in 
oncology across a diverse set of application scenarios 
are shown in figure 3 and online supplemental eTable 1, 
respectively. In figure 3, we outline three principal themes 
illustrating how LLMs are being applied in oncology: (1) 
clinician-facing applications for diagnosis, prognosis, 
screening, management, data extraction and reference 
information; (2) patient-facing applications for psycho-
social support, communication and reference informa-
tion; and (3) research facilitation such as screening of 
trial eligibility, literature evidence synthesis and precision 
medicine. Notably, this figure highlights the breadth of 
potential LLM applications grouped by distinct applica-
tion domains that can help address the multifaceted chal-
lenges in modern oncology care.

Diagnosis
LLM-enabled tools have the potential to identify useful 
patterns from both text-only and multi-modal inputs to 
recommend clinical diagnoses. In an early evaluation 
of LLM diagnostic accuracy, Wang et al found GPT-4 
performed well in generated report structure and clarity 
but performed worse than physicians in diagnostic accu-
racy21 when tested on 109 ultrasound text descriptions of 
thyroid cancer. However, the Turing test evaluation found 
that physicians believed that 71% of GPT-generated 
reports were likely physician-generated, suggesting that 
GPT and physician-generated reports are largely indis-
tinguishable. Compared with gold-standard clinician 
annotations, LLMs have shown promising diagnostic 
performance in exam-style, text-based assessments across 
several tumour sites including dermatological (85% accu-
racy),22 bone (87% accuracy),23 oropharyngeal (71% 

Figure 2  Development and validation process of clinical large language model applications.
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accuracy)24 and neurological cancers (50% accuracy).25 
Notably, the advent of multi-modal LLMs that integrate 
image processing capabilities is uniquely positioned to 
analyse both clinical images, including photographs,22 
and multiple radiologic modalities including MRI,26 
CT27 and ultrasound.28 While most studies demonstrate 
human-like performance, there remain concerns about 
generalisation such as variable diagnostic performance 
across different skin tones in melanoma,22 suggesting 
that the accuracy in minority patient demographics and 
rare diseases should be evaluated with caution. Similar 
concerns arise in underrepresented cancer subtypes, 
where training data scarcity may lead to decreased model 
performance. Oncologists can use LLM predictions to aid 
diagnosis but should be cautious about their interpret-
ability and alignment with clinical judgement. However, it 
is important to note that these findings are derived from 
early-stage pilot studies in controlled settings and require 
further validation, especially to assess performance consis-
tency across diverse patient populations, heterogenous 
practice settings and various cancer diagnoses and stages.

Existing AI-driven approaches in radiology and histo-
pathology have demonstrated high diagnostic accuracy 
for tasks like tumour localisation and malignancy classi-
fication, often through convolutional neural networks or 
other deep learning architectures that directly analyse 
imaging data.29 LLM-based solutions can complement 
these image-centric models by parsing clinical notes, 

radiology reports or pathology descriptors, providing 
a structured synopsis of relevant clinical factors that 
can enhance diagnostic workflows and communication 
between radiologists, pathologists and oncologists (60). 
In this way, LLMs may ultimately function synergistically 
with established computer vision algorithms to bridge the 
gap between raw imaging data and patient-level clinical 
decision-making (61). However, multi-modal LLMs are 
still in early development, and rigorous testing is needed 
to evaluate their ability to integrate imaging and text data 
reliably across diverse patient populations and clinical 
settings.

Screening and prevention
The integration of LLMs into screening and prevention 
efforts represents a nascent but rapidly evolving area of 
research, focusing on text-based knowledge synthesis and 
guideline-based recommendation.30 While most AI-based 
screening applications to date have emphasised image 
analysis for earlier detection of lesions or nodules, LLMs 
offer potential in complementary domains like patient risk 
stratification from EHRs, automated reminder systems for 
at-risk populations and the generation of patient-specific 
preventative measures.31 These text-driven functional-
ities could be especially valuable for oncologists seeking 
to optimise large-scale screening programmes or adapt 
guidelines to individual patient risk profiles.

Figure 3  Themes of large language model applications in oncology.
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The utility of LLMs in augmenting decisions related 
to screening and prevention has been investigated in 
prostate (85% and 100% accuracy for 30 easy and hard 
prostate cancer screening questions),32 colorectal (100% 
accuracy in 20 colorectal cancer screening questions),33 
breast, ovarian and lung cancer (83% accuracy across 
15 select-all-that-apply pan-cancer screening scenarios) 
contexts.34 Although these standardised screening evalu-
ations show high accuracy, they are based on predefined 
question sets rather than real-world clinical scenarios. 
Chiarelli et al tested the reliability of GPT when queried 
with three prompt variations, showing that there was no 
difference in accuracy but noted that systematic evalua-
tions of reliability are warranted given the probabilistic 
nature of LLMs.32 Despite attempts to ground LLM in 
evidence-based knowledge such as PubMedBERT and 
Med-PaLM, oncologists should validate that LLM-based 
screening recommendations coupled with explanations 
align with established clinical guidelines and generalise 
when integrated into patient screening programmes.

Treatment and management
While LLMs can suggest treatment options aligned with 
established guidelines, studies have found that they may 
also propose non-concordant treatments, requiring 
human oversight to align management with patient pref-
erences and evidence-based guidelines.35 Marchi et al 
found that ChatGPT-3.5 provided accurate suggestions 
for primary treatment (85.3% accuracy, 100% sensitivity) 
and adjuvant treatment (96% accuracy, 100% sensitivity) 
for 68 head and neck cancer cases according to NCCN 
consensus expert-driven guidelines for cancer manage-
ment.36 High sensitivity in treatment recommendations 
underscores the comprehensive nature of LLM outputs 
but may lead to over-inclusive lists that require oncologist 
judgement to refine. For example, in another study, Chen 
et al found that across 104 prompts for 26 pan-cancer 
diagnoses, GPT-3.5 provided at least 1 NCCN-concordant 
treatment in 98% of scenarios but also recommended 
non-concordant treatments in 34.3% of scenarios.35 Given 
the occurrence of non-guideline-concordant recommen-
dations, it is critical to underscore that LLM outputs 
should complement—but not replace—human clinical 
judgement while future research continues to identify 
and address the knowledge deficiencies of LLM tools in 
clinical settings. For the oncologist, this means that LLMs 
can generate a differential list of treatments for future 
evaluation of guideline concordance and patient prefer-
ence, but cannot replace human decision-making. LLMs 
in specialised oncology tasks have shown mixed perfor-
mance, with examples in the literature demonstrating 
that LLMs prescribed chemotherapy protocols with inap-
propriate dosing (56% accuracy)37 and were subject to 
hallucinations when recommending management for 
immune-related adverse events (44% accuracy).38 From 
a medical lens, LLMs may fail to consider important 
factors such as a patient’s comorbid conditions or psycho-
socio-economic factors that may contraindicate certain 

regimens in practice. Similarly, while an LLM might 
produce a seemingly appropriate surgical recommenda-
tion, only a trained surgeon or multidisciplinary tumour 
board can balance tumour resectability, patient prefer-
ences, anatomical complexities and the associated risks 
unique to a specific patient. From a psychosocial lens in 
palliative scenarios, an LLM’s suggestions may overlook 
family dynamics or cultural values—factors that carry 
substantial weight in deciding care goals. These exam-
ples illustrate how human judgement, guided by clinical 
expertise and empathy, remains central to comprehen-
sive patient-centred care.

One of the most exciting applications of LLMs in 
oncology is the recommendation of treatments in 
complex settings outside of established clinical practice 
guidelines. These tasks may be ideally suited for LLMs 
given their ability to process vast amounts of medical liter-
ature and patient data to identify patterns that may not 
be apparent to human experts, but useful for generating 
novel treatment recommendations in complex and rare 
cancer cases. In complex breast39 and colorectal40 cancer 
settings, studies have reported 70% and 87% concor-
dance of LLM-generated treatments with tumour board 
recommendations. Likewise, Chen et al found that LLM-
generated diagnosis and treatment recommendations 
of 79 clinical oncology cases with images achieved up to 
72% accuracy.41 However, inaccurate referencing to estab-
lished guidelines and generation of medically inaccurate 
outputs with confidence contribute to poor autonomous 
actionability of LLM-generated recommendations42

Data extraction and processing
To enable synthesis of patient data for molecular tumour 
boards, oncologists may use LLMs to extract key tumour 
attributes rather than manually extracting this data from 
the patient EHR.43 Preston et al demonstrated that LLM-
based data extraction of tumour attributes, including 
tumour site and the widely-adopted TNM cancer staging 
classification, can achieve 94–99% AUROC performance 
and generalise across multiple health systems and state 
registries.43 Notably, LLM-enabled data extractions for 
well-defined categories, such as TNM stage, can even 
correct human errors on expert review.43

Beyond clinical features, automated extraction of social 
and behavioural determinants from clinical data44 can 
be applied to address several humanistic elements of the 
cancer patient experience, including identifying at-risk 
patients who lack advance directives, surrogate decision-
makers and decision capacity,45 and recommending 
online resources to address psychosocial needs.46 Instead 
of prompting LLMs to generate ‘black box’ predictions 
from clinical data, oncologists can prompt LLMs to 
extract important data points from large-scale clinical 
text, allowing oncologists to prioritise expert synthesis 
of medical knowledge and patient care over non-patient 
facing, administrative tasks. While the high performance 
in structured data extraction is encouraging, variability 
in EHR systems and documentation practices across 
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institutions may affect extraction performance in external 
settings, motivating the need for robust, multi-centre eval-
uations to confirm generalisability in real-world settings.

Patient-facing applications
The familiarity and accessibility of chatbot LLMs with near-
human levels of language competency underscore their 
potential as patient-facing health information resources 
and supportive management tools to help address patient 
educational and psychosocial factors of cancer care.

Health information resource
The accurate performance of conversational chatbots on 
standardised benchmarks of medical competency, such 
as the USMLE,47 and common patient queries about 
cancer48 49 suggests that LLM applications may serve as 
a readily accessible, supplementary patient resource for 
cancer information. Beyond responding to clinician-level 
queries, cross-sectional studies of ChatGPT-4 reported 
high accuracy and alignment to oncologists or guidelines 
if available, when tested on general patient-level questions 
about genetic counselling,50 breast,51 lung,52 colon53 and 
pancreatic54 cancers. Moreover, pilot evaluations of LLMs 
for language translation55 and biomedical text simplifica-
tion56 are emergent research directions of clinical LLMs 
that can facilitate patient education in oncology. LLMs 
can provide oncology knowledge as an accessible patient 
resource.

However, we caution that the variable medical accuracy 
across various cancers and topics,44 risks of misinterpreta-
tion, oversimplification of complex medical information, 
propagation of outdated or non-personalised advice and 
decreased readability of chatbot-generated responses 
compared with physicians may collectively pose serious 
risks to deploying patient-facing LLMs in real-world 
settings until effective safeguards for accuracy and misin-
formation are implemented. Despite the positive results of 
these pilot studies, oncologists should explain to patients 
that LLM tools may (1) generate unreliable and outdated 
information that can lead to harm, (2) fail to personalise 
recommendations to the individual patient, (3) harbour 
inherent biases based on their training datasets and (4) 
provide limited protections to personal health informa-
tion privacy and security that have yet to be systematically 
regulated.

Supportive management
Conversational LLMs, known as chatbots, may act as a 
complementary agent for psychosocial and emotional 
support in oncology. Chatbots can provide empathetic 
responses to online patient questions about general 
medicine16 and cancer-specific48 topics in non-inferiority 
evaluations compared with physicians, supporting their 
use in generating empathetic template responses under 
clinician oversight when integrated into patient health 
portals.57 LLM tools also pose potential to improve 
patient communication during post-treatment care, such 
as improving dialogue rates for patients experiencing 

oncological aphasia.58 Combining LLM-enabled language 
competencies with hardware, such as assistive robots with 
functional language and physical capabilities, is a prom-
ising development towards more human-like levels of 
emotional connection.59

Oncologists should establish clear protocols defining 
the scope of chatbot use that encompass two major compo-
nents: development-focused guidelines and patient-facing 
usage guidelines. From a development perspective, these 
protocols can inform model creators and industry part-
ners about the clinical and ethical parameters expected 
in an oncology setting, helping to ensure that chatbot 
features—such as data handling, language style and 
management plans—are compatible with current stan-
dards of care and privacy regulations. In parallel, usage 
guidelines aimed at clinicians and patients will clarify the 
chatbot’s intended purposes (eg, providing supplemen-
tary educational information, screening for psychosocial 
support needs or summarising care instructions), limita-
tions (eg, lack of personalised medical advice, potential 
for erroneous responses) and recommended follow-up 
actions. This dual approach enables a coordinated 
effort to shape the chatbot’s capabilities during devel-
opment while also providing straightforward guidelines 
that support safe, consistent and beneficial interactions 
between patients, oncology teams and AI-based tools.

Patient perceptions of LLMs
Recent studies show that patients often perceive AI-gener-
ated health advice, such as from ChatGPT, as helpful and 
empathetic, with evidence that users sometimes rate these 
responses even more favourably than physician-written 
answers.60 However, research indicates that patients have 
only moderately high trust in chatbot responses—Nov 
et al (2023) report average trust scores of around 3.4 
out of 5, with confidence falling as question complexity 
increases.61 Platt et al (2024) similarly found that patients’ 
comfort using ChatGPT for healthcare queries was below 
mid-range, highlighting accuracy and privacy concerns.62 
A notable risk factor is that lay users cannot always iden-
tify when an LLM’s advice is inaccurate or outdated, 
underscoring the potential for harm if chatbots are used 
without adequate oversight.60 Nevertheless, public surveys 
of online users suggest that, despite these reservations, 
members of the public, including patients, show willing-
ness to adopt AI health tools in the future if privacy, safety 
and transparency standards are better established.63 64

Facilitating and synthesising oncology research
Automated processing of unstructured text is a unique 
competency of LLMs that can be used to facilitate transla-
tional research in oncology. For example, LLMs can struc-
ture clinical trial eligibility criteria for cancer patients that 
achieve moderate performance compared with physician 
recommendations, with mixed reports of both high false 
positives65 and high false negatives.66 Similar to medical 
tumour board recommendations, LLMs applied to clin-
ical trial recommendation should be used to generate an 
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inclusive selection of potentially eligible trials for oncolo-
gists to prioritise in their final recommendation.

Translation of oncology clinical trial results into action-
able clinical recommendations requires expert synthesis of 
scientific knowledge prone to time lag between discovery 
and implementation.67 To address this problem, LLM 
systems such as SEETrials have demonstrated proficiency 
(96% specificity, 94% sensitivity) in automated extraction 
of intervention outcomes associated with cancer trials 
reported in conference abstracts,68 enabling oncologists 
to glean early insights into the safety and efficacy of novel 
interventions.

Applied to precision oncology, LLMs have seen success 
in automating data extraction of driver mutations and 
clinical data from EHRs to evaluate the prognostic value 
of these mutations and functional effects.69 Likewise, liter-
ature mining by LLMs may be useful as a research tool 
for drug synergy predictions applied to complex cancer 
patient scenarios.70 Academic oncologists can stay up to 
date on advancements in LLM applications by engaging 
with emerging LLM in oncology research, attending 
interdisciplinary conferences and collaborating with AI 
experts to safely and effectively integrate these tools into 
modern oncology practice (table 1).

LIMITATIONS AND FUTURE DIRECTIONS OF LARGE LANGUAGE 
MODELS
Technical limitations
The implementation of LLMs in medicine is limited both 
by AI-intrinsic and clinical workflow challenges. Training 
and testing models on sparse, incompletely labelled 
datasets risks generating insights that fail to generalise 
to broad use cases. Furthermore, LLM-based models are 
prone to generating convincing ‘hallucinations’, content 
that is entirely nonsensical or unfaithful to the provided 
source content,9 which must be either actively detected 
or accounted for by healthcare providers. For example, 

Chen et al reported a 12.5% hallucination rate by LLM 
chatbots asked to generate cancer treatment informa-
tion.35 As a result, there has been increasing focus on 
the development of LLM safeguards that prevent the 
generation of health disinformation.71 Other studies 
have found that LLM chatbots may provide inconsistent 
responses to the same question asked several times,72 
raising questions about their reliability and reproduc-
ibility. Finally, most modern LLM chatbots are trained on 
fixed time windows—for example, ChatGPT 3.5’s initial 
release was trained on data up to September 2021. This 
training method may exclude more recent advances and 
risks generating outdated responses, especially in rapidly 
evolving fields such as oncology.

Ethical limitations
Collaborations between international institutions, as 
evidenced by a partnership between the WHO and 
the European Parliament, have garnered interest in 
producing ethical guidelines and frameworks for the 
application of AI in healthcare.73 These frameworks 
emphasise the preservation of patient autonomy, tech-
nological transparency, accountability and inclusiveness. 
Until international standards are formalised, significant 
discussion has focused on adherence to existing national 
standards, such as the US Health Insurance Portability 
and Accountability Act (HIPAA). Models that employ 
identifiable patient information may risk inadvertently 
storing or disclosing sensitive information in violation of 
HIPAA regulations or may be vulnerable to cybersecurity 
breaches.74 Furthermore, the use of identifiable patient 
information in the pre-training process may violate prin-
ciples around informed consent and rights-of-data, espe-
cially if previously anonymised data can be re-identified.

Kapsali et al have highlighted discrepancies between 
the aforementioned principles and ChatGPT’s features,75 
pointing to its black-box technology and insufficient 
documentation as causes for concern. Unsurprisingly, it 

Table 1  How large language models are being used in oncology

Domain Application

Oncologist 	► Generate differential diagnoses based on patient clinical notes and data for oncologist review
	► Prognosticate patient based on risk and survival as a supportive tool
	► Provide cancer screening information based on established guidelines
	► Generate treatment recommendations for oncologist review
	► Extraction of key cancer attributes from clinical text to inform clinical decision-making
	► Generating summaries of clinical notes, consultations and diagnostic reports

Cancer Patient 	► Patient health information resource with clinician oversight
	► Language translation
	► Biomedical text simplification
	► Psychosocial and emotional support and counselling

Cancer Research 	► Clinical trial matching for eligible cancer patients
	► Extraction of trial outcomes from literature for clinician education
	► Extraction of mutation and clinical data for precision oncology
	► Literature mining for drug synergies

Administration 	► Draft work communications and patient messages
	► Transcribe and summarise patient and clinician meetings
	► Generate pre-filled administrative paperwork
	► Copy-edit and format administrative paperwork
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has been shown that patients may prefer human judge-
ment and expertise over AI-generated recommenda-
tions,76 especially when existing legal frameworks around 
liability and medical malpractice fail to fully address 
AI-driven outcomes.77 Indeed, emerging research has 
revealed the potential for LLMs to perpetuate societal 
biases, such as race, even without the explicit input of 
demographic data.78 A recent systematic review high-
lighted the prevalence of gender and racial bias in 
medical LLMs, describing model outputs that leaned 
on stereotypical gender roles, used gendered language 
and underrepresented women while overvaluing male 
competence. Mitigation strategies that limit these biases 
have relied primarily on prompt engineering methods 
with varying effectiveness, and there exists a need for 
standardised metrics that systematically reduce bias in 
all stages of model development and implementation.79 
Given the historic and ongoing issues with diversity, as 
evidenced by clinical trial participation for example,80 
there exists an imperative for cancer researchers to inter-
rogate oncology-focused LLMs for data-driven biases.

Resource limitations
Although the economic challenges of LLM deployment 
in healthcare systems remain underexplored, efforts have 
been made to estimate the computational, energy and 
financial costs associated with model development and 
implementation.81 The cost burden of LLMs in medicine 
is based on model training and fine-tuning, integration 
into existing electronic health systems, input data types 
and latency requirements. Carbon footprint estimates 
have been inferred at each lifecycle point of LLMs—
pretraining, fine-tuning, and inference—with the infer-
ence stage dominating the long-term environmental 
impact.82 For example, a single query of a fine-tuned 
GPT-3 model uses 0.04 kW-h of electricity per 100 pages 
of generated text,82 a power consumption that could 
rapidly balloon when scaled across thousands of patients 
that each warrant numerous clinician queries to medical 

records. However, there have been countervailing debates 
on the economic implications of LLM deployment, with 
some researchers proposing that the expected cost effi-
ciencies and sustainable practices conferred by automa-
tion far outweigh the negative impacts.83 Cancer care in 
particular is likely to benefit from these efficiencies, given 
the longstanding capacity constraints as the number of 
cancer patients outpaces the number of clinicians avail-
able to support them.84

Future directions
Emerging directions in LLM implementation will involve 
advances in technology and model complexity, cohe-
sive regulatory and standardisation frameworks, greater 
emphasis placed on inclusivity and equity and the incor-
poration of clinician and patient feedback into develop-
ment cycles to better align model outputs with desired 
outcomes (table 2).

Recent research has proposed a paradigm shift from 
increasing resource usage towards designing specialised 
component tools that work together as a compound AI 
system.85 Roadmaps for the design of compound AI 
systems in oncology can be informed by previous system 
designs used for chemical synthesis86 and geometry 
theorem proofs.87 There exists additional potential for 
multimodal AI models that integrate oncology-focused 
models in collaboration with other disciplines, such 
as radiology and pathology, with potential to stream-
line tasks such as summarisation, patient education, 
differential diagnosis generation and interdisciplinary 
collaboration.88 In the era of precision medicine, the 
integration of multimodal datasets which combine 
textual data from medical records, oncology clinic 
visits, multidisciplinary discussions, genomic pathology 
reports and imaging findings is likely to enhance patient-
specific recommendations. Fine-tuning techniques 
such as prompt engineering have also shown partic-
ular promise; prompts that provide additional clinical 
context have been shown to generate treatment plans 

Table 2  Limitations to large language model adoption in oncology and potential solutions

Limitations Potential solutions

Technical 	► Comprehensive data labelling requirements that employ diverse clinical and patient data
	► Continually shifting training window that captures new studies and advancements as they are released
	► LLM safeguards that detect and prevent hallucinations and health disinformation
	► Development of AI reliability metrics to track output consistency

Ethical 	► Development of consensus ethical frameworks around the use of AI in clinical contexts
	► Inclusion of both patient and clinician feedback on a continual basis, both into regulatory frameworks and model 
development

	► Adoption of open-source and transparent development, along with clear documentation, to avoid the perception of a 
black-box technology

	► Continual research and benchmarking of societal biases found in LLM inputs and outputs
	► Anonymisation of all patient information by LLMs to preserve privacy and security

Economic 	► Careful consideration of build vs buy options for institutions considering LLM deployment
	► Investment into sustainable energy options that fuel LLM energy consumption while minimising carbon footprint
	► Judicious use of LLM model queries, limited to use cases where it improves clinical outcomes
	► Comprehensive accounting of the cost efficiencies conferred by LLM deployment (eg, human resources)

AI, artificial intelligence; LLM, Large language model.
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in concordance with cancer care guidelines.89 From 
a model evaluation perspective, some are proposing 
more realistic evaluation frameworks using agent-based 
modelling to create AI structured clinical examinations 
(‘AI-SCE’) that test varying degrees of self-governance 
in dynamic environments.17

Deployment of AI in healthcare settings has also engen-
dered ongoing discussion around maximising benefit and 
minimising risk through standardised regulation. While 
internationally recognised governance mechanisms 
for AI in healthcare do not currently exist,90 there has 
been increasing consensus in focused areas of interest. 
For instance, a diverse set of academic, industry, funding 
agency and publishers has proposed the implementa-
tion of Findable, Accessible, Interoperable and Reusable 
Data Principles to define good data stewardship practices 
and facilitate data sharing that may be adopted in the 
precision oncology community.91 Standardised reporting 
guidelines for biomedical-focused LLM research, such as 
TRIPOD+LLM for primary research involving LLMs,92 
QUEST for human evaluation of LLMs20 or CONSORT-AI 
for clinical trials involving AI,93 aim to improve the consis-
tency, reliability and verifiability of future advancements.

Patient-centric regulations for patient privacy, medical 
malpractice and informed consent lag behind technical 
innovation. To date, this has only been addressed within 
the confines of individual partnerships (eg, Google’s 
HIPAA-compliant generative AI at the Mayo Clinic) and 
not at scale. With time, the adoption of widespread data 
sharing and ethics frameworks will permit existing models 
to train on large, open-source and more representative 
datasets while considering important principles of data 
privacy and right to use, intellectual property and risk of 
harm. This will in turn enable the development of accu-
rate, purpose-built LLMs for cancer-specific applications, 
both via open-source collaborations (eg, RadOnc-GPT, 
CancerGPT)70 94 and industry-sponsored offerings (eg, 
CareIntellect by GE Healthcare, Watson for Oncology by 
IBM and Intellispace Oncology by Phillips).

The design of human-in-the-loop training cycles, where 
LLMs are fine-tuned by engineers with clinician feed-
back, can optimise LLM outputs that are more clinically 
useful to the oncology care team. Explicit and implicit 
patient feedback may help LLMs better align outputs with 
the unique psychosocial experiences of cancer patients. 
Explicit feedback involves reports from patient users after 
interactions with the LLM application, such as numer-
ical scores or binary ratings of the text output from the 
tool. Implicit feedback involves indirect reports from 
patient users based on user interactions and behaviour 
patterns with the LLM application, such as monitoring 
user reactions to LLM outputs through engagement 
time or characteristics of follow-up queries. The design 
of oncology LLM applications requires consideration 
of both emotional and cognitive empathy in order to 
address the psychosocial demands of the cancer patient 
experience and prioritise the clinical competencies that 
impact patient clinical outcomes.

CONCLUSION
LLMs have the potential to impact all aspects of cancer 
care due to their human-like ability to understand and 
generate natural language. Clinician and patient-facing 
applications of LLMs in oncology, ranging from diagnosis, 
management and emotional support, serve as promising 
directions of LLM research in oncology. Coupled with 
emergent multi-modal capabilities and integration into 
compound AI systems, state-of-the-art LLM applications 
are well-positioned to move towards addressing clin-
ical and translational research challenges in oncology. 
However, there remain several limitations of LLM deploy-
ment in clinical practice, including medical accuracy, 
privacy and ethics, which remain to be systematically 
addressed in order to facilitate their widespread adop-
tion. Validation of LLM applications should demonstrate 
sufficient benefit in real-world clinical settings necessary 
to prioritise patient care outcomes in oncology. While 
the mixed performance of LLMs across oncology-related 
competencies may suggest that oncologists will not be 
replaced by AI solutions anytime soon, LLM-based tools 
may serve as useful clinician decision support and patient-
facing management tools under clinician oversight.
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