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ABSTRACT

Large language models (LLMs) have demonstrated
emergent human-like capabilities in natural language
processing, leading to enthusiasm about their integration
in healthcare environments. In oncology, where
synthesising complex, multimodal data is essential, LLMs
offer a promising avenue for supporting clinical decision-
making, enhancing patient care, and accelerating research.
This narrative review aims to highlight the current state

of LLMs in medicine; applications of LLMs in oncology for
clinicians, patients, and translational research; and future
research directions. Clinician-facing LLMs enable clinical
decision support and enable automated data extraction
from electronic health records and literature to inform
decision-making. Patient-facing LLMs offer the potential
for disseminating accessible cancer information and
psychosocial support. However, LLMs face limitations that
must be addressed before clinical adoption, including risks
of hallucinations, poor generalisation, ethical concerns,
and scope integration. We propose the incorporation of
LLMs within compound artificial intelligence systems to
facilitate adoption and efficiency in oncology. This narrative
review serves as a non-technical primer for clinicians to
understand, evaluate, and participate as active users who
can inform the design and iterative improvement of LLM
technologies deployed in oncology settings. While LLMs
are not intended to replace oncologists, they can serve as
powerful tools to augment clinical expertise and patient-
centred care, reinforcing their role as a valuable adjunct in
the evolving landscape of oncology.

CURRENT STATE OF LARGE LANGUAGE MODELS IN
MEDICINE

Introduction

Large language models (LLMs) are artifi-
cial intelligence (AI) systems focused on the
generation of natural language. The field of
oncologyis well-positioned to benefitfrom the
incorporation of LLM technologies, especially
given its emphasis on the synthesis of diverse
data types such as clinical, imaging, labora-
tory and genomic reports integrated with
the psychosocial elements of patient-centred
medicine. This narrative clinical primer aims
to provide a background for the application of
LLMs in cancer care and lay the groundwork
for their adoption in clinical oncology. Our
narrative review adopts a practical approach
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by offering step-by-step examples of LLM tool
integration into clinical oncology workflows
as well as discussion of contemporary trends
including compound Al systems with human-
in-the-loop designs, multi-modal LLMs, and
emergent regulatory frameworks to fill the
gap between conceptual overviews and clin-
ical realities. We identified relevant studies
and potential applications by conducting a
comprehensive but non-systematic search of
academic databases (PubMed, MEDLINE,
EMBASE, Google Scholar) using variations
of the keywords ‘large language model’,
‘generative artificial intelligence’, ‘oncology’
and ‘cancer’. We also cross-referenced bibli-
ographies of retrieved articles and drew on
expert clinical and Al knowledge within the
author team to ensure coverage of emerging
and notable studies within the scope of large
language model development and applica-
tions in oncology.

History of NLP and LLMs

Natural language processing (NLP) describes
the computer-aided analysis that enables
comprehension and generation of human
language. In the early 2000s, the first iter-
ation of language generators employed
statistical models that estimated the likeli-
hood of the next word in a sequence, based
on frequency of occurrence in the training
data." To leverage the scale of large natural
language datasets such as unstructured
text in electronic health records (EHRs),
machine learning-based NLP approaches
used mathematical models to extract high-
level patterns from data to make inferences.
The evolution of natural language processing
from rule-based algorithms to contemporary
large language models is shown as a timeline
in figure 1.

Deep learning, inspired by biological neural
networks, refers to a sub-field of machine
learning models that learn high-level patterns
from input data to mimic human-like data
processing. Transformer-based LLMs, such as
BERT? and RoBERT2” in the late 2010s as well
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as GPT in 2020," were critical developments in NLP that
exhibited human-like performance in sentiment analysis,
question answering, feature extraction, language trans-
lation and text summarisation. In clinical contexts, this
ability to ingest significant volumes of textual information
was first applied to electronic medical records (EMRs);
LLMs’ ability to process and analyse free text elements
enabled clinicians to rapidly create structured datasets,
streamline clinical coding, mine academic literature and
develop predictive models based on extractable patient
features.” Oncology-specific applications of NLP models
focused initially on case identification (ie, identifying
past patients with specific or rare medical characteristics
not captured by structured data fields), enhanced cancer
staging and codification of staging parameters and the
identification of specific clinical outcomes.’ As conversa-
tional capabilities improved, NLP research in oncology
turned towards patientfacing applications, including
cancer screening campaigns and patient education after
diagnosis.” The significance of these advances in NLP,
and their contribution to human advancement, was most
recently underscored by the Nobel Committee’s decision
to award the 2024 Nobel Prize in Physics to Drs Hopfield
and Hinton, pioneers in the development of the artificial
neural networks employed in modern LLMs.

LLMs recently entered the public consciousness with
OpenAl’s 2022 release of ChatGPT 3.5, an Al chatbot
based on the GPT LLM that is credited as the fastest-
growing consumer software application in history.8 Today,
there are three common categories of clinical LLMs: (1)
zero-shot, generalist LLMs that can perform diverse NLP
tasks with no pre-training, (2) fine-tuned LLMs that have
been trained on custom medical datasets to perform
specialised tasks and (3) LLMs equipped with in-context
learning or retrieval-augmented generation techniques
to enable more accurate recall of medical information
from a knowledge base.

Development and validation of clinical LLMs

Standard workflows for the development of clinical
LLMs involve model selection, fine-tuning for domain-
specific tasks, validation in clinical contexts and deploy-
ment in real-world settings as summarised in figure 2.
First, clinical LLM applications are typically built using
foundational LLMs developed by academic and industry
developers, including Google (Gemini), Meta (Llama),
OpenAl (GPT) and Anthropic (Claude).’ Some of the
most popular LLMs are open-source (eg, Llama2 by
Meta), allowing users to modify their underlying architec-
ture, while others remain proprietary and allow limited
interactions through an application programming inter-
face (eg, GPT-4 by OpenAl).

Second, domain-specific LLMs are developed through
transfer learning, where foundational LLMs are fine-
tuned or trained on specialised datasets, such as clinical
notes and EHRs, to function for specialised tasks. Exam-
ples of clinicalfocused LLMs include Google’s Med-
PalLM, which focuses on providing high-quality responses
to medical questions,10 and Clinical BERT, a model which
predicts hospital readmission within 30 days by analysing
clinical text."" Furthermore, a recent study by Wang et al
demonstrated superior performance of fine-tuned LLMs
in the field of radiation oncology, where they outper-
formed baseline foundational LLMs on tasks related to
treatment regimen generation, treatment modality selec-
tion and ICD-10 code generation.'” Likewise, Ferber et al
demonstrated the superior performance of fine-tuned
LLMs compared with baseline foundational LLMs in
the field of medical oncology when assessed on manage-
ment guidelines of pancreatic, colorectal and hepatocel-
lular cancers.”” LLM outputs can be further optimised by
providing model outputs with a few examples through
few-shot learning as well as rewarded to steer LLMs
towards more truthful and less toxic outputs based on
human feedback through reinforcement learning.'*
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Figure 2 Development and validation process of clinical large language model applications.

Third, LLMs are commonly internally validated
through one of three classes of metrics on a human-
annotated benchmark dataset, including multiple-
classification (classification of text into multiple
groups), token-similarity (similarity of generated text
with reference text) and question- answermg (identi-
fying the answer to a specific questlon) However,
these methods do not capture real-world clinical effi-
cacy, and external validation against expert oncologist
decision-making remains essential. Extrinsic evalua-
tions of LLM performance have included compari-
sons against trained healthcare professionals across
test scores or standard of care, measures of clinical
efficiency or subjective ratings of performance,'
with recent recommendations that models be stress-
tested via exposure. to diverse clinical scenarios and
patient populations to ensure generalisability before
real-world deployment.'” Indeed, a recent cross-
sectional study analysing eight LLMs demonstrated
an 85% accuracy rate on examination-style multiple
choice questions from the American Society of
Oncology; however, 81.8% of the incorrect questions
were rated as having a medium to high likelihood
of moderate to severe harm.'® Another validation
study focused on molecular tumour boards found
that LLMs offered equivalent treatment recommen-
dations to clinicians 25% of the time, with a further
37.5% of recommendations as plausible alternative
treatments. In generating these recommendations,
however, 17% of articles referenced by LLMs were
hallucinations, reinforcing the need for clinician
supervision.19 Most recently, researchers have been
working towards standardising the human evaluation
of LLMs in healthcare. For example, the QUEST
framework proposed by Tam was developed through
a systematic review of prior evaluation guidelines
and addresses gaps in reliability, generalisability and
applicability of these guidelines across a variety of
medical specialties.”’

APPLICATIONS OF LARGE LANGUAGE MODELS IN ONCOLOGY
Clinician decision support

Emergent themes of clinician-facing applications of LLMs
in oncology include serving as clinical decision support
tools for diagnosis, screening and prevention, treatment
and management, and automated data extraction and
processing for clinician review.” Common themes and
highlighted examples of potential LLM applications in
oncology across a diverse set of application scenarios
are shown in figure 3 and online supplemental eTable 1,
respectively. In figure 3, we outline three principal themes
illustrating how LLMs are being applied in oncology: (1)
clinician-facing applications for diagnosis, prognosis,
screening, management, data extraction and reference
information; (2) patient-facing applications for psycho-
social support, communication and reference informa-
tion; and (3) research facilitation such as screening of
trial eligibility, literature evidence synthesis and precision
medicine. Notably, this figure highlights the breadth of
potential LLM applications grouped by distinct applica-
tion domains that can help address the multifaceted chal-
lenges in modern oncology care.

Diagnosis

LLM-enabled tools have the potential to identify useful
patterns from both text-only and multi-modal inputs to
recommend clinical diagnoses. In an early evaluation
of LLM diagnostic accuracy, Wang et al found GPT-4
performed well in generated report structure and clarity
but performed worse than physicians in diagnostic accu-
racy”’ when tested on 109 ultrasound text descriptions of
thyroid cancer. However, the Turing test evaluation found
that physicians believed that 71% of GPT-generated
reports were likely physician-generated, suggesting that
GPT and physician-generated reports are largely indis-
tinguishable. Compared with gold-standard clinician
annotations, LLMs have shown promising diagnostic
performance in exam-style, text-based assessments across
several tumour sites including dermatological (85% accu-
racy),” bone (87% accuracy),” oropharyngeal (71%
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Figure 3 Themes of large language model applications in oncology.

accuracy)®* and neurological cancers (50% accuracy).”
Notably, the advent of multi-modal LLMs that integrate
image processing capabilities is uniquely positioned to
analyse both clinical images, including photographs,
and multiple radiologic modalities including MRI,*
CT? and ultrasound.”® While most studies demonstrate
human-like performance, there remain concerns about
generalisation such as variable diagnostic performance
across different skin tones in melanoma,” suggesting
that the accuracy in minority patient demographics and
rare diseases should be evaluated with caution. Similar
concerns arise in underrepresented cancer subtypes,
where training data scarcity may lead to decreased model
performance. Oncologists can use LLM predictions to aid
diagnosis but should be cautious about their interpret-
ability and alignment with clinical judgement. However, it
is important to note that these findings are derived from
early-stage pilot studies in controlled settings and require
further validation, especially to assess performance consis-
tency across diverse patient populations, heterogenous
practice settings and various cancer diagnoses and stages.

Existing Al-driven approaches in radiology and histo-
pathology have demonstrated high diagnostic accuracy
for tasks like tumour localisation and malignancy classi-
fication, often through convolutional neural networks or
other deep learning architectures that directly analyse
imaging data.” LLM-based solutions can complement
these image-centric models by parsing clinical notes,

radiology reports or pathology descriptors, providing
a structured synopsis of relevant clinical factors that
can enhance diagnostic workflows and communication
between radiologists, pathologists and oncologists (60).
In this way, LLMs may ultimately function synergistically
with established computer vision algorithms to bridge the
gap between raw imaging data and patient-level clinical
decision-making (61). However, multi-modal LLMs are
still in early development, and rigorous testing is needed
to evaluate their ability to integrate imaging and text data
reliably across diverse patient populations and clinical
settings.

Screening and prevention

The integration of LLMs into screening and prevention
efforts represents a nascent but rapidly evolving area of
research, focusing on text-based knowledge synthesis and
guideline-based recommendation.” While most Al-based
screening applications to date have emphasised image
analysis for earlier detection of lesions or nodules, LLMs
offer potential in complementary domains like patient risk
stratification from EHRs, automated reminder systems for
atrisk populations and the generation of patient-specific
preventative measures.” These text-driven functional-
ities could be especially valuable for oncologists seeking
to optimise large-scale screening programmes or adapt
guidelines to individual patient risk profiles.
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The utility of LLMs in augmenting decisions related
to screening and prevention has been investigated in
prostate (85% and 100% accuracy for 30 easy and hard
prostate cancer screening questions),” colorectal (100%
accuracy in 20 colorectal cancer screening questions),”
breast, ovarian and lung cancer (83% accuracy across
15 select-all-that-apply pan-cancer screening scenarios)
contexts.” Although these standardised screening evalu-
ations show high accuracy, they are based on predefined
question sets rather than real-world clinical scenarios.
Chiarelli et al tested the reliability of GPT when queried
with three prompt variations, showing that there was no
difference in accuracy but noted that systematic evalua-
tions of reliability are warranted given the probabilistic
nature of LLMs.” Despite attempts to ground LLM in
evidence-based knowledge such as PubMedBERT and
Med-PalLM, oncologists should validate that LLM-based
screening recommendations coupled with explanations
align with established clinical guidelines and generalise
when integrated into patient screening programmes.

Treatment and management

While LLMs can suggest treatment options aligned with
established guidelines, studies have found that they may
also propose non-concordant treatments, requiring
human oversight to align management with patient pref-
erences and evidence-based guidelines.”” Marchi et al
found that ChatGPT-3.5 provided accurate suggestions
for primary treatment (85.3% accuracy, 100% sensitivity)
and adjuvant treatment (96% accuracy, 100% sensitivity)
for 68 head and neck cancer cases according to NCCN
consensus expert-driven guidelines for cancer manage-
ment.”® High sensitivity in treatment recommendations
underscores the comprehensive nature of LLM outputs
but may lead to over-inclusive lists that require oncologist
judgement to refine. For example, in another study, Chen
et al found that across 104 prompts for 26 pan-cancer
diagnoses, GPT-3.5 provided at least 1 NCCN-concordant
treatment in 98% of scenarios but also recommended
non-concordant treatments in 34.8% of scenarios.” Given
the occurrence of non-guideline-concordant recommen-
dations, it is critical to underscore that LLM outputs
should complement—but not replace—human clinical
judgement while future research continues to identify
and address the knowledge deficiencies of LLM tools in
clinical settings. For the oncologist, this means that LLMs
can generate a differential list of treatments for future
evaluation of guideline concordance and patient prefer-
ence, but cannot replace human decision-making. LLMs
in specialised oncology tasks have shown mixed perfor-
mance, with examples in the literature demonstrating
that LLMs prescribed chemotherapy protocols with inap-
propriate dosing (56% accuracy)”’ and were subject to
hallucinations when recommending management for
immune-related adverse events (44% accuracy).?’8 From
a medical lens, LLMs may fail to consider important
factors such as a patient’s comorbid conditions or psycho-
socio-economic factors that may contraindicate certain

regimens in practice. Similarly, while an LLM might
produce a seemingly appropriate surgical recommenda-
tion, only a trained surgeon or multidisciplinary tumour
board can balance tumour resectability, patient prefer-
ences, anatomical complexities and the associated risks
unique to a specific patient. From a psychosocial lens in
palliative scenarios, an LLM’s suggestions may overlook
family dynamics or cultural values—factors that carry
substantial weight in deciding care goals. These exam-
ples illustrate how human judgement, guided by clinical
expertise and empathy, remains central to comprehen-
sive patient-centred care.

One of the most exciting applications of LLMs in
oncology is the recommendation of treatments in
complex settings outside of established clinical practice
guidelines. These tasks may be ideally suited for LLMs
given their ability to process vast amounts of medical liter-
ature and patient data to identify patterns that may not
be apparent to human experts, but useful for generating
novel treatment recommendations in complex and rare
cancer cases. In complex breast™ and colorectal*’ cancer
settings, studies have reported 70% and 87% concor-
dance of LLM-generated treatments with tumour board
recommendations. Likewise, Chen et al found that LLM-
generated diagnosis and treatment recommendations
of 79 clinical oncology cases with images achieved up to
72% accuracy.*' However, inaccurate referencing to estab-
lished guidelines and generation of medically inaccurate
outputs with confidence contribute to poor autonomous
actionability of LLM-generated recommendations*

Data extraction and processing

To enable synthesis of patient data for molecular tumour
boards, oncologists may use LLMs to extract key tumour
attributes rather than manually extracting this data from
the patient EHR.*” Preston et al demonstrated that LLM-
based data extraction of tumour attributes, including
tumour site and the widely-adopted TNM cancer staging
classification, can achieve 94-99% AUROC performance
and generalise across multiple health systems and state
registries.” Notably, LLM-enabled data extractions for
well-defined categories, such as TNM stage, can even
correct human errors on expert review.

Beyond clinical features, automated extraction of social
and behavioural determinants from clinical data* can
be applied to address several humanistic elements of the
cancer patient experience, including identifying atrisk
patients who lack advance directives, surrogate decision-
makers and decision capacity,” and recommending
online resources to address psychosocial needs.*® Instead
of prompting LLMs to generate ‘black box’ predictions
from clinical data, oncologists can prompt LLMs to
extract important data points from large-scale clinical
text, allowing oncologists to prioritise expert synthesis
of medical knowledge and patient care over non-patient
facing, administrative tasks. While the high performance
in structured data extraction is encouraging, variability
in EHR systems and documentation practices across
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institutions may affect extraction performance in external
settings, motivating the need for robust, multi-centre eval-
uations to confirm generalisability in real-world settings.

Patient-facing applications

The familiarity and accessibility of chatbot LLMs with near-
human levels of language competency underscore their
potential as patient-facing health information resources
and supportive management tools to help address patient
educational and psychosocial factors of cancer care.

Health information resource

The accurate performance of conversational chatbots on
standardised benchmarks of medical competency, such
as the USMLE,"” and common patient queries about
cancer® * suggests that LLM applications may serve as
a readily accessible, supplementary patient resource for
cancer information. Beyond responding to clinician-level
queries, cross-sectional studies of ChatGPT-4 reported
high accuracy and alignment to oncologists or guidelines
if available, when tested on general patient-level questions
about genetic counselling,” breast,” lung,” colon®® and
pancreatic’* cancers. Moreover, pilot evaluations of LLMs
for language translation® and biomedical text simplifica-
tion” are emergent research directions of clinical LLMs
that can facilitate patient education in oncology. LLMs
can provide oncology knowledge as an accessible patient
resource.

However, we caution that the variable medical accuracy
across various cancers and topics,* risks of misinterpreta-
tion, oversimplification of complex medical information,
propagation of outdated or non-personalised advice and
decreased readability of chatbot-generated responses
compared with physicians may collectively pose serious
risks to deploying patientfacing LLMs in real-world
settings until effective safeguards for accuracy and misin-
formation are implemented. Despite the positive results of
these pilot studies, oncologists should explain to patients
that LLM tools may (1) generate unreliable and outdated
information that can lead to harm, (2) fail to personalise
recommendations to the individual patient, (3) harbour
inherent biases based on their training datasets and (4)
provide limited protections to personal health informa-
tion privacy and security that have yet to be systematically
regulated.

Supportive management

Conversational LLMs, known as chatbots, may act as a
complementary agent for psychosocial and emotional
support in oncology. Chatbots can provide empathetic
responses to online patient questions about general
medicine'® and cancerspecific*” topics in non-inferiority
evaluations compared with physicians, supporting their
use in generating empathetic template responses under
clinician oversight when integrated into patient health
portals.57 LLM tools also pose potential to improve
patient communication during post-treatment care, such
as improving dialogue rates for patients experiencing

oncological aphasia.”® Combining LLM-enabled language
competencies with hardware, such as assistive robots with
functional language and physical capabilities, is a prom-
ising development towards more human-like levels of
emotional connection.”

Oncologists should establish clear protocols defining
the scope of chatbot use that encompass two major compo-
nents: development-focused guidelines and patient-facing
usage guidelines. From a development perspective, these
protocols can inform model creators and industry part-
ners about the clinical and ethical parameters expected
in an oncology setting, helping to ensure that chatbot
features—such as data handling, language style and
management plans—are compatible with current stan-
dards of care and privacy regulations. In parallel, usage
guidelines aimed at clinicians and patients will clarify the
chatbot’s intended purposes (eg, providing supplemen-
tary educational information, screening for psychosocial
support needs or summarising care instructions), limita-
tions (eg, lack of personalised medical advice, potential
for erroneous responses) and recommended follow-up
actions. This dual approach enables a coordinated
effort to shape the chatbot’s capabilities during devel-
opment while also providing straightforward guidelines
that support safe, consistent and beneficial interactions
between patients, oncology teams and Al-based tools.

Patient perceptions of LLMs

Recent studies show that patients often perceive Al-gener-
ated health advice, such as from ChatGPT, as helpful and
empathetic, with evidence that users sometimes rate these
responses even more favourably than physician-written
answers.”’” However, research indicates that patients have
only moderately high trust in chatbot responses—Nov
et al (2023) report average trust scores of around 3.4
out of 5, with confidence falling as question complexity
increases.”! Platt et al (2024) similarly found that patients’
comfort using ChatGPT for healthcare queries was below
mid-range, highlighting accuracy and privacy concerns.”
A notable risk factor is that lay users cannot always iden-
tify when an LLM’s advice is inaccurate or outdated,
underscoring the potential for harm if chatbots are used
without adequate oversight.”’ Nevertheless, public surveys
of online users suggest that, despite these reservations,
members of the public, including patients, show willing-
ness to adopt Al health tools in the future if privacy, safety
and transparency standards are better established.” **

Facilitating and synthesising oncology research

Automated processing of unstructured text is a unique
competency of LLMs that can be used to facilitate transla-
tional research in oncology. For example, LLMs can struc-
ture clinical trial eligibility criteria for cancer patients that
achieve moderate performance compared with physician
recommendations, with mixed reports of both high false
positives” and high false negatives.” Similar to medical
tumour board recommendations, LLMs applied to clin-
ical trial recommendation should be used to generate an
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Table 1

How large language models are being used in oncology

Domain Application

Oncologist

Cancer Patient
Language translation
Biomedical text simplification

Cancer Research

Literature mining for drug synergies
Administration

VVVV VVYVVVYV VVVVY VVVYYVYYVYY

inclusive selection of potentially eligible trials for oncolo-
gists to prioritise in their final recommendation.

Translation of oncology clinical trial results into action-
able clinical recommendations requires expertsynthesis of
scientific knowledge prone to time lag between discovery
and implementation.”” To address this problem, LLM
systems such as SEETrials have demonstrated proficiency
(96% specificity, 94% sensitivity) in automated extraction
of intervention outcomes associated with cancer trials
reported in conference abstracts,” enabling oncologists
to glean early insights into the safety and efficacy of novel
interventions.

Applied to precision oncology, LLMs have seen success
in automating data extraction of driver mutations and
clinical data from EHRs to evaluate the prognostic value
of these mutations and functional effects.” Likewise, liter-
ature mining by LLMs may be useful as a research tool
for drug synergy predictions applied to complex cancer
patient scenarios.”’ Academic oncologists can stay up to
date on advancements in LLLM applications by engaging
with emerging LLM in oncology research, attending
interdisciplinary conferences and collaborating with Al
experts to safely and effectively integrate these tools into
modern oncology practice (table 1).

LIMITATIONS AND FUTURE DIRECTIONS OF LARGE LANGUAGE
MODELS

Technical limitations

The implementation of LLMs in medicine is limited both
by Al-intrinsic and clinical workflow challenges. Training
and testing models on sparse, incompletely labelled
datasets risks generating insights that fail to generalise
to broad use cases. Furthermore, LLLM-based models are
prone to generating convincing ‘hallucinations’, content
that is entirely nonsensical or unfaithful to the provided
source Content,9 which must be either actively detected
or accounted for by healthcare providers. For example,

Generate differential diagnoses based on patient clinical notes and data for oncologist review
Prognosticate patient based on risk and survival as a supportive tool

Provide cancer screening information based on established guidelines

Generate treatment recommendations for oncologist review

Extraction of key cancer attributes from clinical text to inform clinical decision-making
Generating summaries of clinical notes, consultations and diagnostic reports

Patient health information resource with clinician oversight

Psychosocial and emotional support and counselling

Clinical trial matching for eligible cancer patients
Extraction of trial outcomes from literature for clinician education
Extraction of mutation and clinical data for precision oncology

Draft work communications and patient messages
Transcribe and summarise patient and clinician meetings
Generate pre-filled administrative paperwork

Copy-edit and format administrative paperwork

Chen et al reported a 12.5% hallucination rate by LLM
chatbots asked to generate cancer treatment informa-
tion.™ As a result, there has been increasing focus on
the development of LLM safeguards that prevent the
generation of health disinformation.”” Other studies
have found that LLM chatbots may provide inconsistent
responses to the same question asked several times,”
raising questions about their reliability and reproduc-
ibility. Finally, most modern LLM chatbots are trained on
fixed time windows—for example, ChatGPT 3.5’s initial
release was trained on data up to September 2021. This
training method may exclude more recent advances and
risks generating outdated responses, especially in rapidly
evolving fields such as oncology.

Ethical limitations
Collaborations between international institutions, as
evidenced by a partnership between the WHO and
the FEuropean Parliament, have garnered interest in
producing ethical guidelines and frameworks for the
application of Al in healthcare.”” These frameworks
emphasise the preservation of patient autonomy, tech-
nological transparency, accountability and inclusiveness.
Until international standards are formalised, significant
discussion has focused on adherence to existing national
standards, such as the US Health Insurance Portability
and Accountability Act (HIPAA). Models that employ
identifiable patient information may risk inadvertently
storing or disclosing sensitive information in violation of
HIPAA regulations or may be vulnerable to cybersecurity
breaches.”* Furthermore, the use of identifiable patient
information in the pre-training process may violate prin-
ciples around informed consent and rights-of-data, espe-
cially if previously anonymised data can be re-identified.
Kapsali et al have highlighted discrepancies between
the aforementioned principles and ChatGPT’s features,”
pointing to its black-box technology and insufficient
documentation as causes for concern. Unsurprisingly, it
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has been shown that patients may prefer human judge-
ment and expertise over Al-generated recommenda-
tions,”® especially when existing legal frameworks around
liability and medical malpractice fail to fully address
Al-driven outcomes.”” Indeed, emerging research has
revealed the potential for LLMs to perpetuate societal
biases, such as race, even without the explicit input of
demographic data.” A recent systematic review high-
lighted the prevalence of gender and racial bias in
medical LLMs, describing model outputs that leaned
on stereotypical gender roles, used gendered language
and underrepresented women while overvaluing male
competence. Mitigation strategies that limit these biases
have relied primarily on prompt engineering methods
with varying effectiveness, and there exists a need for
standardised metrics that systematically reduce bias in
all stages of model development and implementation.”
Given the historic and ongoing issues with diversity, as
evidenced by clinical trial participation for example,®
there exists an imperative for cancer researchers to inter-
rogate oncology-focused LLMs for data-driven biases.

Resource limitations

Although the economic challenges of LLM deployment
in healthcare systems remain underexplored, efforts have
been made to estimate the computational, energy and
financial costs associated with model development and
implementation.®’ The cost burden of LLMs in medicine
is based on model training and fine-tuning, integration
into existing electronic health systems, input data types
and latency requirements. Carbon footprint estimates
have been inferred at each lifecycle point of LLMs—
pretraining, fine-tuning, and inference—with the infer-
ence stage dominating the long-term environmental
impact.®* For example, a single query of a fine-tuned
GPT-3 model uses 0.04 kW-h of electricity per 100 pages
of generated text,”” a power consumption that could
rapidly balloon when scaled across thousands of patients
that each warrant numerous clinician queries to medical

records. However, there have been countervailing debates
on the economic implications of LLM deployment, with
some researchers proposing that the expected cost effi-
ciencies and sustainable practices conferred by automa-
tion far outweigh the negative impacts.*> Cancer care in
particular is likely to benefit from these efficiencies, given
the longstanding capacity constraints as the number of
cancer patients outpaces the number of clinicians avail-
able to support them.*

Future directions

Emerging directions in LLM implementation will involve
advances in technology and model complexity, cohe-
sive regulatory and standardisation frameworks, greater
emphasis placed on inclusivity and equity and the incor-
poration of clinician and patient feedback into develop-
ment cycles to better align model outputs with desired
outcomes (table 2).

Recent research has proposed a paradigm shift from
increasing resource usage towards designing specialised
component tools that work together as a compound Al
system.*”” Roadmaps for the design of compound Al
systems in oncology can be informed by previous system
designs used for chemical synthesis® and geometry
theorem proofs.*” There exists additional potential for
multimodal AI models that integrate oncology-focused
models in collaboration with other disciplines, such
as radiology and pathology, with potential to stream-
line tasks such as summarisation, patient education,
differential diagnosis generation and interdisciplinary
collaboration.® In the era of precision medicine, the
integration of multimodal datasets which combine
textual data from medical records, oncology clinic
visits, multidisciplinary discussions, genomic pathology
reports and imaging findings is likely to enhance patient-
specific recommendations. Fine-tuning techniques
such as prompt engineering have also shown partic-
ular promise; prompts that provide additional clinical
context have been shown to generate treatment plans

Table 2 Limitations to large language model adoption in oncology and potential solutions

Limitations Potential solutions

Technical

Ethical
development

black-box technology

Economic

VYVV VY V VVVVYVYY

Al, artificial intelligence; LLM, Large language model.

Comprehensive data labelling requirements that employ diverse clinical and patient data

Continually shifting training window that captures new studies and advancements as they are released
LLM safeguards that detect and prevent hallucinations and health disinformation

Development of Al reliability metrics to track output consistency

Development of consensus ethical frameworks around the use of Al in clinical contexts
Inclusion of both patient and clinician feedback on a continual basis, both into regulatory frameworks and model

Adoption of open-source and transparent development, along with clear documentation, to avoid the perception of a

Continual research and benchmarking of societal biases found in LLM inputs and outputs
Anonymisation of all patient information by LLMs to preserve privacy and security

Careful consideration of build vs buy options for institutions considering LLM deployment

Investment into sustainable energy options that fuel LLM energy consumption while minimising carbon footprint
Judicious use of LLM model queries, limited to use cases where it improves clinical outcomes

Comprehensive accounting of the cost efficiencies conferred by LLM deployment (eg, human resources)
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in concordance with cancer care guidelines.* From
a model evaluation perspective, some are proposing
more realistic evaluation frameworks using agent-based
modelling to create Al structured clinical examinations
(‘AI-SCE’) that test Varyin% degrees of self-governance
in dynamic environments.'

Deployment of Al in healthcare settings has also engen-
dered ongoing discussion around maximising benefit and
minimising risk through standardised regulation. While
internationally recognised governance mechanisms
for AT in healthcare do not currently exist,” there has
been increasing consensus in focused areas of interest.
For instance, a diverse set of academic, industry, funding
agency and publishers has proposed the implementa-
tion of Findable, Accessible, Interoperable and Reusable
Data Principles to define good data stewardship practices
and facilitate data sharing that may be adopted in the
precision oncology community.”' Standardised reporting
guidelines for biomedical-focused LLM research, such as
TRIPOD+LLM for primary research involving LLMs,”
QUEST for human evaluation of LLMs* or CONSORT-AI
for clinical trials involving AL* aim to improve the consis-
tency, reliability and verifiability of future advancements.

Patient-centric regulations for patient privacy, medical
malpractice and informed consent lag behind technical
innovation. To date, this has only been addressed within
the confines of individual partnerships (eg, Google’s
HIPAA-compliant generative Al at the Mayo Clinic) and
not at scale. With time, the adoption of widespread data
sharing and ethics frameworks will permit existing models
to train on large, open-source and more representative
datasets while considering important principles of data
privacy and right to use, intellectual property and risk of
harm. This will in turn enable the development of accu-
rate, purpose-built LLMs for cancer-specific applications,
both via open-source collaborations (eg, RadOnc-GPT,
CancerGPT)” ** and industry-sponsored offerings (eg,
Carelntellect by GE Healthcare, Watson for Oncology by
IBM and Intellispace Oncology by Phillips).

The design of human-in-the-loop training cycles, where
LLMs are fine-tuned by engineers with clinician feed-
back, can optimise LLM outputs that are more clinically
useful to the oncology care team. Explicit and implicit
patient feedback may help LLMs better align outputs with
the unique psychosocial experiences of cancer patients.
Explicit feedback involves reports from patient users after
interactions with the LLM application, such as numer-
ical scores or binary ratings of the text output from the
tool. Implicit feedback involves indirect reports from
patient users based on user interactions and behaviour
patterns with the LLM application, such as monitoring
user reactions to LLM outputs through engagement
time or characteristics of follow-up queries. The design
of oncology LLM applications requires consideration
of both emotional and cognitive empathy in order to
address the psychosocial demands of the cancer patient
experience and prioritise the clinical competencies that
impact patient clinical outcomes.

CONCLUSION

LLMs have the potential to impact all aspects of cancer
care due to their human-like ability to understand and
generate natural language. Clinician and patient-facing
applications of LLMs in oncology, ranging from diagnosis,
management and emotional support, serve as promising
directions of LLM research in oncology. Coupled with
emergent multi-modal capabilities and integration into
compound Al systems, state-of-the-art LLM applications
are well-positioned to move towards addressing clin-
ical and translational research challenges in oncology.
However, there remain several limitations of LLM deploy-
ment in clinical practice, including medical accuracy,
privacy and ethics, which remain to be systematically
addressed in order to facilitate their widespread adop-
tion. Validation of LLM applications should demonstrate
sufficient benefit in real-world clinical settings necessary
to prioritise patient care outcomes in oncology. While
the mixed performance of LLMs across oncology-related
competencies may suggest that oncologists will not be
replaced by Al solutions anytime soon, LLM-based tools
may serve as useful clinician decision support and patient-
facing management tools under clinician oversight.
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