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Background: The increased use of low-dose computed tomography (CT) for lung cancer screening has 
improved the detection of ground-glass nodules. However, as the clinical utility of CT findings to predict the 
invasiveness of pure ground-glass nodules (pGGNs) is currently limited, differentiating pGGNs that indicate 
invasive adenocarcinoma (IAC) from those that represent other histological entities is challenging. We aimed 
to quantify intratumor heterogeneity of lung adenocarcinomas characterized by pGGNs on CT to assess its 
efficacy in predicting IACs before surgery.
Methods: Overall, 575 patients with persistent pGGNs and a postoperative pathological diagnosis of 
lung adenocarcinoma were included. To quantitatively measure intratumor heterogeneity, an intratumor 
heterogeneity score that incorporated local radiomics features and global pixel distribution patterns was 
developed. Accuracy of the preoperative prediction of pathological invasiveness was evaluated using the area 
under the receiver operating characteristic (ROC) curve. The performance of the intratumor heterogeneity 
score was compared with that of radiomics features and conventional imaging findings.
Results: Conventional imaging findings yielded area under the curve values of 0.832 and 0.842 for the 
training and validation cohorts, respectively. The performance of imaging findings was inferior to that of 
radiomics, which yielded area under the curve values of 0.868 and 0.879 for the training (P=0.008) and 
validation (P=0.007) cohorts, respectively. Similarly, the performance of imaging findings was inferior to that 
of the intratumor heterogeneity score, with area under the curve values of 0.860 and 0.867 for the training 
(P=0.019) and validation (P=0.045) cohorts, respectively. The diagnostic performance of the intratumor 
heterogeneity score was comparable to that of radiomics features, with no significant difference between 
their ROC curves (training: P=0.635; validation: P=0.686).
Conclusions: The performance of the intratumor heterogeneity score was comparable to that of radiomics 
features and superior to that of conventional imaging findings for the preoperative prediction of the IACs 
that present as pGGNs.
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Introduction

The increased use of low-dose computed tomography (CT) 
for lung cancer screening has improved the detection of 
ground-glass nodules (GGNs), which can be classified into 
mixed GGNs (mGGNs) and pure GGNs (pGGNs) (1,2). 
Unlike solid nodules, GGNs are commonly associated 
with lung adenocarcinoma (3). Specifically, pGGNs are 
characterized by a more indolent nature, slower growth, and 
a lower likelihood of progression to lung adenocarcinomas 
(4,5). Even when pGGNs are malignant, the postoperative 
pathology is more likely to indicate atypical adenomatous 
hyperplasia (AAH), adenocarcinoma in situ (AIS), or 
minimally invasive adenocarcinoma (MIA) and less likely 
to indicate invasive adenocarcinoma (IAC) (6-9). Although 
many pGGNs have an indolent course, most are diagnosed 
pathologically as IAC, with incidence rates ranging from 
35.4% to 44.2% (10-12). The 10-year disease-free survival 
rate after complete resection for patients with AIS and 
MIA is 100% (13), whereas the 5-year survival rate after 
complete resection for patients with IAC is 89% (14). 
Treatment for IAC requires a more extensive approach 
than does that for AAH/AIS and MIA. Therefore, although 
segmentectomy or wedge resection is often considered 
sufficient for the surgical management of AAH/AIS and 
MIA (15), segmentectomy is typically the most appropriate 
treatment for IAC (16).

CT is a noninvasive imaging modality that can be used 
to predict tumor invasiveness preoperatively, with nodule 
size and attenuation being important characteristics of 
invasiveness (17-21). Other morphological features that 
have been explored include margins, air bronchograms, 
bubble appearance, spiculation, lobulation, and pleural 
indentation (22-24). However, studies have reported 
conflicting results and histological overlap, which is 
attributable to the subjectivity of interpretations and the 
influence of inexperience or infrequent observations. As the 
clinical utility of CT parameters to predict the invasiveness 
of pGGNs is currently limited, differentiating between 
pGGNs indicative of IAC from those representing other 

histological entities remains challenging.
CT-based radiomics approach, which involves a high-

throughput quantitative analysis of medical imaging, can 
facilitate treatment decisions in lung cancer by generating 
a comprehensive array of quantitative imaging features 
that significantly surpass the interpretative capabilities 
of radiologists, thereby addressing the limitations of the 
clinical utility of CT parameters (25). Numerous CT-
based radiomics prediction models have been developed 
to distinguish between IAC and AIS/MIA with pulmonary 
adenocarcinomas that present as pGGNs (26-29).

However, traditional radiomics primarily focus on the 
entire tumor region, thereby overlooking intratumoral 
heterogeneity (ITH) resulting from factors such as 
angiogenesis, metabolism, and proliferation. These 
factors are influenced by the diversity in the populations 
of tumor cells and stromal components, as well as their 
uneven distribution within intratumoral subregions (30). 
Furthermore, predefined radiomics features are typically 
centered on local pattern frequencies, such as co-occurring 
gray levels, with no evaluation of subregional variations, 
and thus subregional distributions are ignored (31-33). 
Consequently, to perform a comprehensive assessment 
of tumor heterogeneity, it is crucial to simultaneously 
consider pixel characteristics and their spatial distributions. 
Introducing the ITH score represents a significant step 
toward capturing multiscale ITH information through the 
concurrent integration of local and global radiomics data 
(31-33). For instance, Li et al. (32) established a correlation 
between the ITH score and the biological behaviors that 
influence the prognosis for patients with non-small cell lung 
cancer (e.g., lymphovascular and pleural invasion). 

Therefore, in this study, we used the ITH score to 
evaluate pulmonary adenocarcinomas presenting as pGGNs 
to differentiate between IAC and AIS/MIA and thus better 
guide the clinical management of pGGNs and surgical 
planning. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-734/rc).
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Methods

Ethical approval

This study was conducted in compliance with the Helsinki 
Declaration (as revised in 2013). Ethical approval for this 
multicenter, cancer registry-based study was obtained 
from the institutional ethics committees of the Xiangtan 
Central Hospital (No. 2021-07-009), Affiliated Hospital of 
Guilin Medical University (No. 2023YJSLL-121), and the 
Affiliated Hospital of Southwest Medical University (No. 
KY2020147). Given the retrospective design of the study, 
the necessity for obtaining written informed consent from 
participants was waived.

Study population

This study encompassed a cohort of 937 patients presenting 
with persistent pGGNs, all of whom underwent curative 
surgical resection followed by a postoperative pathological 
diagnosis of lung adenocarcinoma. The patient data, 
collected from January 2019 to January 2023, were sourced 
from the medical facilities of Xiangtan Central Hospital, 
the Affiliated Hospital of Guilin Medical University and 
the Affiliated Hospital of Southwest Medical University. 
Pathological diagnoses were classified in accordance 
with the adenocarcinoma guidelines established by the 
International Association for the Study of Lung Cancer, the 
American Thoracic Society, and the European Respiratory 
Society (15). A comprehensive review of patients’ medical 
records, including clinical characteristics (age and sex), 
preoperative chest CT imaging findings, and pathological 
diagnoses, was conducted. 

Solid pulmonary nodules were defined as completely 
solid soft-tissue density lesions on preoperative chest CT 
images. mGGNs included nodules with a pure ground-glass 
appearance and part-solid density, whereas pGGNs were 
defined as foci of decreased density attenuation in which the 
cross-section of the bronchus and vessels could be observed 
on thin-section CT images (1,2). In this study, pulmonary 
adenocarcinomas that manifested as pGGNs were further 
analyzed.

The inclusion criteria were as follows: identification of 
lesions as pGGNs via high-resolution preoperative CT; 
maximum nodule diameter ranging from 0.5 to 3 cm; and 
no history of biopsy, chemotherapy, or radiotherapy before 
the CT evaluation. The following exclusion criteria were 
applied: poor image quality attributable to artifacts, a 
time interval of more than 2 weeks between CT scan and 

surgery, and the presence of severe and concurrent chronic 
conditions such as malignancies. The procedural workflow 
is illustrated in Figure 1. Ultimately, 575 patients were 
enrolled in the study and subsequently randomized into 
training and validation cohorts in a 7:3 ratio. For patients 
exhibiting multiple pGGNs on CT images, only the nodule 
with a confirmed pathological diagnosis was included in the 
subsequent analysis.

CT examinations

Chest CT examinations were conducted using nine 
computed tomography machines from four prominent 
manufacturers: GE Medical Systems (Waukesha, Wisconsin, 
USA), Siemens Healthineers (Erlangen, Germany), Philips 
(Amsterdam, Netherlands), and United Imaging Healthcare 
(Shanghai, China). The parameters for image acquisition 
during the CT scan were as follows: tube voltage, 120 kVp; 
tube current-time product, 170–200 mA; matrix, 512 × 512; 
and slice thickness, 1–5 mm. Additionally, beam pitches 
of 0.515 and 0.758 were used with standard resolution 
algorithms as integral components of the scanning process.

Conventional imaging findings

Two skilled radiologists, blinded to the diagnosis, 
methodically assessed the semantic characteristics of all 
CT images obtained with a lung window [level −700 to 
−500 Hounsfield units (HU); width 1,500 to 2,000 HU]. 
The evaluation criteria included tumor location, margins, 
lobulation, spiculation, vacuole signs, vascular convergence 
signs, and pleural indentation. Additionally, we measured 
the CT value three times on the two-dimensional maximum 
axial slice and calculated the mean value from areas that 
covered most of the pGGNs while ensuring that these areas 
did not include vessels, bronchi, or air-filled cavities. Lesion 
size was determined by identifying the maximum diameter 
in the axial plane according to the guidelines outlined in the 
eight edition of the TNM staging protocols (15).

Image preprocessing

To address the variability of CT scanner devices and 
parameters, including differences in slice thickness, we 
implemented a comprehensive image preprocessing 
pipeline. This pipeline included several key steps. First, 
image resampling was conducted using the “PyRadiomics” 
package in Python 3.11.0 (Python Software Foundation, 
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Figure 1 Overview of the study’s procedural flow. CT, computed tomography; pGGNs, pure ground-glass nodules.

A total of 937 patients with persistent pGGNs 

underwent curative resection at multiple medical 

centers between January 2019 and January 2023

Remaining patients (n=659)

575 patients with lung adenocarcinoma
presenting as pGGNs

Training cohort
(n=402)

Validation cohort

(n=173)

Included:

(I) Maximum nodule diameter ranging from 0.5 cm 

to 3.0 cm

(II) Postoperative pathological diagnosis of primary 

of lung adenocarcinoma

(III) Availability of complete thin-slice CT image data 

(0.625–1.25 mm)

Included:

(I) Patients who underwent chemoradiotherapy 

or CT-guided percutaneous aspiration biopsy 

before the CT examination

(II) Patients who had received CT examination more 

than a month before the surgery

(III) Patients with severe respiratory motion artifacts

(IV) Patients with unclear or undefined pathological 

diagnosis

Ratio of 7:3

Wilmington, DE, USA), standardizing the voxel dimensions 
to 1×1×1 mm3 (X, Y, Z). The resampling algorithm 
employed a B-spline curve with a sitkBSpline interpolator 
with a parameter value of 3 to ensure smooth and accurate 
interpolation of the image data. Subsequently, we modified 
the bin width to partition the pixel intensity range of 0–255 
into five discrete intervals. This binning approach effectively 
discretized the intensity values, reducing the dimensionality 
of the feature space and facilitating subsequent analysis.

Construction of the radiomics model

The construction of the radiomics model involved the 
following essential steps: nodule segmentation, feature 
extraction, feature reduction, and radiomics score (Rad 
score) calculation. ITK-SNAP software version 4.0.2 was 

used to segment the nodules in all CT images. Initially, 
the lesion was manually delineated by a junior trainee 
radiologist with 5 years of experience in thoracic imaging. 
Subsequently, a senior radiologist with 15 years of expertise 
reviewed and adjusted the segmentations.

The “PyRadiomics” package in Python 3.11.0 was used 
to extract 1,239 radiomics features from the pGGN area, 
including first-order features; histogram features; and 
texture features, such as the gray-level run length matrix, 
gray-level co-occurrence matrix, and gray-level size zone 
matrix. During the feature reduction stage, the minimum 
redundancy-maximum relevance method was initially 
implemented to address feature redundancy and preserve 
the 100 most common crucial features. Subsequently, the 
least absolute shrinkage and selection operator (LASSO) 
was used to identify features demonstrating a high degree 
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of relevance to the outcome variable. The optimal λ value 
in the LASSO algorithm was identified using 10-fold cross-
validation, thus leading to the screening of features with 
nonzero coefficients (Figure S1).

Finally, the Rad score was calculated based on the 
identified radiomics features and their coefficients via the 
LASSO algorithm. The formula for the Rad score was as 
follows: 

1
 n

i ii
Rad score X Zβ

=
= +∑  [1]

where Xi is the radiomics feature selected by the LASSO 
regression, βi is the regression coefficient of Xi, and Z is an 
intercept.

ITH score calculations

We performed a comprehensive assessment of ITH by 
integrating local and global radiomics features. Initially, 
we calculated the consistent radiomics features of every 
pixel within the nodule area to capture intricate localized  
details (31). Subsequently, the pixels were clustered 
according to their inherent local characteristics. These 
grouped pixels were assigned specific colors corresponding 
to their cluster labels, thus generating a visually informative 
map that portrayed the overall pixel distribution pattern. 
This map enabled easy visualization and aided in 
quantifying ITH. Pixels that shared identical cluster labels 
demonstrated similarities in intensity and neighboring 
textures. Conversely, the distribution of cluster patterns on 
the label map revealed the extent of heterogeneity within 
the lesion.

Subsequently, the pGGN regions were divided into 
distinct subregions based on pixel clustering, which is 
particularly relevant in the context of tumor heterogeneity. 
Local entropy calculations were performed on each CT 
image slice using a 9×9 moving window, and the subregions 
were clustered with the Calinski-Harabasz method. To 
precisely determine the requisite number of subgroups 
within the case sample, we excluded Calinski-Harabasz 
values that deviated beyond the standard deviation range. 
Hence, we introduced the ITH score (31-33) as an 
assessment metric to measure the level of diversity within 
label maps:

,
1

1 1 V i max
i

total i

S
ITH score

S n=
= − ∑  [2]

where V is the number of clusters, Stotal is the overall tumor 
area, and ni is the number of connected regions, while 

Si,max represents the maximum area of each connected 
region within cluster i. The two measurable parameters, ni 
and Si,max, are critical to evaluating the diversity of cluster 
patterns within each cluster i. A more heterogeneous pattern 
was indicated by an increased number of interconnected 
regions within each cluster and a reduced maximum area. 
The ITH score ranged from zero to one, with higher values 
indicating a label map with increased dispersion (31-33), 
thus reflecting a broader spectrum of cell compositions and 
spatial distributions.

Statistical analysis

Statistical analyses were performed using R software version 
4.3.2 (The R Foundation of Statistical Computing). Patients 
diagnosed with lung adenocarcinoma after surgical resection 
were categorized as having either IAC or AIS/MIA based 
on histopathology results. Continuous data were analyzed 
with the independent samples t-test or the Mann-Whitney 
test, while categorical variables were assessed using the 
chi-square test. Statistical significance was determined at a 
threshold of P<0.05 (two-tailed).

Three diagnostic models were used to preoperatively 
predict IAC with pulmonary adenocarcinomas presenting as 
pGGNs (Figure 2). One model comprised imaging findings, 
one comprised radiomics features, and one comprised 
the ITH score. Univariate logistic regression identified 
conventional imaging findings associated with IAC (P<0.1); 
subsequently, a forward multivariate logistic regression 
analysis was conducted to identify significant independent 
variables based on the univariate analysis. The findings 
are reported as odds ratios (ORs) with corresponding 
95% confidence intervals (CIs) and P values. Predicted 
probability models were formulated using logistic regression 
coefficients. The Rad and ITH scores were also used to 
preoperatively predict IAC. The evaluation of each model’s 
performance was conducted through receiver operating 
characteristic (ROC) curve analysis, with metrics including 
the area under the curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value, and negative predictive 
value being employed. The ROC curves were compared 
using the DeLong test for statistical significance.

Results

Patient and clinicopathological characteristics

The study included a total of 575 patients (mean age 
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54.79±12.23 years; range, 25–81 years; 29% male) with 
persistent pGGNs. Of these, 402 and 173 patients were 
allocated to the training and validation cohorts, respectively. 
Among the patients, 157 (39.1%) and 71 patients (41%) 
were pathologically diagnosed with IAC in the training and 
validation cohorts, respectively. No significant differences 
were observed in the demographic and clinicoradiological 
characteristics between the training and validation cohorts 
(all P values >0.05). The detailed information is provided in 
Table 1.

Conventional imaging findings 

Table 2 presents the results of the univariate and multivariate 
logistic analyses of the ability of conventional imaging 
findings to preoperatively predict IAC among pulmonary 
adenocarcinomas appearing as pGGNs. In the univariate 
logistic regression analysis, factors including shape, vascular 
convergence sign, vacuole sign, pleural indentation, age, 
and CT value were significantly associated with IAC (all 
P values <0.05). However, in the subsequent multivariate 

Figure 2 Comparative study design of three prediction models: conventional imaging findings, radiomics features, and the ITH score. ITH, 
intratumor heterogeneity; CT, computed tomography; pGGNs, pure ground-glass nodules.

Participant enrollment

Entire nodule segmentation

Radiologists’ visual assessment

CT scan

Subregion segmentation

Performance evaluation

Conclusion

The ITH score emerged as a superior 
method for assessing the preoperative 

prediction of invasiveness in 
pulmonary adenocarcinomas 

presenting as pGGNs
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Table 1 Baseline characteristics of the training and validation cohort

Variable Total (n=575) Training cohort (n=402) Validation cohort (n=173) P value

Size (mm), mean ± SD 14.75±5.68 14.52±5.57 15.26±5.91 0.261

Location, n (%) 0.704

RUL 200 (34.8) 136 (33.8) 64 (37.0)

RLL 90 (15.7) 65 (16.2) 25 (14.5)

RML 44 (7.7) 31 (7.7) 13 (7.5)

LUL 166 (28.9) 113 (28.1) 53 (30.6)

LLL 75 (13.0) 57 (14.2) 18 (10.4)

Boundary, n (%) 0.515

Ill-defined 97 (16.9) 71 (17.7) 26 (15.0)

Well-defined 478 (83.1) 331 (82.3) 147 (85.0)

Shape, n (%) 0.818

Irregular 165 (28.7) 117 (29.1) 48 (27.7)

Regular 410 (71.3) 285 (70.9) 125 (72.3)

Lobulation, n (%) 0.913

Absence 372 (64.7) 259 (64.4) 113 (65.3)

Presence 203 (35.3) 143 (35.6) 60 (34.7)

Spiculation, n (%) 1.000

Absence 422 (73.4) 295 (73.4) 127 (73.4)

Presence 153 (26.6) 107 (26.6) 46 (26.6)

Vascular convergence sign, n (%) 1.000

Absence 140 (24.3) 98 (24.4) 42 (24.3)

Presence 435 (75.7) 304 (75.6) 131 (75.7)

Vacuole sign, n (%) 0.82

Absence 494 (85.9) 344 (85.6) 150 (86.7)

Presence 81 (14.1) 58 (14.4) 23 (13.3)

Pleural indentation, n (%) 0.682

Absence 350 (60.9) 242 (60.2) 108 (62.4)

Presence 225 (39.1) 160 (39.8) 65 (37.6)

Sex, n (%) 0.727

Male 167 (29.0) 119 (29.6) 48 (27.7)

Female 408 (71.0) 283 (70.4) 125 (72.3)

Age (years), mean ± SD 54.79±12.23 54.52±12.53 55.45±11.53 0.53

CT value (HU), mean ± SD −596.93±98.38 −595.26±96.68 −600.79±102.42 0.48

Pathologic diagnosis, n (%) 0.724

AIS/MIA 347 (60.3) 245 (60.9) 102 (59.0)

IAC 228 (39.7) 157 (39.1) 71 (41.0)

LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; IAC, invasive lung 
adenocarcinoma; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; CT, computed tomography; HU, Hounsfield unit.
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Table 2 Univariate and multivariate logistic analysis for distinguishing IAC from AIC/MIA in pulmonary adenocarcinomas presenting as pGGNs

Variable AIC/MIA IAC
Univariate Multivariate

OR (95% CI) P OR (95% CI) P

Size (mm), mean ± SD 12.0±4.4 18.5±4.9 1.31 (1.24–1.38) <0.001 1.28 (1.20–1.36) <0.001

Location, n (%)

RUL 82 (33.5) 54 (34.4)

RLL 42 (17.1) 23 (14.6) 0.83 (0.45–1.54) 0.556

RML 21 (8.6) 10 (6.4) 0.72 (0.32–1.65) 0.443

LUL 62 (25.3) 51 (32.5) 1.25 (0.75–2.07) 0.388

LLL 38 (15.5) 19 (12.1) 0.76 (0.40–1.45) 0.406

Boundary, n (%)

Ill-defined 40 (16.3) 31 (19.7)

Well-defined 205 (83.7) 126 (80.3) 0.79 (0.47–1.33) 0.381

Shape, n (%)

Irregular 53 (21.6) 64 (40.8)

Regular 192 (78.4) 93 (59.2) 0.40 (0.26–0.62) <0.001 1.24 (0.69–2.25) 0.468

Lobulation, n (%)

Absence 160 (65.3) 99 (63.1)

Presence 85 (34.7) 58 (36.9) 1.10 (0.73–1.67) 0.646

Spiculation, n (%)

Absence 188 (76.7) 107 (68.2)

Presence 57 (23.3) 50 (31.8) 1.54 (0.98–2.41) 0.058

Vascular convergence sign, n (%)

Absence 68 (27.8) 30 (19.1)

Presence 177 (72.2) 127 (80.9) 1.63 (1.00–2.64) 0.049 1.00 (0.54–1.87) 0.991

Vacuole sign, n (%)

Absence 224 (91.4) 120 (76.4)

Presence 21 (8.6) 37 (23.6) 3.29 (1.84–5.87) <0.001 1.87 (0.90–3.90) 0.092

Pleural indentation, n (%)

Absence 168 (68.6) 74 (47.1)

Presence 77 (31.4) 83 (52.9) 2.45 (1.62–3.70) <0.001 1.32 (0.78–2.24) 0.297

Sex, n (%)

Male 66 (26.9) 53 (33.8)

Female 179 (73.1) 104 (66.2) 0.72 (0.47–1.12) 0.145

Age (years), mean ± SD 52.2±13.5 58.2±9.9 1.04 (1.02–1.06) <0.001 1.01 (0.98–1.03) 0.633

CT value (HU), mean ± SD −617.5±88.0 −560.6±99.6 1.01 (1.00–1.01) <0.001 1.01 (1.00–1.01) <0.001

LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; IAC, invasive lung 
adenocarcinoma; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; pGGN, pure ground-glass nodule; SD, standard 
deviation; OR, odds ratio; CI, confidence interval; CT, computed tomography; HU, Hounsfield unit.



Qi et al. ITH of pulmonary adenocarcinomas manifesting as pGGNs280

© AME Publishing Company.   Quant Imaging Med Surg 2025;15(1):272-286 | https://dx.doi.org/10.21037/qims-24-734

logistic regression analysis, only tumor size (OR 1.28; 95% 
CI: 1.20–1.36; P<0.001) and CT value (OR 1.01; 95% CI: 
1.00–1.01; P<0.001) emerged as independent predictors 
capable of differentiating IAC from AIS/MIA.

Radiomics model

LASSO regression identified 10 radiomics features 
that could preoperatively predict IAC with pulmonary 
adenocarcinomas presenting as pGGNs (Figure S2). The 
Rad score of the IAC group, calculated based on these 
selected radiomics features and their coefficients via LASSO 
regression, was higher than that of the AIS/MIA group in 
both the training and validation cohorts (all P values <0.05) 
(Figure 3). To further assess the robustness of the radiomics 
model, five-fold cross-validation was performed. The AUCs 
for folds one, two, three, four, and five were 0.879, 0.861, 
0.845, 0.849, and 0.814, respectively (mean AUC 0.850). 
The AUC values remained relatively stable across the folds 
(Figure S3).

Application of ITH score 

In this study, we developed and assessed a methodology for 
calculating the voxel composition of small patches within 
pGGNs and subsequently clustered these patches to identify 
subregions exhibiting analogous patterns. This methodology 
facilitates a comprehensive analysis of the textural and 
biological attributes within these specific regions, thereby 
enabling the quantification of pGGN heterogeneity at a 
higher resolution. Consequently, this approach provides 
deeper insights into the potential pathological implications 

of clustered patches. The data obtained from these clusters, 
along with their associated texture information, were 
subsequently used to quantify ITH (Figure 4).

We found that the ITH score generated to quantify 
pGGN heterogeneity in the CT images of the IAC group 
was higher than that of the AIS/MIA group in both the 
training and validation cohorts (all P values <0.05) (Figure 5).

Evaluation of model performance 

The ROC curves for imaging findings, radiomics features, 
and ITH scores of the IAC and AIS/MIA groups in both 
the training and validation cohorts are illustrated in 
Figure 6. In distinguishing between IAC and AIS/MIA 
in pulmonary adenocarcinomas presenting as pGGNs, 
conventional imaging yielding AUC values of 0.832 (95% 
CI: 0.794–0.871) and 0.842 (95% CI: 0.783–0.901) for the 
training and validation cohorts, respectively. These values 
were inferior to those of the radiomics features, which 
yielded AUC values of 0.868 (95% CI: 0.835–0.902) for 
the training cohort (DeLong P=0.008) and 0.879 (95% 
CI: 0.829–0.929) for the validation cohort (DeLong test 
P=0.007). Additionally, the AUC values of conventional 
imaging findings were inferior to those of the ITH score, 
which yielded AUC values of 0.860 (95% CI: 0.825–0.895) 
for the training cohort (DeLong test P=0.019) and 0.867 
(95% CI: 0.815–0.918) for the validation cohort (DeLong 
test P=0.045). The diagnostic efficacy of the ITH score 
was comparable with that of radiomics features, with no 
significant difference between the ROC curves of the 
training (DeLong test P=0.635) and validation cohorts 
(DeLong test P=0.686) (Table 3).

Figure 3 Comparison of the radiomics scores (Rad scores) of the IAC and AIS/MIA groups. ****, P<0.001. IAC, invasive adenocarcinoma; 
AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.

IAC AIS/MIA
Training cohort

R
ad

 s
co

re
s

**** ****

Validation cohort

2

0

–2

–4

–6

https://cdn.amegroups.cn/static/public/QIMS-24-734-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-734-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 15, No 1 January 2025 281

© AME Publishing Company.   Quant Imaging Med Surg 2025;15(1):272-286 | https://dx.doi.org/10.21037/qims-24-734

Figure 4 Subregions were identified by clustering image patches to quantify intratumor heterogeneity.

Figure 5 Comparison of ITH scores of the IAC and AIS/MIA groups. ****, P<0.001. IAC, invasive adenocarcinoma; AIS, adenocarcinoma 
in situ; MIA, minimally invasive adenocarcinoma; ITH, intratumor heterogeneity.
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Discussion

Tumor heterogeneity plays a pivotal role in shaping the 
malignancy and biological characteristics of tumors, 
underscoring the significance of quantifying preoperative 
evaluation of ITH in the assessment of pGGN invasiveness. 
This study examined the initial application of preoperative 
CT imaging for quantifying ITH in persistent pGGNs 
to assess pathological invasiveness. The ITH score, 
which is an amalgamation of local textural features and 
overall pixel distribution patterns, exhibited outstanding 
diagnostic accuracy. The ITH score demonstrated superior 
performance compared to conventional imaging findings 

and was comparable to radiomics features. 
In this study, univariate analysis indicated that various 

conventional imaging findings, including shape, vascular 
convergence sign, vacuole sign, pleural indentation, age, 
and mean CT value, were associated with IAC (all P values 
<0.05). However, multivariate logistic analysis indicated that 
only tumor size (OR 1.28, 95% CI: 1.20–1.36; P<0.001) 
and CT value (OR 1.01; 95% CI: 1.00–1.01; P<0.001) were 
independent predictors that could distinguish IAC from 
AIS/MIA. A meta-analysis conducted by Yang et al. (23) 
demonstrated a noteworthy disparity in the mean CT values 
of pGGNs with IAC and AIS/MIA. Similar results were 
obtained in a meta-analysis by He et al. (34). In contrast, 
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Figure 6 ROC curves depicting the ability of imaging findings, radiomics features, and the ITH score in predicting invasiveness. ROC, receiver 
operating characteristic; ITH, intratumor heterogeneity; AUC, area under the curve; TPR, true positive rate; FPR, false positive rate.
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Table 3 Diagnostic performance of models in distinguishing IAC from AIS/MIA

Model
Area under the curve 

(95% CI)
Accuracy  
(95% CI)

Sensitivity  
(95% CI)

Specificity  
(95% CI)

Positive predictive 
value (95% CI)

Negative predictive 
value (95% CI)

Training cohort

Imaging findings 0.832  
(0.794–0.871)

0.741  
(0.740–0.742)

0.809  
(0.747–0.870)

0.698  
(0.640–0.755)

0.632  
(0.565–0.699)

0.851  
(0.801–0.900)

Radiomics 0.868  
(0.835–0.902)

0.789  
(0.788–0.789)

0.885  
(0.836–0.935)

0.727  
(0.671–0.782)

0.675  
(0.611–0.739)

0.908  
(0.868–0.949)

ITH score 0.860  
(0.825–0.895)

0.781  
(0.780–0.782)

0.968  
(0.941–0.996)

0.661  
(0.602–0.720)

0.647  
(0.586–0.708)

0.970  
(0.944–0.996)

Validation cohort

Imaging findings 0.842  
(0.783–0.901)

0.786  
(0.784–0.788)

0.775  
(0.677–0.872)

0.794  
(0.716–0.873)

0.724  
(0.623–0.824)

0.835  
(0.761–0.909)

Radiomics 0.879  
(0.829–0.929)

0.798  
(0.796–0.800)

0.915  
(0.851–0.980)

0.716  
(0.628–0.803)

0.691  
(0.598–0.785)

0.924  
(0.866–0.982)

ITH score 0.867  
(0.815–0.918)

0.757  
(0.755–0.759)

0.972  
(0.933–1.000)

0.608  
(0.513–0.703)

0.633  
(0.543–0.724)

0.969  
(0.926–1.011)

IAC, invasive lung adenocarcinoma; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; ITH, intratumor heterogeneity; 
CI, confidence interval.
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Fu et al. (18) conducted a study involving 432 patients 
with pGGNs and concluded that mean CT value is not a 
reliable independent predictor for pathological invasion 
of pGGNs. This inconsistency may be explained by the 
effect of myofibroblast matrix thickening induced by tumor 
cell infiltration on the mean CT value because increased 
invasiveness is correlated with an increased mean CT value. 
Conversely, a reduction in air content within the cavity 
due to alveolar collapse may result in an elevated mean CT  
value (35). Hence, the ability of mean CT value to detect 
pGGN invasiveness remains unclear, as highlighted by 
the findings our study, in which the mean CT value could 
distinguish the invasiveness of pGGNs but produced a low 
OR. In contrast to mean CT value, tumor size is widely 
acknowledged as a criterion for evaluating the invasiveness of 
pGGNs (17-19) and is thus included in the guidelines outlined 
in the eighth edition of the TNM staging protocols (15).

The ITH score provides an objective evaluation of 
heterogeneity by incorporating both pixel characteristics 
and their spatial distributions. This method represents 
a significant advancement in capturing multiscale tumor 
heterogeneity by integrating local and global radiomics 
information (30-33). In our study, the performance of 
ITH score was superior to that of conventional imaging 
findings and comparable with that of radiomics features in 
both the training and validation cohorts. The ITH score 
offers unique advantages over radiomics features because 
it provides more abundant and objective information 
and reduces the subjective interpretation inherent in 
conventional imaging findings. Additionally, initial 
radiomics features such as first-order statistics, wavelet 
attributes, and textures can be susceptible to variations in 
image capture methods (36). Conversely, the ITH score 
consolidates features by clustering labeling maps, thus 
ensuring consistency across diverse tumor images while 
preserving intratumor diversity. This approach enables a 
reliable comparison of ITH scores across various medical 
institutions. Although radiomics models usually rely on 
regression techniques such as LASSO for specific tasks, the 
ITH score is derived using unsupervised machine learning, 
thereby eliminating the need for training (32,33). The 
intuitive cluster patterns observed in the labeling maps 
enhanced the interpretability of the ITH score.

Some limitations to this study should be noted. First, 
although our findings suggest a connection between 
the ITH score and the invasiveness of pulmonary 
adenocarcinomas presenting as pGGNs, further exploration 
of the broader clinical implications of the ITH score, 

particularly its relevance to follow-up decision-making, 
determination of the extent of surgical resection, and 
prognosis, is required. Second, our study did not further 
examine gene immunomics and genomics to evaluate the 
efficacy of the ITH score, which limits our understanding of 
the relationship between ITH scores and histological traits. 
Third, although we implemented a comprehensive image 
preprocessing pipeline to address the issue of variability in 
CT scanner devices and parameters, the influence of these 
factors on radiomic features and the ITH score could not be 
excluded. Finally, due to the retrospective nature of the study, 
bias in participant selection might have occurred, which 
could limit the generalizability of the results.

Conclusions

In this preliminary study, we introduced the novel concept 
of a comprehensive ITH score that can be used to assess 
the heterogeneity of persistent pGGNs. The ITH 
score demonstrated superior performance compared to 
conventional imaging findings and may be an alternative 
to the radiomics protocol due to its unique advantages. 
Furthermore, the ITH score could be used to inform 
surgical strategies and posttreatment monitoring protocols 
for lung adenocarcinomas that manifest as persistent 
pGGNs.
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