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Abstract
Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population

consisting of subsets with different activation states, migratory properties and suppressive

functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflamma-

tory settings. Here we report that ST2 expression identifies highly activated Tregs in mice

even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid

sites, likely mediated by their high expression of several chemokine receptors facilitating tis-

sue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing

the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable

for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are

superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-

33. This higher suppressive capacity is partially mediated by enhanced production and acti-

vation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a

highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid

tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm sig-

nals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory

therapies.
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Introduction
Regulatory Foxp3+ CD4+ T cells (Tregs) are key controllers of immune homeostasis. They
maintain immune tolerance, thus preventing autoimmunity or excessive inflammation [1, 2].
They are present in almost all tissues, even under homeostatic conditions, and regulate a vari-
ety of innate and adaptive immune cells [3, 4]. Various mechanisms mediating Treg functions
have been described. These include direct suppression or cytolysis of target cells, repression of
APC maturation and function as well as secretion and activation of anti-inflammatory cyto-
kines such as IL-10 and TGFβ [5, 6]. Consequently, Tregs form a heterogeneous population
displaying diverse migratory properties and immunomodulatory effects.

A minor fraction of Tregs in the circulation and lymphatic organs exhibits an activated
effector/memory T cell phenotype similar to conventional T cells, thus termed effector Tregs.
These Tregs are assumed to have encountered antigen more recently and preferentially reside
in non-lymphoid tissues (NLT) [7]. Several surface markers distinguishing effector Tregs have
been identified so far, including αE integrin (CD103) which marks a subset of highly suppres-
sive, rapidly activated Tregs that preferentially resides in NLT [8–10]. A similar phenotype is
observed in KLRG1-expressing Tregs that accumulate in the lung in a model of airway inflam-
mation, accompanied by increased levels of CD44, CD69, CD25, CTLA-4 and a downregula-
tion of CD62L [11, 12]. In general, effector Tregs display classical T cell activation markers,
like CD44hi and CD62Llo, along with molecules involved in Treg maintenance and function,
such as Foxp3, CTLA-4, KLRG1, CD103 and ICOS and are thought to be highly suppressive.

A growing body of evidence suggests that the acquisition of an effector-like phenotype does
not mark the end point of Treg differentiation. Instead, further diversification comparable to
conventional T cells may occur [13–16]. Notably, the Th2 lineage-specifying transcription factor
GATA-3 can be upregulated in Tregs upon encounter of antigen and IL-2 [17, 18]. In Th2 cells,
GATA-3 induces transcription of the Il1rl1 gene, encoding ST2, the receptor for the alarmin IL-
33 [19]. Recently, it was shown that ST2 is also expressed on a subset of Tregs in a GATA-
3-dependent manner [20]. Additional studies revealed that systemic administration of IL-33
increased the number of total and ST2+ Tregs resulting in a delay of graft-versus-host disease and
amelioration of colitis [21–23]. Moreover, in a setting of acute inflammation, IL-33 signals are
essential for the accumulation of ST2+ Tregs in mucosal tissue and the stability of the Treg phe-
notype [20]. Yet, ST2+ Tregs are present in several organs even under homeostatic conditions
[24], but their phenotype and suppressive capacity at steady-state remain ill defined.

Here we report that ST2+ Tregs are highly activated effector Tregs that preferentially accu-
mulate in NLT. They exhibit a Th2-like phenotype with elevated expression of GATA-3 and
production of the Th2 cytokines IL-5 and IL-13, which can be further augmented by IL-33 sig-
nals. In line with their effector-like phenotype, ST2+ Tregs suppress naïve CD4+ T cell prolifer-
ation more effectively than their ST2− counterparts–independent of IL-33. Both IL-10 and
increased TGFβ production and activation contribute to the suppressive mechanism employed
by ST2+ Tregs. Finally, we demonstrate that IL-33 is dispensable for the generation, mainte-
nance and tissue accumulation of ST2+ Tregs under homeostatic conditions. Taken together,
ST2+ Tregs form a highly suppressive subset located in prime position to react to inflammatory
processes involving the release of IL-33.

Material and Methods

Mice
Il33-/- [25], Il1rl1-/- [26] and WTmice were bred on C57BL/6 background under SPF condi-
tions at the Charité animal facility, Berlin. B6.Foxp3hCD2 reporter mice [27] were crossed to
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Il10gfp reporter [28] under SPF conditions at animal facilities at the University of Oxford, UK.
Experiments were performed at the Charité and DRFZ, Berlin, in accordance with national law
for animal protection with permission from the Landesamt für Gesundheit und Soziales
(Lageso); permission number T0058/08. Experiments at the University of Oxford were
approved by the Clinical medicine AWERB committee at the University of Oxford.

Animals were euthanized by cervical dislocation.

T cell isolation for ex vivo characterization
Blood was drawn from animals before they were euthanized and perfused with PBS. Circulat-
ing lymphocytes were isolated by high density centrifugation using Histopaque (Sigma-
Aldrich). Lungs were chopped, treated with 0.1U/ml Collagenase D (Roche), homogenized
and applied to a Histopaque gradient. Spleen and LN were homogenized and splenic erythro-
cytes were lysed. Payer’s patches were removed from the small intestine (SI). Colon and SI
were cut and incubated in RPMI with 1mM DTT, 5mM EDTA, 5% FCS, homogenized and
treated with 0.1U/ml Collagenase D. Single cell suspensions were applied to a 40/70% Percoll
gradient.

Flow cytometric analysis and sorting
Samples were stained with antibodies against CD4 (GK1.5), CD25 (PC61), KLRG1 (2F1),
CD103 (2E7), CD62L (MEL-14), CD44 (IM7), LPAM-1/α4β7 (DATK32), CD183/CXCR3
(CXCR3-173), CD194/CCR4 (2G12), CD196/CCR6 (29-2L17), CD197/CCR7 (4B12), CD199/
CCR9 (CW-1.2), anti-hCD2 (RPA-2.10) and ST2 (DJ8) in PBS/0.2% BSA/2mM EDTA. ST2
staining was amplified using FASER-Kit-PE or FASER-Kit-APC (Miltenyi Biotec). CTLA-4
(UC10-4B9) staining was performed after fixation. T-bet (4B10), GATA-3 (TWAJ), and Foxp3
(FJK-16S) were stained using the Foxp3 staining buffer set (eBioscience). GATA-3 index
depicts the MFI ratio of GATA-3 and its respective isotype (eB149/10H5) staining.

Samples were acquired on FACSCanto II (BD Biosciences) and analyzed using FlowJo
(FlowJo) or FCAP array software (BD).

T cell cultures and suppression assays
CD4+ T cells from spleen and LN were enriched by magnetic cell separation (MACS, Miltenyi
Biotec). CD4+ CD25+ ST2+ or CD4+ CD25+ ST2− T cells (Tregs) and CD4+ CD62L+ CD44lo

(Tresp) were purified by FACS. For Treg stimulation, 96-well flat-bottom plates were coated
with 3μg/ml anti-CD3 (145-2C11) and 6μg/ml anti-CD28 (37.51) antibodies. 2x104 to 1x105

Tregs were resuspended in 140–200μl of RPMI/10% FCS supplemented with 40ng/ml IL-2
with or without 30ng/ml IL-33. After 60-70h, supernatants were collected and cytokines were
quantified by cytometric bead array (BD Pharmingen).

For suppression assays, Tresp were labeled with CellTrace Violet or CFSE (Invitrogen).
APCs were isolated from splenocytes by MACS using biotinylated anti-CD19 (1D3), anti-
CD11b (M1/70) and anti-CD11c (HL3) antibodies and anti-biotin microbeads (Miltenyi Bio-
tec). IL-10 signaling was blocked by pre-incubation of Tresp with 50μg/ml anti-CD210/IL-10R
(1B1.3a). TGFβ signaling was blocked using 10μMTGFβRI inhibitor in DMSO (SB431542,
Merck Millipore) directly in culture. Control cells were treated with DMSO alone. The Treg:
Tresp ratio was varied as indicated; twice as much APCs and 5μg/ml anti-CD3 antibody were
added. Proliferation of Tresp was analyzed on day 4 by flow cytometry. The division index
indicates the average number of divisions that a cell in the starting population has undergone.
The relative division index was normalized to the corresponding untreated population.
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mRNA isolation and quantification
RNA was isolated using the miRNeasy mini kit (Qiagen). Complementary DNA was synthe-
sized using the Taqman Reverse Transcription Reagents (Life Technologies). Quantitative
RT-PCR reactions were performed in duplicates using SYBR Select Master Mix (Life Technolo-
gies), respective primers (S1 Table) on a QuantStudio 7 real-time PCR system (Life Technolo-
gies). Data was normalized toHprt endogenous control.

All reagents and kits were used at manufacturer’s recommendation, if not stated otherwise.

Statistical analysis
Two groups were compared with two-tailed unpaired Student’s t test (GraphPad Prism 5.02); �

p� 0.05; �� p� 0.01; ��� p� 0.001; non-significant (ns) p> 0.05.

Results

ST2+ Tregs arise independently of IL-33 signals
First, we wanted to assess whether IL-33 signaling via the ST2 receptor is necessary for the
development and maintenance of ST2+ Tregs present under homeostatic conditions. Therefore
we isolated splenocytes from naive WT mice, and analyzed the frequency of ST2+ and ST2−

Foxp3+ CD4+ T cells (Fig 1A and S1A Fig). As reported previously a subpopulation of Tregs
expressed the receptor for IL-33. Next, we determined the frequency and number of total Tregs
in WT, ST2-deficient (Il1rl1-/-) and Il33-/- mice. We found that both the frequency and number
of Tregs were largely comparable in the spleen, peripheral lymph nodes (pLN) and lung of
these mice (Fig 1B). Although a significantly elevated frequency of splenic Tregs was detected

Fig 1. ST2+ Tregs arise independently of IL-33 signals. Phenotype of Tregs in naiveWT, Il1rl1-/- and Il33-/-mice:
(A) ST2 and Foxp3 expression by splenic CD4+ T cells of one representative naiveWTmouse; quadrant numbers
indicate the average frequency ± SD in 4 mice. (B) Frequencies and total numbers of FoxP3+ Tregs in spleen (Spl),
peripheral lymph nodes (pLN) and lung. (C) Frequency of ST2 expression in Tregs of spleen and lung. (D) Total
number of ST2+ Tregs in spleen, pLN and lung. Fig 2A, 2C and 2D: Data are representative of at least 2
independent experiments. Fig 2B: Pooled data from 2 independent experiments, each with 4 mice per genotype.
Bar graphs show the mean ± SD of at least 4 individual mice. Significance was tested using unpaired Student’s t
test. Asterisks indicate significance; all others non-significant. * p� 0.05; ** p� 0.01; *** p� 0.001.

doi:10.1371/journal.pone.0161507.g001
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in Il1rl1-/- mice, this did not translate into significant differences in the total splenic Treg num-
bers between the three genotypes. Likewise, the frequencies of ST2+ Tregs in the spleen and
lung of WT and Il33-/- mice were similar (Fig 1C), as were the numbers of ST2+ Tregs in spleen,
pLN and lung (Fig 1D). Moreover, no differences were observed in the functional capacity of
WT and Il1rl1-/- Tregs to suppress WT responder T cell proliferation in the presence or absence
of IL-33 signals (S2 Fig). Taken together, these data show that IL-33 signaling is dispensable for
the generation, maintenance and suppressive function of Tregs, including ST2+ Tregs, at
steady-state.

ST2+ Tregs preferentially home outside of secondary lymphoid organs
As distinct Treg subsets exhibit different migratory properties [29], we compared the frequency
of ST2+ Tregs in lymphoid (spleen, pLN) and non-lymphoid organs (lung, lamina propria of
the small intestine (siLP) and colon (coLP)) of naive WT mice. While ST2+ Tregs were present
in all organs, the highest frequency was found in non-lymphoid tissue (NLT), especially the
lung (Fig 2A left). In addition, the ST2-expressing Tregs at these sites expressed more ST2 on a
per cell basis (Fig 2A right), suggesting a preferential accumulation or development of highly
ST2+ Tregs in the NLT. In agreement with these data, we found that ST2+ Tregs have an
increased homing capacity to NLT based on their chemokine receptor expression (Fig 2B):
First, CXCR3, involved in Treg recruitment to inflammatory sites [30], was significantly higher
expressed on ST2+ than ST2− Tregs in all organs analyzed but the lung, suggesting an increased
potential of ST2+ Tregs to home to those organs. However, expression was highest in the lung
hinting towards a general requirement for lung-homing Tregs to express CXCR3. Second,
CCR9 and α4β7 integrin are strong promoters of lymphocytic migration to the intestinal lam-
ina propria [31]. Their expression was significantly higher on ST2+ than ST2− Tregs found in
the gut. Third, CCR4 has been implicated in enhanced migration of Tregs to the skin and lung
to control local inflammation [10]. We found significantly higher CCR4 expression on ST2+

Tregs, suggesting preferential migration to these sites. Last, CCR7, a homing marker for sec-
ondary lymphoid organs [32, 33], was significantly lower expressed on ST2+ than ST2− Tregs.
Taken together, these results indicate that ST2+ Tregs accumulate in NLT, presumably facili-
tated by their distinct chemokine receptor and integrin expression pattern.

ST2+ Tregs display a highly activated phenotype
Next, we analyzed the expression of molecules associated with Treg function and activation on
ST2+ and ST2− Treg subsets. Both KLRG1 and CD103 have been described to be expressed on
highly suppressive Tregs with the capacity to home to inflamed tissues [8–10]. Around 70% of
splenic ST2+ Tregs expressed either one or both of these markers compared to only about 10%
in the ST2− Treg compartment. A similar distribution was observed in the pLN and lung (Fig
2C). These data suggest that the ST2+ Treg subset is largely comprised of highly differentiated
and suppressive Tregs. To provide further evidence for the activated phenotype of ST2+ Tregs,
two classical activation-associated surface molecules were assessed. While CD44 expression on
Tregs is correlated with increased suppressive capacity [34], the role of CD62L in Treg func-
tionality is controversially discussed [35–37]. We found that ST2+ Tregs expressed high levels
of CD44 and low levels of CD62L. Additionally, CTLA-4 is crucial for the suppressive function
of Tregs [38]. Indeed, the frequency of CTLA-4+ Tregs was clearly increased in the ST2+ com-
partment, especially within lymphoid tissues (Fig 2D). Moreover, we analyzed the expression
of transcription factors in the ST2+ and ST2− Treg subsets. Both the Treg-key regulator Foxp3
as well as the Th2-associated transcription factor GATA-3 were elevated in ST2+ Tregs (Fig 2E
and S3A Fig). In contrast, expression of T-bet, which can be induced in Tregs upon
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Th1-differentiating antigen encounter [13], was not altered (S3B Fig). Although specific to
ST2+ Tregs, we found the expression of all of the aforementioned molecules to be independent
of IL-33 (S3C and S3D Fig).

At the mRNA level we could confirm a higher expression of Il1rl1 (ST2) and Foxp3 in ST2+

Tregs (Fig 2F). Furthermore, the expression of two molecules associated with a highly activated
and suppressive Treg phenotype, Icos and Prdm1 (Blimp1) [39, 40], was significantly increased
in the ST2+ compared to the ST2− Treg subset. Next, we assessed the production of the anti-
inflammatory cytokine IL-10, whose expression in Tregs under homeostatic conditions is
dependent on Blimp1 [40] and has been shown to confer Treg function [41]. In all organs,
ST2+ Tregs displayed an increased capability to produce IL-10 when compared with ST2−

Tregs, with greatest differences detectable in the lung (Fig 2G). Overall, these data suggest that
the ST2+ Treg subset combines various characteristics of highly activated, differentiated and
suppressive Tregs.

Fig 2. ST2+ Tregs preferentially home outside of secondary lymphoid organs and exhibit a highly activated phenotype. Flow cytometric
analysis of the phenotype and frequency of WT ST2+ and ST2− Foxp3+ Tregs in spleen, pLN, blood, lung, lamina propria of the small intestine
(siLP) and colon (coLP): (A) Frequency of ST2+ Tregs (left) and MFI of the ST2 staining on the ST2+ Treg fraction (right). (B)MFI of chemokine
receptor and α4β7 staining on ST2+ and ST2− Tregs. (C) KLRG1 and CD103 expression in ST2+ (top) and ST2− (bottom) Tregs from spleen;
quantified frequencies from indicated organs (right). (D) Frequency of CD44hi, CD62Llo and CTLA-4+ T cells within ST2+ and ST2− Treg
populations. (E)MFI of the Foxp3 staining (left) and geometric mean index of GATA-3 (right) in ST2+ and ST2− Tregs. (F)Quantification of mRNA
expression of the indicated genes from FACS-sorted ST2+ and ST2− CD25+ Tregs from spleen and pLN ex vivo. mRNA expression normalized
to Hprt endogenous control. (G) Frequency of ST2+ and ST2− Tregs with IL-10 production capability as detected by GFP expression from B6.
Foxp3hCD2 xIl10gfp reporter mice. Fig 2A: Data are representative of at least 2 independent experiments. Bar graphs show the mean ± SD of at
least 5 biological replicates. Fig 2B: pooled data from 2 independent experiments with 3–5 biological replicates each. Bar graphs show the
mean ± SD. Fig 2C–2E and 2G: Data are representative of at least 2 independent experiments. Scatter plots depict one mouse as individual dot
with mean ± SD. Fig 2F: pooled data from 2 independent experiments. Significance was tested using unpaired Student’s t test. * p� 0.05; **
p� 0.01; *** p� 0.001; non-significant (ns) p > 0.05.

doi:10.1371/journal.pone.0161507.g002
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ST2+ Tregs exhibit increased suppressive capacity in vitro
In light of the highly activated and differentiated nature of ST2+ Tregs, we investigated their
suppressive effect on T cell proliferation in in vitro suppression assays. ST2+ and ST2− Tregs
were isolated from spleen and pLN by FACS (S1B Fig) and separately co-cultured with differ-
ent ratios of naive CD4+ responder T cells (Tresp). While both Treg subsets suppressed Tresp

Fig 3. ST2+ Tregs suppress CD4+ T cell proliferation more effectively than ST2− Tregs in vitro. (A)
Proliferation profiles of CellTrace-labelledWT CD25- CD62Lhi CD4+ responder T cells (Tresp) co-cultured with WT
ST2+ (black) and ST2− (grey) CD25+ Tregs during an in vitro suppression assay at day 4 of culture. T cells were
stimulated by APCs and anti-CD3 antibody with (right column) or without (left column) the addition of recombinant
IL-33. Treg:Tresp ratios are indicated (left). Percentage of divided cells and the division index (number in brackets)
are shown in each histogram in the respective color. (B) Proliferation profile of Tresp cultured under the same
conditions as in 3A but without Tregs, either with (grey) or without (black) the addition of anti-CD3 antibody. (C)MFI
of the ST2 staining on all Tregs recovered from the cultures described in 3A. Data are representative of 2–3
independent experiments.

doi:10.1371/journal.pone.0161507.g003
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proliferation at all ratios tested, ST2+ Tregs were considerably more suppressive (Fig 3A and
3B). However, the addition of IL-33 had no beneficial effect on their suppressive capacity, but
resulted in a selective increase of ST2 expression on ST2+ Tregs (Fig 3C).

Taken together, these results demonstrate that ST2+ Tregs strongly suppress CD4+

responder T cell proliferation. This property appears to be independent of their ability to
receive and process IL-33 signals through the ST2 receptor.

ST2+ Tregs express TGFβ and the Th2 cytokines IL-5, IL-13 and IL-10
Although IL-33 did not influence the suppressive capacity of ST2+ Tregs in vitro, it still
increased the amount of ST2 expressed on their cell surface. To assess whether other functions
are affected by the capacity of ST2+ Tregs to sense IL-33, we stimulated ST2+ and ST2− Tregs
in vitro in the presence or absence of this cytokine. We observed that the number of living cells
was highest when ST2+ Tregs were cultured in the presence of IL-33 (Fig 4A). Thus, IL-33
affects either their proliferation or survival. Moreover, ST2+ Tregs produced more TGFβ, IL-5,
IL-13 and IL-10 at the mRNA and protein level than their ST2− counterparts, and the produc-
tion of the Th2-associated cytokines IL-5 and IL-13 was vastly increased by IL-33 (Fig 4B and
4C, S4 Fig). GATA-3 expression was also significantly higher in ST2+ than ST2− Tregs but
unaffected by IL-33 signaling (Fig 4D). In contrast, IFNγ secretion was significantly lower by
ST2+ than ST2− Tregs. Almost no IL-4 was detectable in the supernatants of stimulated ST2+

and ST2− Tregs with only minor differences between the groups. Hence, we conclude that IL-
33 positively influences the expansion of ST2+ Tregs and promotes the production of the Th2
cytokines IL-5 and IL-13.

Fig 4. ST2+ Tregs express Th2 cytokines and suppress CD4+ T cell proliferation via IL-10 and TGFβ. (A-D) ST2+ and ST2− Tregs from
spleen and lymph nodes of WTmice activated in vitro by plate-bound anti-CD3/anti-CD28 antibodies in the presence of IL-2 with or without
recombinant IL-33 for 60–70 hours: (A) Fold change in the number of viable Tregs upon IL-33 treatment. (B) Tgfb1mRNA expression
normalized to Hprt endogenous control. (C)Cytokine concentration in the supernatants as determined by cytometric bead array. (D)Geometric
mean index of GATA-3 in stable ST2+ and ST2− Tregs at the end of culture. (E) In vitro suppression assay with ST2+ and ST2− Tregs as
described in Fig 3 (Treg:Tresp ratio 1:5) with addition of blocking anti-IL-10R antibody or TGFβRI inhibitor. The relative division index indicates
the fold increase in division of Tresp upon treatment. Division index of untreated Tresp was set to 1 in each group. (F)Quantification of mRNA
expression of the indicated genes from sorted ST2+ and ST2− CD25+ Tregs ex vivo. mRNA expression normalized to Hprt endogenous control.
Fig 4A–4C, 4E and 4F, data pooled from 2–3 independent experiments each performed with 2 replicates per condition. Fig 4D is representative
of 2 independent experiments with at least 2 replicates per condition each. Bar graphs show the mean ± SD. Significance was tested using
unpaired Student’s t test. * p� 0.05; ** p� 0.01; *** p� 0.001; non-significant (ns) p > 0.05.

doi:10.1371/journal.pone.0161507.g004
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ST2+ Tregs suppress responder T cells via IL-10 and TGFβ release and
activation
Both IL-10 and TGFβ are thought to at least partially mediate the suppressive function of Tregs
[42]. Since ST2+ Tregs produce significantly higher amounts of these cytokines than their ST2−

counterparts, we addressed if these cytokines contribute to the increased suppressive capacity
of ST2+ Tregs. Therefore, we blocked IL-10 or TGFβ signaling during in vitro suppression
assays (Fig 4E). The blockade of IL-10 signaling by antibodies targeting the IL-10 receptor
increased the proliferation of Tresp to a similar extent in the presence of ST2+ and ST2− Tregs,
hinting at similar contribution of IL-10 to the suppressive mechanisms of both Treg subsets
despite differences in the secreted amount. In contrast, the application of a TGFβ receptor I
inhibitor [43] resulted in enhanced proliferation of Tresp cultured in the presence of ST2+

Tregs, whereas Tresp alone or cultured with ST2- Tregs were only marginally affected. This
finding suggests a major contribution of TGFβ signaling to the suppressive mechanism of ST2+

but not ST2- Tregs. In fact, not only the production of total TGFβ was higher in ST2+ Tregs but
also the expression of integrin αvβ8 (Itgav and Itgb8) associated with the activation of latent
TGFβ [44] (Fig 4F). Taken together, these data demonstrate that ST2+ Tregs employ a mecha-
nism based on IL-10 and increased TGFβ production and activation to at least partially medi-
ate their highly suppressive function.

Discussion
Recently, the expression of the IL-33 receptor ST2 was found on a subset of regulatory T cells
[20–22, 24, 45]. However, their phenotype and tissue distribution under homeostatic condi-
tions as well as the suppressive mechanism employed by these cells are still poorly understood.
Here we report that ST2+ Tregs display a Th2-biased effector Treg phenotype and strongly sup-
press naïve CD4+ T cell proliferation; an effect partially mediated by the anti-inflammatory
cytokines IL-10 and TGFβ.

We observed that at steady-state, ST2+ Tregs preferentially accumulated at non-lymphoid
tissues, such as the lung, the lamina propria of the small intestine and colon as well as the circu-
lation. These findings are in agreement with previous data obtained in inflammatory settings
that show an accumulation of ST2+ Tregs in the colon [20], the lung and especially the visceral
adipose tissue (VAT) [24, 46]. IL-33 is constitutively expressed in the nucleus of epithelial and
endothelial cells and released upon necrotic cell death [47, 48]. However, under homeostatic
conditions IL-33 release is very limited. Thus, our data demonstrate that signaling via the ST2
receptor is dispensable for the generation, maintenance and tissue accumulation of ST2+ Tregs.
Notably, VAT Tregs form an exception. This specialized, self-contained Treg subset, which
also expresses the transcription factor PPARγ associated with adipocyte differentiation [49], is
highly dependent on the IL-33/ST2 axis for their stability and function in the VAT [24, 46, 50].

Regarding ST2+ Treg tissue migration, we identified chemokine receptors and integrins
associated with NLT homing to be particularly highly expressed in the ST2+ Treg compart-
ment, including CXCR3, CCR4, CCR6, CCR9, αE (CD103) and α4β7 integrin. Migration
along the respective chemokine gradients could contribute to the positioning and retention of
ST2+ Tregs at mucosal surfaces already under homeostatic conditions, leaving them in prime
position to react to IL-33 danger signals. Low-level release of IL-33 due to constant minor cell
damage may contribute to the augmented ST2 expression per cell observed at barrier tissues.

We and others [20, 22, 24] demonstrated that ST2+ Tregs belong to a subset of highly acti-
vated effector Tregs based on their accumulation at NLT and expression of typical T cell activa-
tion markers and molecules involved in Treg maintenance and function. Recently, a subset of
effector Tregs expressing the B cell-associated transcription factor Blimp1 was characterized
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[24, 40]. The authors report that Blimp1 is essential for the production of IL-10 by effector
Tregs. Indeed, we found high expression of Prdm1 (Blimp1) in the ST2+ Treg compartment,
paired with an increased IL-10 production capability in vitro and in vivo. Moreover, transcrip-
tome analysis of Blimp1+ and Blimp1- Tregs revealed a strong enrichment for ST2 in the
Blimp1+ Treg subset [24]. Overall, these findings suggest a considerable overlap between the
ST2+ and Blimp1+ effector Treg populations.

The Th2 lineage-defining transcription factor GATA-3 is a known inducer of ST2 expres-
sion in Tregs [20]. In line with previous reports [46], we detected particularly high levels of
GATA-3 in the ST2+ Treg compartment. Furthermore, these cells also secreted increased
amounts of Th2-associated cytokines IL-5 and IL-13. In contrast to IL-4 which is produced nei-
ther by ST2+ nor ST2- Tregs, GATA-3 has been reported to directly bind to the proximal pro-
moters of IL-5 and IL-13 resulting in their expression [51–53]. Additionally the expression of
these cytokines can be further augmented by IL-33. However, we did not detect significant
changes in GATA-3 expression upon IL-33 signals implying a mere supportive role of ST2 sig-
naling on GATA-3 function. In contrast, in vivo administration of IL-33 not only expands
Tregs but also increases GATA-3 expression in the ST2+ Treg compartment [22], but such a
setting is more complex and secondary effects may contribute to the GATA-3 upregulation.
Although IL-33 signals significantly expanded or promoted the survival of ST2+ Tregs in vitro,
the increased amounts of the Th2 cytokines IL-5 and IL-13 released by these cells were not
only a result of this expansion, but also of increased cytokine transcription. First reports indi-
cate that Th2 cytokine production by human Tregs results in an anti-inflammatory phenotype
of alternatively activated macrophages [54]. However, more studies are necessary to determine
the full functional consequences of Th2 cytokine secretion by Tregs.

In accordance with their effector-like phenotype [8, 9, 11], ST2+ Tregs were superior in
suppressing naïve CD4+ T cell proliferation compared to their ST2− counterparts. Yet, the
comparison of ST2+ and ST2− Tregs expanded in vivo by IL-33 injection has revealed only
insignificant differences in suppressive capacity between the groups [21, 22]. Severe alterations
in the hematopoietic compartment upon IL-33 administration [55] including a potential
upregulation of ST2 on expanding non-effector Tregs may be the underlying cause of this dis-
crepancy. In line with previous data [20], we observed a similar suppressive capacity of ST2-de-
ficient and WT Tregs, either due to the low abundance of ST2+ effector Tregs within the WT
Treg compartment or a similar effector Treg frequency in Il1rl1-/- mice. Furthermore, the addi-
tion of IL-33 had no effect on the suppressive capacities of ST2+ and ST2- Tregs, despite an
expansion of ST2+ Tregs. Such suppressive inertia to IL-33 signals might be due to Tregs exert-
ing their most suppressive effects immediately after stimulation, whereas the cell number only
gradually increases. Thus, ST2 signaling seems dispensable for the high suppressive function of
ST2+ Tregs derived from secondary lymphoid organs. However, in NLT-derived ST2+ Tregs
which express ST2 at a higher per cell amount, IL-33 signaling might be able to enhance their
suppressive capacity.

Notably, IL-33 has recently been associated with Treg-mediated wound healing in a number
of different tissues [56, 57]. Injury-induced release of IL-33 from the parenchyma resulted in
the release of tissue-protective epidermal growth factor ligand amphiregulin from ST2+ Tregs
[56]. Thus, ST2+ Tregs might present dual functionality towards limiting local tissue inflamma-
tion: on the one hand by strongly suppressing pro-inflammatory T cell responses and on the
other hand by directly triggering tissue repair processes in an IL-33-dependent manner.

A variety of mechanisms have been proposed to mediate Treg suppressive function: (1)
direct target killing or suppression via IL-2 deprivation, granzyme B secretion and CD39/
73-mediated ATP reduction; (2) repression of APC maturation and function via CTLA-4 and
Lag3 signaling; and (3) secretion and activation of anti-inflammatory cytokines IL-10, TGFβ
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and IL-35 [5, 6]. Indeed, we detected high expression of CTLA-4, IL-10 and TGFβ in the ST2+

Treg subset, while others have already identified high levels of Lag3 and CD39 [22]. Further-
more, we provide evidence that both IL-10 and to a greater extend TGFβ contributed to the
suppressive capacity of ST2+ Tregs. High TGFβ and integrin αvβ8 expression was detected in
ST2+ Tregs indicating an advantage of ST2+ Tregs to produce and activate latent TGFβ [44]. In
agreement with the unresponsiveness of ST2+ Tregs to IL-33 concerning their suppressive
capacity, IL-10 and TGFβ secretion also remained unaffected. Additionally, absence of APCs
from the suppression assay system did not alter the suppressive capacity of ST2+ Tregs (data
not shown) suggesting that under these conditions, ST2+ Tregs directly suppress their target
cells.

However, the role of IL-10 and TGFβ in suppressing Tresp proliferation in vitro remains
controversially discussed, with some reports claiming a contribution of these cytokines to the
suppressive mechanism of Tregs [58, 59] and others not [60–62]. Yet, the amount of IL-10 and
TGFβ produced by the studied Treg populations might strongly influence the observed effect
of these cytokines on suppression. As already mentioned, ST2+ effector Tregs produce higher
amounts of IL-10 and TGFβ compared with their ST2- counterparts. Thus, blockade of IL-10
and TGFβ signaling can exert a greater effect on ST2+ Treg-mediated suppression, which is
readily detected in in vitro suppression assays. However, the reduction in suppression upon IL-
10R blockade was comparable between ST2+ and ST2- Tregs, despite greater IL-10 production
by ST2+ Tregs. This observation might be explained by an incomplete IL-10R blockade or a
generally minor contribution of IL-10 to Treg-mediated suppression in vitro.

In summary, we demonstrate that ST2 expression identifies a highly activated, strongly sup-
pressive Treg subset located in non-lymphoid tissues. The phenotype and function of these
cells overlaps in many aspects with previously described effector Treg subsets. However, ST2+

Tregs stand out from these populations as they feature a Th2-biased phenotype already under
homeostatic conditions. Additionally, these cells employ a mechanism based on IL-10 and
increased TGFβ production and activation to mediate their enhanced suppressive function.
Due to their specific capabilities, ST2+ Tregs may be suitable for targeted immunomodulatory
therapies, e.g. to alleviate allergies or autoimmunity.

Supporting Information
S1 Fig. Gating strategies for ST2+ Treg analysis and sorting. (A) Gating strategy used for ex
vivo analysis of ST2+ Tregs. Representative FACS plots show spleens of WT and Il1rl1-/- mice.
(B) Gating strategy used for flowcytometric isolation of ST2+ and ST2- Tregs from spleen and
pLN (top row). Exemplary counterstaining of CD25 and FoxP3 (bottom row). Data are repre-
sentative of at least 2 independent experiments.
(TIF)

S2 Fig. Comparable suppressive capacity of WT and Il1rl1-/- Tregs. In vitro suppression
assay using WT (black line) or Il1rl1-/- (dotted line) Tregs and Il33-/- APCs with or without the
addition of recombinant IL-33. Proliferation profiles of WT responder T cells (Tresp) shown at
day 4 of culture. Treg:Tresp ratio was 1:1. The division index is indicated in each histogram in
the respective color. Proliferation of responder T cells without Tregs is shown in grey. Data are
representative of 2 independent experiments, each performed with 2 replicates per condition.
(TIF)

S3 Fig. Transcription factor and activation marker expression on ST2+ and ST2− Tregs. (A)
Exemplary staining of GATA-3 in splenic ST2+ (full line) and ST2- (dotted line) Tregs. Isotype
control for GATA-3 is depicted in gray. (B)Histogram of T-bet expression by splenic ST2+
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(black line) and ST2− Tregs (grey) from naive WT mice. T-bet expression by the endogenous
T-bethi CD4+ population is depicted as dotted line. (C) Frequency of KLRG1, CD103, CTLA-4
and CD44 expressing ST2+ and ST2− Tregs in the spleen, pLN and lung of WT and Il33-/- mice
ex vivo. (D)MFI of GATA-3 in ST2+ Tregs of WT and Il33-/- mice ex vivo. Data are representa-
tive of at least 2 independent experiments, each performed with 4 replicates per condition. S3C
Fig: Bar graphs show the mean ± SD. S3B Fig: Scatter plots depict one mouse as individual dot
with mean ± SD. Significance was tested using unpaired Student’s t test. � p� 0.05; non-signifi-
cant (ns) p> 0.05.
(TIF)

S4 Fig. Cytokine quantity detected in the supernatants of stimulated ST2+ and ST2− Tregs
is reflected at the mRNA level. Th2-related cytokine mRNA quantified in 70h in vitro stimu-
lated ST2+ and ST2− CD25+ Tregs by pate-bound anti-CD3/anti-CD28 antibodies in the pres-
ence of IL-2 with or without IL-33. mRNA expression normalized to Hprt endogenous control.
Where possible, fold change in regards to untreated ST2− Tregs is displayed. n.d.: non-detect-
able. Data pooled from 2 independent experiments each performed with 2–4 replicates per
condition. Bar graphs show the mean ± SD. Significance was tested using unpaired Student’s t
test. � p� 0.05; �� p� 0.01; ��� p� 0.001; non-significant (ns) p> 0.05.
(TIF)

S1 Table. Murine qPCR primers.
(DOCX)
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