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Exosomes are tiny vesicles with a double membrane structure that cells produce. They
range in diameter from 40 to 150 nm and may contain a variety of biomolecules including
proteins and nucleic acids. Exosomes have low toxicity, low immunogenicity, and the
ability to encapsulate a wide variety of substances, making them attractive drug delivery
vehicles. MSCs secrete large amounts of exosomes and hence serve as an excellent
source of exosomes. MSCs-derived exosomes have regenerative and tissue repair
functions comparable to MSCs and can circumvent the risks of immune rejection and
infection associated with MSC transplantation, indicating that they may be a viable
alternative to MSCs’ biological functions. In this review, we summarized the drug
delivery methods and advantages of exosomes, as well as the advancement of MSC
exosomes as drug carriers. The challenges and prospects of using exosomes as drug
delivery vectors are presented.
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INTRODUCTION

Mesenchymal stem cells (MSCs) are a class of pluripotent stem cells capable of self-renewal
and multidirectional differentiation. They are one of the most commonly employed stem cells.
MSCs are derived from several tissues, including bone marrow, adipose tissue, muscle, and
placenta (Jackson et al., 2013; Li et al., 2015; Frese et al., 2016). MSCs perform a number of
biological functions, including tissue repair, immunosuppression, and neuroprotection (Yu
et al., 2014). With low immunogenicity, multi-directional differentiation ability, in particular
homing ability, it has significant research potential in cardiovascular diseases, nervous
diseases, and hematopoietic diseases (Wang et al., 2018a). However, cells as drug carriers
still face many problems such as uncertain differentiation accidents, cell embolism, infection,
production, and storage (Su et al., 2021). Therefore, the drug delivery system based on MSCs
has become one of the most attractive therapeutic methods. Many studies have suggested that
the therapeutic effects of MSCs may be mediated by their paracrine secretion (Praveen Kumar
et al., 2019; Kong et al., 2020). As the secretion of MSCs, the exosomes inherit the relative
advantages of MSCs and overcome the problems of MSCs as drug carriers (Tang et al., 2021).

Exosomes are nanoscale extracellular vesicles that organisms produce under normal
physiological and pathological conditions. Exosomes were first discovered by Pan and
Johnstone while investigating the maturation mechanisms of sheep reticulocytes into
erythrocytes (Harding and Stahl, 1983; Pan and Johnstone, 1983; Pan et al., 1985). These
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vesicles originate from multivesicular bodies and are
eventually released outside the cell (Latifkar et al., 2019)
(Figure 1). Exosomes have been detected in a variety of
body fluids, including blood, urine, breast milk, ascites,
amniotic fluid, saliva, and cerebrospinal fluid (Wang et al.,
2019). They can carry biologically active molecules such as
nucleic acids and proteins and serve as messengers between
cells, delivering their contents to the target cell (Hendrix
et al., 2010; Gu et al., 2012; Weber et al., 2019).

MSCderived exosomes (MSC-Exos) were originally
discovered by Lai et al. (2010) during the isolation of
MSCs culture media. MSC-Exos have many unique
characteristics, such as small size, low immunogenicity,
long-circulating half-life, remarkable penetration, and
biocompatibility. Furthermore, because of its particle size
advantage, it can transport cargo molecules across biological
barriers (such as the blood-brain barrier) (Chen et al., 2016a).
It is one of the best choices for researchers to find drug
carriers in vivo (Lai et al., 2013). Studies have shown that
MSC-Exos possesses anti-fibrotic, anti-inflammatory, and
pro-angiogenic effects with regenerative potential in
myocardial tissue from ischemic injury in chronic
myocardial infarction, acute and chronic renal injury, and
fibrotic tissue (Gatti et al., 2011; Li et al., 2013; Yamaguchi
et al., 2015). These features contribute to the potential of
MSC-Exos as a natural drug delivery vehicle that can either
accomplish the biological function of the package or achieve
superior biological function than that of unmodified MSC-
Exos.

ISOLATION AND CHARACTERIZATION OF
EXOSOMES

Currently, exosome isolation techniques include differential
centrifugation, density gradient centrifugation, immunosorbent
assay, precipitation, ultrafiltration, and size-exclusion
chromatography (Cheruvanky et al., 2007; Lee et al., 2015;
Lobb et al., 2015; Zeringer et al., 2015; Li et al., 2017a).
Among them, differential centrifugation is the most frequently
used method for exosome isolation and purification and is widely
regarded as the gold standard for exosome isolation. Differential
centrifugation and density gradient centrifugation make use of
the density and size difference between exosomes and other
components to separate exosomes using different centrifugal
forces. Immunosorption occurs as a result of specific
interaction between corresponding antibodies with exosomal
membrane proteins. Precipitation chemicals, such as
polyethylene glycol, are used to reduce the solubility of
exosomes, causing them to precipitate. Ultrafiltration is a
technique for separating exosomes based on their size
differences using ultrafiltration membranes. Size exclusion
chromatography employs polymer gel packings with varying
particle sizes as the separation medium to separate exosomes
based on their size properties. However, existing separation
methods remain challenging. Microfluidic separation has
recently been recognized as a method for rapidly and precisely
isolating exosomes from small quantities of liquid samples (Liga
et al., 2015).

At present, the most frequently used techniques for
characterizing exosomes include electron microscopy,
nanoparticle tracking analyzer, Western bolt (WB), and flow
cytometry. Electron microscopy offers a high resolution and can
determine the thickness, concentration, and particle size
distribution of exosomes’ phospholipid bilayer (Nojima et al.,
1993). Nanoparticle tracking analysis estimates exosome
concentration, particle size distribution, and other information
by tracking the trajectory of individual particles (Xu et al., 2011).
WB is a traditional exosome characterization method that uses
high-quality monoclonal antibodies to identify antigen-
presenting proteins (e.g. CD63, CD81, CD9, TSG101, ALIX,
etc.) on the surface of exosomes to improve the reliability of
identification results (Tian et al., 2018a). Flow cytometry offers
the advantages of high speed, high statistical accuracy, and high
practicability, making it an advanced analytical tool for exosome
heterogeneity analysis, exosome-based diagnostic markers
research, and therapeutic agent development.

EXOSOME DRUG DELIVERY MODE

To date, exosome loading drug approaches are divided into two
categories: extracellular and intracellular loading strategies.

Extracellular Loading Strategy
Extracellular drug loading entails the purification and isolation of
exosomes from donor cells followed by the loading of the desired
drug into the exosomes using several methods such as incubation,

FIGURE 1 | Biogenesis of exosomes. Exosomes begin as multivesicular
vesicles (MVB), which invaginate the cytoplasmicmembrane and then develop
into early endosomes. The endosomes then bud inwards to form
multivesicular bodies, which have two fates: one is to migrate to the cell
surface and fuse with the plasma membrane, releasing the exosomes outside
the cell in a cytosolic vomit; the other is to bind to lysosomes and degrade the
contents.
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electroporation, sonication, extrusion, freeze-thaw, and saponin-
assisted loading (Figure 2). The table below summarizes the
advantages, disadvantages, and applications of various
extracellular drug delivery methods (Table 1).

The simplest method of exosome loading is drug co-
incubation, which involves simply combining the isolated
exosome with the drug. Loading is driven by drug
concentration, and the efficiency of loading by this method is
dependent on the drug’s lipophilicity as well as the concentration
gradient (Sun et al., 2010). The primary disadvantage of this
method is its low loading efficiency.

The electroporation technique of drug loading disrupts the
electric field of the phospholipid bilayer of the exosome, forming
small pores in its membrane, and allowing the drug to pass into

the vesicle. The integrity of the vesicle membrane is then restored,
allowing the formation of drug-loaded vesicles. Studies have
shown that electroporation has been effective in loading
siRNAs into exosomes (Alvarez-Erviti et al., 2011). Wahlgren
et al. (2012) showed that electroporation results in a higher
siRNA loading than chemical transfection. However,
electroporation has been challenged as a method of loading
siRNA into exosomes, with Kooijmans et al. (2013) stating
that electroporation destroys exosome integrity and is
significantly less effective than co-incubation.

Acoustic treatment, in which exosomes from donor cells are
combined with the drug and sonicated by a probe sonicator,
results in the drug flowing into the exosome due to ultrasound-
induced membrane deformation. The following are some

FIGURE 2 | Exosomes extracellular drug delivery strategy. (A) Drug co-incubation; (B) Acoustic processing; (C) Squeeze method; (D) Electroporation; (E) Freeze-
thaw; (F) Saponin-assisted loading

TABLE 1 | Advantages, disadvantages, and applications of various extracellular drug delivery methods.

Method Advantages Disadvantages Application Reference

Drug co-
incubation

Simple, no additional
equipment required

Low efficiency Curcumin, paclitaxel, peroxidase,
siRNA, porphyrin

34

Electroporation Loadable with large molecules Disruption of exosome membrane integrity siRNA, paclitaxel, porphyrin 35, 36
Acoustic treatment Higher efficiency The membrane is easily deformed and ineffective against

hydrophobic substances
siRNA, paclitaxel, porphyrin, miRNA 38, 39

Extrusion method Higher efficiency Some damage to the exosome membrane Causes
cytotoxicity

Porphyrins, peroxidase 40

Freeze-thaw
method

Applicable to most substances Exosome aggregation and low efficiency Catalase, paclitaxel 41

Saponin High drug loading capacity The exocrine body produces pores, control, and cleaning Peroxidase, porphyrin 42, 43
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examples of ultrasound treatments for drug loading: Kim et al.
(2016) loaded paclitaxel into exosomes released from
macrophages using ultrasound treatment. This method offers a
high loading efficiency and sustained drug release while having
no effect on exosome protein and lipid content. Lamichhane et al.
(2016) also used ultrasound to deliver functional small RNAs into
exosomes isolated from HEK293T and MCF-7 cells.

The extrusion method involves combining the exosomes with
the drug, then loading the mixture into a syringe-based lipid
extruder and extruding through a membrane with a pore size of
100–400 nm at a controlled temperature. During extrusion, the
exosome membrane is disrupted and forcefully mixed with the
drug, allowing the drug to be loaded into the exosome. Fuhrmann
et al. loaded porphyrins into the exosomes by extrusion.
However, it was demonstrated that the exosome extrusion
method of drug delivery caused cytotoxicity, while other
methods of preparing exosome carriers did not (Antimisiaris
et al., 2018).

The freeze-thaw method entails incubating the drug with
exosomes at room temperature, then freezing the mixture at
−80°C or in liquid nitrogen, and then thawing it at room
temperature. To load the drug into the exosomes, the
procedure is consecutively repeated three times (Sato et al.,
2016). This method allows peroxisomes, therapeutic RNA, and
other components to be loaded into exosomes. However, this
method may cause exosomes to aggregate, resulting in a
significantly poorer loading efficiency than that ultrasound or
extrusion methods.

Saponin is a surfactant molecule that co-incubates with
exosomes to generate pores in the exosome membrane,
enhancing exosome-membrane permeability. To generate
peroxidase-loaded exosomes, Haney et al. (2015) mixed
peroxidase with exosomes, added saponin and placed them on
an oscillator for 20 min at room temperature. This method may
also be used to load hydrophilic molecules into exosomes, such as
porphyrins (Fuhrmann et al., 2015). This method offers a high
loading efficiency and prevents protease degradation.

Intracellular Drug Delivery Strategy
Intracellular drug loading is the co-culture of drug with donor
cells or chemically transfected donor cells loaded into the donor
cells, and when the drug enters the exosome and is released from
the donor cells, the drug-loaded exosome is isolated and purified.

Although the loading efficiency of drug co-culture with donor
cells is uncontrollable, it has been used in more research due to
the ease with which the drug may be loaded. Pascucci et al. (2014)
encapsulated paclitaxel (PTX) into mouse mesenchymal stromal
cells, washed, and incubated them with fresh media. After 48 h,
exosomes were recovered from PTX-loaded cells. Exosomes
loaded with PTX had a strong inhibitory impact on CFPAC-1
human pancreatic cells as compared to exosomes obtained from
cells in the untreated group.

Transfection is the most commonly used and effective method
for loading therapeutic proteins or oligonucleotides into
exosomes. Akao et al. (2010) successfully loaded therapeutic
miRNAs into TH-1 macrophage secretory exosomes. Similarly,
Ohno et al. (2013) demonstrated that exosomes loaded with

miRNA could effectively target recipient cells when their
surfaces were modified with specific peptides, as well as that
intravenous injection of exosomes could reduce tumor growth at
tumor accumulative sites.

ADVANTAGES OF EXOSOMES AS DRUG
CARRIERS

A liposome is an ultramicroscopic spherical carrier formulation
formed by a lipid bilayer. It possesses the ability to load lipophilic
and hydrophilic drugs and to exhibit targeting effects by the
attachment of targeting ligands to its surface (Zhou et al., 2013a).
While the liposome is a relatively mature drug carrier, it has some
limitations, including the toxicity of the synthetic liposome
membrane and the low biocompatibility of targeted ligand
(Sercombe et al., 2015).

Exosomes outperform synthetic liposomes as drug carriers. 1)
Exosomes are actively secreted by living cells and can be
considered as natural liposomes, overcoming the limitations of
synthetic liposomes; 2) Exosomes are derived from the organism,
making them less immunogenic and possessing good tolerability
and safety (Chen et al., 2016b); 3) Exosomes can cross the blood-
brain barrier and enter the brain circulation, allowing for non-
invasive treatment of intracerebral diseases (Long et al., 2017); 4)
Exosomes have intrinsic homing properties and can also be
artificially modified to express specific molecules or to
improve their targeting ability (Li et al., 2017b).

MSCExos has unique advantages as a drug carrier. Although
primary cells derived from MSCs are commonly used in clinical
practice can produce a large number of exosomes, they have
limited proliferation capacity for large-scale production, and the
exosomes produced may have batch-to-batch variation,
necessitating repeated testing and validation in multiple
batches and increasing production costs (Fang et al., 2019).
Chen et al. (2011) found that using c-myc transfected human
embryonic stem cell-derived MSC (hESC-MSC) may enhance the
proliferation rate and reduce the time required to produce MSCs
without compromising the exosome quality. Transfected hESC-
MSC may produce exosomes in the milligram range, indicating
the possibility of producing biologically beneficial exosomes.
Subsequently, a previous study compared the ability of c-myc-
transfected hESC-MSC, skeletal muscle cell lines, HEK cells, small
airway epithelial cell lines, and THP1 cell lines to produce
exosomes. By analyzing CD81 levels, this study found that
hESC-MSC produced at least 10-fold the amount of CD81 +

exosomes produced by other cell lines (Yeo et al., 2013).
In addition, exosomes can be functionally modified to improve

their use as carriers. Exosome functionalization can increase
exosome circulation duration, improve exosome intercellular
transport efficiency, and promote better targeting of exosomes
(Lu et al., 2018). At present, the commonly used targeted
modification approach is to use genetic engineering to
transfect the gene encoding the targeted peptide into exosome
source cells, resulting in exosomes carrying the targeted peptide
(Shamili et al., 2018). Furthermore, some studies have used a
covalent approach to exosome modification, such as
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bioorthogonal copper-free azide-alkyne cycloaddition to attach
functional ligands to exosomes, which has been shown to have no
significant effect on exosome structural integrity and interaction
with receptor cells and can be used for rapid and large-scale
production of functionalized exosomes (Tian et al., 2018b). In
addition to covalent approaches, non-covalent modifications
such as electrostatic interactions, receptor-ligand binding, and
hydrophobic reactions can be utilized to modify the surface of
exosomes (Armstrong et al., 2017).

APPLICATION OF MSC-EXOS AS A DRUG
DELIVERY VEHICLE

MSCExos has similar physiological functions to MSCs, indicating
its potential for application as a therapeutic agent. Additionally,
MSC-Exos can act as a drug delivery carrier, which is increasingly
used in the treatment of cardiovascular diseases, neurological
diseases, and malignant tumors.

Diseases of the Cardiovascular System
At present, an increasing number of researchers are
interested in the effect of MSC-Exos on cardiovascular
disease. MSC-EXOS has been shown to reduce myocardial
ischemia-reperfusion injury (MI/R) through multiple
signaling pathways, such as activation of the Wnt/
β-catenin signaling pathway (Cui et al., 2017). The AMPK/
mTOR and Akt/mTOR pathways also induce autophagy in
cardiomyocytes (Liu et al., 2017). Furthermore, MSC-Exos
therapy increased the ATP and NADH levels in MI/R hearts,
reduced the degree of oxidative stress, and significantly
reduced local and systemic inflammatory responses (Arslan
et al., 2013). Cardiac stem cells (CSCs) pretreated with MSC-
Exos have a better survival rate and promote long-term
recovery of cardiac function in rat models of myocardial
infarction (Zhang et al., 2016a).

MiR-132 can modulate endothelial cells during angiogenesis,
however, its safe delivery in vivo remains an unresolved issue. Ma
et al. (2018) investigated whether MSC-Exos could be used to
treat myocardial ischemia through miR-132 delivery. Exosomes
loaded with miR-132 were able to significantly increase the
lumen-like structure of endothelial cells in vitro, while
exosome-pretreated human umbilical vein endothelial cells
exhibited increased angiogenic potential in vivo. In addition,
implantation of Mir-132-coated exosomes into the ischemic
heart of mice, significantly increased new angiogenesis in the
periinfarct region and protected cardiac function. Following a
myocardial infarction, the therapeutic impact of transplanted
MSCs may be enhanced by exosomes loaded with Mir-125b-
5p61, which improves autophagy (Xiao et al., 2018). Furthermore,
the recombinant adenovirus-mediated Mir-486 gene was used to
modify MSCs, and it was discovered that the mir-486 level in
MSC-Exos was increased, and MSC-Exos with high expression of
Mir-486 was found to promote cardiomyocytes proliferation and
migration while inhibiting cardiomyocytes apoptosis. It is
anticipated that it will be a novel strategy for cardiac
regeneration and repair (Fang et al., 2018).

Interference with the environment in which exosomes are
produced (e.g., hypoxia) has been discovered to affect the
components secreted by exosomes. Zhu et al. (2018a)
investigated whether hypoxia-treated MSCs-derived exosomes
(ExoH) were superior to those produced under normoxic
conditions (ExoN) in terms of myocardial repair. ExoH-
treated mice showed greater survival rates, smaller scars, and
improved cardiac function in myocardial infarction experiments
in mice. Further research found that ExoH exhibited greater levels
of miR-210 expression than ExoN, as well as expression of neutral
sphingomyelinase 2, which is essential for exosome secretion.
Similarly, Zhu et al. (2018b) discovered that miR125b-5p
delivered by MSC-Exos under hypoxic conditions promote
ischemic heart repair by improving cardiomyocyte apoptosis.
In addition, they developed a novel drug delivery vector by
collocating ExoH with an ischemia myocardial targeting
peptide, increasing the specificity of drug delivery in ischemic
diseases. It was also shown that ExoH significantly reduced
apoptosis and reactive oxygen species generation in CSCs
following oxidative stress injury compared to ExoN, most
likely due to its higher miR-214 expression, although the
overall mechanism of action remains unknown (Wang et al.,
2018b).

Neurological Diseases
The blood-brain barrier prevents the flow of endogenous
molecules, exogenous biological agents, and immune-
monitoring cells such as macrophages, therefore preserving
central system homeostasis (Zhou et al., 2018). When
neurological lesions occur, therapeutic drugs cannot reach the
corresponding target cells due to the protective effect of the
blood-brain barrier, limiting the treatment of neurological
diseases. MSC-Exos increases functional recovery,
neurosynaptic remodelling, neurogenesis, and angiogenesis in
a rat stroke model, and represents a novel treatment option for
stroke (Xin et al., 2013). Small porcine adipose-derived MSCs and
their associated exosomes reduce the size of the cerebral infarct
zone and enhance neurological function in rats, in an acute
ischemic stroke model, with a significant safety profile (Chen
et al., 2016b). In addition, MSC-Exos loaded with peroxidase was
found to successfully cross the blood-brain barrier and ameliorate
the disease state of Parkinson’s disease (Haney et al., 2021). MSC-
Exos was also found to protect retinal pigment epithelial cells
from blue light stimulation and improve laser-induced retinal
damage by down-regulating vascular endothelial growth factor-A
(He et al., 2018).

Loss of Retinal Ganglion Cells (RGC) and their axons is a
major cause of blindness. Mead and Tomarev (2017)
demonstrated for the first time that MSC-Exos was effective in
protecting RGC. MSC-Exos promoted RGC survival and axon
regeneration in the rat optic nerve crush model while preventing
RGC axon loss and dysfunction to some extent. To further
examine the mechanism of RGC protection by MSC-Exos, this
study transfected MSCs with siRNA to silence the Argonaute-2
gene (a key miRNA effector) and isolated the exosomes
generated. It was discovered that the exosome successfully
delivered its “cargo” to the inner retina and that the effect was
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miRNA-dependent, with the therapeutic effect of MSC-Exos
being reduced when Argonaute-2 was knocked out.

Malignant Tumors
MSCExos has also garnered considerable attention for its potential
use in the treatment ofmalignant tumors. Breast cancer is currently
treated mostly by surgical excision, chemotherapy, radiotherapy,
and hormone therapy (Yu et al., 2015). MSC-Exos can address the
drawbacks and hence has significant potential as a targeted delivery
vehicle for breast cancer treatment. Lee et al. (2013) demonstrated
that MSC-Exos significantly down-regulated the expression of
vascular endothelial growth factor in breast cancer cells, thereby
inhibiting angiogenesis both in vitro and in vivo. Lin et al. (2013),
on the other hand, suggested that MSC-Exos could promote breast
cancer cell migration via theWnt signaling pathway. Therefore, the
mechanism by which MSC-Exos acts on breast cancer must be
further explored to maximize MSC-Exos’s therapeutic effects.

Dormant breast cancer cells induce MSCs to release exosomes
carrying various miRNAs (e.g., miR-222/223), therefore promoting
quiescence and conferring drug resistance in a proportion of cancer
cells (Bliss et al., 2016). MSC-Exos was found to suppress breast
cancer tumorigenesis in vitro and in vivo through the delivery of
miRNA-142-3p inhibitors. MSC-Exos successfully delivered
miRNA-142-3p inhibitors in vitro, reduced miRNA-142-3p and
miR-150 levels, and increased transcription of regulatory target
genes APC and P2X7R. In vivo, MSC-Exos can deliver inhibitory
oligonucleotides to tumor tissue, thus down-regulatingmiRNA-142-
3p and miR-150 expression levels (Naseri et al., 2018). In addition,
miR-100 delivered by MSC-Exos was able to inhibit angiogenesis
in vitro by regulating the mTOR/HIF-1α/VEGF signaling axis in
breast cancer cells, thereby influencing the behavior of breast cancer
cells (Pakravan et al., 2017).

TNF-Related Apoptosis Induced Ligand (TRAIL) is one of the
potential antitumor drugs for preclinical research due to its ability to
induce selective apoptosis in a variety of tumor cells without causing
toxic effects on normal cells. Shamili et al. (2018) utilized non-viral
vectors to introduce plasmids encoding TRAIL -GFP into MSCs.
The findings indicate that MSCs-derived TRAIL-loaded exosomes
(Exo-TRAIL) inhibit melanoma progression by promoting massive
necrosis of cancer cells and that their anti-tumor effect is dose-
dependent. Pascucci et al. (2014) loaded MSC-Exos with paclitaxel
by co-incubating high doses of paclitaxel with MSCs, which
inhibited the proliferation of pancreatic cancer cells. Kalimuthu
et al. (2018) found that paclitaxel-loaded MSC-Exos mimics were
effective in inhibiting the growth of breast cancer in vivo than
unencapsulated MSC-Exos mimics, and because the mimics were

easily isolated, they provided a novel drug delivery vehicle for the
treatment of breast cancer.

In addition, MSC-Exos can be utilized to treat different types
of tumors by delivering endogenous or exogenous miRNAs,
proteins, etc., Table 2 summarizes the various cargoes
delivered by MSC-Exos for different tumor treatments (Table 2).

However, exosomes may also negatively affect chemotherapy
treatment by shuttling chemotherapeutic drugs away from the target
cancer cells (Kalluri, 2016). Study confirmed the presence of cisplatin
and doxorubicin in post-treatment cancer cell-derived exosomes
(Yin et al., 2012). In addition,HER-2+ exosomes produced byHER-2
overexpressing breast cancer cells inhibited trastuzumab-induced
anti-proliferative activity (Ciravolo et al., 2012). Thus, removing
HER-2+ exosomes from the circulation of HER-2 overexpressing
breast cancer patients has a positive effect on trastuzumab therapy
(Marleau et al., 2012). Depletion of exosomes from the blood of
cancer patients may also improve exosome-mediated immune
tolerance (Ichim et al., 2008). MSC-Exos may provide therapeutic
benefits for cancer patients, but more research is needed to
understand the combined effects of MSC-Exos on the body. As a
result, there are no Food and Drug Administration (FDA)-approved
exosome products available, and this is also the case in China.

Others
Studies have shown that MSC-Exos can repair osteochondral
damage and can better restore steroid-induced early ischemia
necrosis of the femoral head by delivering mutant HIF-1α (Zhang
et al., 2016b; Jiang et al., 2018). In a model of acute liver injury
induced by carbon tetrachloride, the antioxidant and
hepatoprotective effects of MSC-Exos were superior to those
of the commonly used hepatoprotective agent bifenthix (Chen
et al., 2018). In a mouse model of autoimmune hepatitis, MSC-
Exos encapsulated with miR-223 significantly reduced serum
levels of ALT, AST, and pro-inflammatory cytokines, as well
as mRNA levels of these cytokines in the liver compared to MSC-
Exos (Jia et al., 2018). Furthermore, in a model of cisplatin-
induced acute kidney injury, MSC-Exos was able to prevent
nephrotoxic injury caused by cisplatin by delivering 14-3-3ζ,
and it had the effect of repairing kidney injury both in vivo
and in vitro (Zhou et al., 2013b; Jeppesen et al., 2019).

DISCUSSION

Exosomes as an emerging drug delivery vehicle have become a
research hotspot in recent years. It exhibits unique benefits due to
its biological properties such as non-toxicity and non-
immunogenicity. This study focused on the isolation and
characterization of exosomes, outlined the drug delivery
modalities and advantages of exosomes, and summarized the
application of MSC-Exos as a drug carrier in cardiovascular
system diseases, neurological diseases, and malignancies.

Extracellular vesicles of the same size or larger than exosomes
have been reported to develop in many cell types via the outgrowth
of plasma membranes or membrane extensions (e.g., microvilli,
filamentous pseudopods, cilia, and flagella) from the main body of
the cell. Extracellular vesicles of equivalent size to exosomes have

TABLE 2 | A summary of the various cargoes delivered by MSC-Exos for different
oncology treatments.

Cancer type Delivery drug type Reference

Breast cancer miRNA-142-3p, miR-150, Paclitaxel 78, 79, 80
Melanoma TRAIL 56
Pancreatic cancer Paclitaxel 44
Ovarian cancer hsa-miR-124-3p 86
Glioblastoma anti-miR-9, miR-124 88, 89
Lung cancer PDGFD, siGRP78 90, 91
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the same biophysical properties as exosomes in terms of size,
density, and membrane localization, and hence existing methods
cannot effectively distinguish them.

A significant advancement in exosome research in recent years
has been the growing recognition that extracellular vesicles, such
as exosomes, include many distinct granule subtypes, each of
which may have intriguing functions in intercellular
communication. Despite growing interest in this field,
understanding of the cellular and molecular mechanisms that
control extracellular vesicle biogenesis, release, uptake, and
function is limited. The technical difficulties in isolating and
characterizing specific granule subtypes is a significant limitation
in accurately describing extracellular vesicles since the methods
currently used result in systematic co-isolation of extracellular
vesicles of different subcellular origins. Therefore, while
numerous articles use the term “exosomes” to refer to
preparations of extracellular vesicles isolated from larger
extracellular vesicles by physical processes, they are more
likely to refer to a mixture of tiny extracellular vesicles that
are exosomal and non-exosomal in nature. as a result, unless their
multivesicular origin is identified, the generic term “small
extracellular vesicles” may be preferred.

Jeppesen et al. (2019) recently reported on the use of high-
resolution density gradient separation and direct immunoaffinity
capture techniques to precisely characterize RNA, DNA, and
protein fractions in exosomes, and other non-vesicular material.
Extracellular RNA, RNA-binding proteins, and other cellular
proteins were found to be differentially expressed in exosomes
and non-vesicular compartments, but no Argonaute 1, Argonaute
2, Argonaute 3, Argonaute 4, glycolytic enzymes, or cytoskeletal
proteins were detected in exosomes. Membrane-linked protein
A1 (annexin A1) was discovered to be a unique marker for
microvesicles shed directly from the plasma membrane. They
also discovered that tiny extracellular vesicles do not function as
carriers of DNA release. Instead, they proposed a novel model for
active extracellular DNA secretion that relies on autophagy and
the multivesicular endosome rather than exosomes. As a result,
these findings imply that the composition of exosomes should be
re-evaluated, providing a framework for a better understanding of
the heterogeneity of extracellular vesicles.

Current understanding of the physiology, diversity,
internalization, and transport of molecular cargoes in
extracellular vesicles, including exosomes, is still very limited,
therefore it impossible to draw precise conclusions about the
mechanisms by which extracellular vesicles interact with and

modify recipient cells. To achieve advances in the field of
extracellular vesicles, investigations must be conducted in an
integrated way, encompassing molecular, cellular, and
functional characterization, so that various extracellular vesicle
subtypes in a particular experimental systemmay be compared to
the greatest extent possible. These approaches are critical for
determining which molecules or mechanisms are exclusive to
various extracellular vesicle subtypes and which are relevant to all
extracellular vesicle subtypes.

Therefore, despite the great potential of exosomes as drug
carriers, there are still significant challenges: 1) Exosome
composition and mode of action of exosomes must be well
understood to ensure their safety and efficacy, and formulation
composition and mode of action must be validated. 2) The need
to improve and refine isolation and purification procedures, as
well as increase the efficiency of exosome production. 3) The
choice of which cell-derived exosomes to use as drug carriers
must be targeted to reduce off-targeting, side effects, and
clearance. If these challenges are adequately addressed,
exosomes will be the next generation of drug delivery systems.
Exosomal drug carriers are expected to be widely employed in the
clinic in the near future.
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