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In this current digital landscape, artificial intelligence (AI) has established itself as a

powerful tool in the commercial industry and is an evolving technology in healthcare.

Cutting-edge imaging modalities outputting multi-dimensional data are becoming

increasingly complex. In this era of data explosion, the field of cardiovascular imaging

is undergoing a paradigm shift toward machine learning (ML) driven platforms. These

diverse algorithms can seamlessly analyze information and automate a range of tasks.

In this review article, we explore the role of ML in the field of cardiovascular imaging.
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INTRODUCTION

As technology continues to evolve at a rapid pace, each and every significant innovation has a
phenomenal capability of transforming various aspects of society (1, 2). In this era of miniaturized
devices and smartphone applications, continuous streams of individualized information have
become the standard of life (3, 4). Similarly, the adoption of artificial intelligence (AI) in medicine
has far-reaching potential, especially in the field of cardiovascular imaging (2, 5, 6).With a vast array
of imaging modalities at our disposal, these approaches provide limitless information regarding
cardiac structure and function (7). In parallel to the technological revolution, imaging approaches
also continue to grow significantly (5, 8). Novel parameters are added to existing techniques,
providing additional information regarding the cardiac function (7, 9, 10). However, are more data
points beneficial if they cannot be used in routine clinical practice? (11). Information necessary to
medical management needs to be prioritized first rather than having a cacophony of data points.

The utility of AI in cardiovascular imaging bridges the gap between new technology, big data,
and the clinical provider (12–14). Machine learning (ML), a branch of AI, is especially pertinent in
cardiovascular imaging as it can analyze large amounts of information in a multitude of approaches
(1, 15, 16). ML can connect information from a variety of interfaces and present it in a meaningful
manner for the practitioner (13, 14). Also, it can automate several measurements in various imaging
modalities (17, 18). The growth of AI will facilitate the progression of precision medicine. In this
review article, we assess the role of AI and ML in cardiovascular imaging.

EVOLUTION OF BIG DATA

Imaging modalities permit the visual assessment of cardiac function and detect underlying cardiac
pathology. A single scan produces an abundance of clinical and operational data (19). For example,
a single echocardiogram can produce roughly 2 gigabytes of data. Since millions of patients
undergo echocardiography annually, this translates to petabytes of information being collected.
With the emergence of higher processing capabilities of computer processing units (CPU) and
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cloud infrastructures, the newer system can process a plethora
of data in real-time (5, 20). Imaging data can be quite complex
and present in varying dimensions (two or three or 4 dimensions)
and formats which include digital imaging and communications
in medicine (DICOM), moving picture experts Group (MPEG),
and joint photographic experts group (JPEG) (19). This results
in exceedingly high dimensionality of data and predisposes to
significant difficulties in clinical practice (21).

Big data is heavily utilized in clinical research (22). Many
academic centers invest vast resources in generating and large
data sets for various research endeavors. The findings from
large data sets are generally applicable to vast portions of the
population. They provide more consistent and reliable findings
than smaller or single institutional studies. In the near future,
big data will incorporate genetic or molecular parameters for the
patient or pan-omic data sets (22, 23).

EMERGING SIGNIFICANCE OF AI

As stated earlier, data is becoming increasingly complex with
rapidly advancing changes in technology (18). Big data with
countless, non-linear associations will exceed the capabilities of
existing frequentist or Bayesian statistical approaches (23, 24).
Although they are the current gold standard in current research,
this may not hold true in the foreseeable future.

In contrast, ML and AI are far more dynamic in nature
(14). With this transition to big data, ML algorithms will play a
pivotal role in the days to come. As the size and complexity of
data increases, the performance of ML increases proportionally
(5, 25). ML frameworks can further expand our knowledge
regarding different cardiac pathology. It can connect information
from a variety of different interfaces.

TYPES OF MACHINE LEARNING

ML is an umbrella term that refers to a collection of
various analytical algorithms [(5); Table 1]. It can be broadly
classified into supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning (26). Among
these, supervised and unsupervised learning are frequently used
in clinical research (27). Supervised learning operates within
domains of labels or annotations within a dataset (18, 28).
Whereas, unsupervised learning looks purely at data points
independent form labels and is considered agnostic (29, 30).
Semi-supervised learning contains properties of both supervised
and unsupervised learning (12). The last among these ML
frameworks is reinforcement learning. Reinforcement learning is
similar to human psychology, utilizes certain reward criteria for
the algorithm to perform functions within a dataset (22). It is yet
to gain significant traction in the field of cardiovascular imaging.

RISING RELEVANCE OF DEEP LEARNING

Among ML algorithms, deep learning has the most potential in
innovation and discovery (24, 31). It is becoming increasingly
popular due to significant strides in cloud infrastructures and

TABLE 1 | A table describing different types of machine learning with various

examples.

Types of machine

learning

Function Examples

Supervised learning

(12)

The dataset has labels and

outcomes, infers from data

for prediction purposes

Encompasses logistic

regression, ridge regression,

elastic net regression,

Bayesian network, artificial

neural network

Unsupervised

learning (12)

The dataset contains no

labels, detects pivotal

relationships

This contains hierarchical

clustering, k-means

clustering, principal

component analysis

Semi-supervised

learning (12)

A combination of supervised

and unsupervised learning

Frequently used in image

and speech recognition

Re-enforcement

learning (12)

Utilizes reward function to

execute tasks

Commonly seen in medical

imaging, analytics, and

prescription selection

augmented computing prowess (12). Deep learning is the
foundation for cutting-edge technology like voice recognition
software such as Siri or Alex and self-driving cars (1, 32). In
comparison to other ML frameworks, deep learning performs
significantly better with larger and complex datasets. The
architecture of deep learning is similar to the neuronal structure
present within humans (33, 34). Arranged in a series of layers,
information is processed from preceding and successive layers
in an intricate manner to extrapolate outcomes present within
vast data matrices (25). Other algorithms require significant
training to obtain satisfactory results. However, the accuracy of
deep learning can be easily improved by elevating the network
capacity or augmenting the training dataset. It requires less
domain knowledge to execute a function.

There are also several subtypes present in deep learning.
One of the most commonly used deep learning frameworks
is a convolutional neural network (CNN) (31). It contains a
convolutional component responsible for feature extraction and
has a fully connected enabling classification. In fully connected
networks (FNN), every unit in any layer is linked to every
unit in prior and succeeding layers (31). Recurrent neural
networks (RNN) employ feedback loops to comprehend various
inputs (31).

ROLE OF AI IN ECHOCARDIOGRAPHY

Echocardiography is the most widely used imaging technique
in cardiac care (10). It plays an indispensable role in
assessing cardiac function and it identifies various cardiac
pathology (10). Over the last 33 years, significant progression
in echocardiographic automated quantification has occurred
(Figure 1).

ML algorithms can make new echocardiographic technology
clinically relevant. With the emergence of cardiac strain, it
can evaluate the cardiac function beyond the ejection fraction.
Ejection fraction is hailed as the gold standard metric for cardiac
assessment. Although strain can fundamentally alter clinical care,
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FIGURE 1 | Temporal progression in automated quantification in echocardiography. Adapted from Nolan et al. (10). Permission obtained from the publisher.

it has not occurred due to the cumbersome and time-consuming
nature of the approach (35). The integration of ML algorithms
can streamline the clinical workflow by automating numerous
calculations (9).

Samad et al. utilized clinical and echocardiographic variables
using a random forest model which achieved superior prediction
accuracy (all AUC >0.82) over common clinical risk scores
(AUC = 0.69–0.79) and logistic regression models (p < 0.001)
in 171, 510 patients for predicting all-cause mortality (36). Zhang
et al. trained a (CNN) which successfully identified views (96%
for parasternal long axis or 84% accuracy overall) with image
segmentation accuracy reaching 72–90% (37). Sanchez-Martinez
et al. assessed velocity patterns to differentiate heart failure
preserved ejection fraction (HFpEF) from healthy patients with
encouraging results (κ, 72.6%; 95% confidence interval, 58.1–
87.0) (38). Similarly, Tabassian et al., classified phenotypes of
HFpEF patients with symptomatology using strain parameters
(asymptomatic vs. symptomatic; AUC = 0.89; accuracy =

85%; sensitivity = 86%, specificity = 82%) (39). Unsupervised
clustering models in HFpEF patients have successfully predicted
hospitalization risk, exercise intolerance, and LV filling pressure
(40–43). Lancaster et al. applied clustering ML model which
isolated diastolic dysfunction in 559 of 866 patients with 2
distinct groups, revealed moderate agreement with conventional
classification (kappa= 0.41, p < 0.001) (44). Asch examined ML
automated echocardiographic quantification of left ventricular

ejection fraction (LVEF), there was an excellent agreement with
reference values (r = 0.95) (45). Benjamin et al. applied deep
learning which showed lung Doppler signals (LDS) predicted
echocardiographic E/e’ measurements [r = 0.67 (admission) and
0.83 (discharge), p < 0.0001] in 99 acute HF patients and lower
event-free survival in high predicted- E/e’ group HF patients
with reduced EF (P = 0.0247) (46). Kusunose et al. showed
deep learning was better than residents in detecting wall motion
abnormalities (WMA) (AUC 0.99 vs. 0.90, p= 0.002) and WMA
territories (AUC = 0.97 vs. 0.83, p = 0.003), the ML architecture
had a similar performance to experienced cardiologists (47).
Similarly, Kusononse used deep learning to demonstrate similar
ML derived LVEF with validation group (r = 0.82 ± 0.02, p
< 0.001) (48). Donal utilized a random forest model to assess
response to cardiac resynchronization therapy, best performance
was obtained with strain measurements (AUC of 0.686) and QRS
duration (AUC of 0.668) (49).

Topological data analysis (TDA) is a form of unsupervised
learning which uses clustering to create network and shape (50).
Casaclang-Verzosa et al. employed TDA to discern precise LV
phenotypic recognition in severe aortic stenosis (AS) patients,
it formed a loop (Figure 2) of mild and severe aortic stenosis
on the right and left side (p < 0.001) which was linked
by moderate AS on top and bottom sides with reduced and
preserved ejection fraction (p < 0.0001) (51). Other centers have
used TDA in AS patients similarly, heart failure patients, and for
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FIGURE 2 | Topological data analysis loop in aortic stenosis. The similarity network draws aggregation of patients with severe and mild AS in 2 opposite ends and

moderate AS in the top and bottom arms of the loop. The red color represents the abnormal values, whereas blue represents the normal or minor malady in the

disease space. (A) Spectrum of mean gradient in humans identified in the network of disease space. High gradients aggregated on the left side, whereas the low

gradients were on the right side with moderate gradients in the middle. (B) Distribution of valve area on the network, (C) patient similarity network revealing preserved

and reduced ejection fraction (EFs) in the patients with aortic stenosis (AS). The top arm clustered patients with the reduced EF, whereas the bottom arm described

the patients with preserved EF. The red nodes consists of patients with EFs of ≤50%, whereas the blue nodes consists of patients with EFs of ≥65%. (D) Distribution

of E/e’ as a feature of diastolic dysfunction revealing the pattern of E/e’ around moderate and severe AS. TDA, topological data analysis. Adapted from

Casaclang-Verzosa et al. (51). Permission obtained from the publisher.

predicting major adverse cardiovascular events (MACE) in large
cohorts (52–54).

Several cardiovascular diseases can affect the cardiac
valve. Previously surgical techniques were the gold standard
techniques in valve intervention.With the advent of transcatheter
approaches, there has been a paradigm shift in these approaches.
The application of ML algorithms can help in the gradient and
assessment of valvular heart disease. Also, they can help in
therapeutic planning. Currently, is it still in the early stages.
Costa et al. utilized deep learning to segment mitral valves in
PLAX and apical 4 chamber views (55). Grady examined the
role of ML for automating the proximal isovelocity surface
area (PISA) assessment on echocardiography, it had excellent
correlation with findings on magnetic resonance imaging (56).
Wang et al. applied ML for evaluating mitral inflow and aortic
outflow (57). Abdul Ghaffar et al. evaluated the role of semi-
supervised learning for phenogrouping based risk assessment in
transcatheter aortic valve replacement (TAVR) (58). Group 5 was

associated with significant in-hospital cardiovascular mortality
(OR 3.5, p= 0.001).

ROLE OF AI IN COMPUTED TOMOGRAPHY

In recent years, computed tomography (CT) has emerged as
a prominent technique in the field of cardiovascular imaging
(6, 59, 60), in part due to negative predictive value (61). The
evolution of scanner technology has led to drastic improvements
in spatial and temporal resolution (60, 62). ML algorithms can
automate and expedite many processes which will expand the
frontiers of cardiac CT (5).

CT fractional flow reserve (CT- FFR) is arising as a non-
invasive alternative in diagnosing chest pain. Though in the
early stages of clinical implementation, it is one of the few
methods to provide an anatomical and functional assessment.
ML algorithms can compute FFR without computational fluid
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dynamics and provide additional prognostic information (6).
Zhou et al. investigated the role of CT fractional flow reserve (CT
FFR) for predicting myocardial bridge formation by multiple ML
algorithms, ML selected features had higher AUC (0.75 ± 0.04)
than clinical features (0.53 ± 0.09, p < 0.0001), morphological
features (0.59 ± 0.06, p = 0.0025), and CT- FFR features (0.62
± 0.06, p = 0.0127) (63). Coenen et al. compared CT- FFR
with computational fluid dynamics and ML-derived CT- FFR for
detecting coronary artery disease (CAD) through deep learning,
there was an excellent correlation between both techniques (R =

0.997) (64). Tang et al. noted that a novel on-site computational
fluid dynamics-based CT FFR was better than CTA and invasive
angiography in detecting lesion-specific ischemia, especially in
intermediate lesions (p < 0.001 for all) [(65); Figure 3].

The presence of extensive coronary calcium (CAC) is the
predominant issue in CAD evaluation (62). Furthermore, CAC
can lead to overestimation of coronary vessel stenosis (66, 67).
Al’Aref et al. utilized an ML model integrating clinical factors
in conjunction with calcium score in the CONFIRM registry
for predicting coronary artery disease in 35, 281 patients with
CTA (68). They demonstrated superior AUC for ML and (CAC)
(0.881) to ML alone (0.773), coronary calcium (0.886), and
updated Diamond- Forrester Score (0.682). Similarly, Tesche
et al. showed ML CT fractional flow reserve (FFR) was better
than CTA alone in CAC, there was a significant difference in
performance as Agatston scores increased (High scores- p= 0.04,
low to intermediate scores- p < 0.001) (69). Kay et al. applied
ML algorithms and radiomics to detect phenotypic information
about high risk left ventricular hypertrophy (LVH) in CT with
coronary artery calcium (CAC) scoring, these algorithmicmodels
were highly effective in LVH detection (70). Hou et al. utilized
supervised learning to calculate pretest probability in 6274
patients from CTA, the ML model had significantly higher
discrimination for obstructive CAD than modified Diamond-
Forester score and CAD consortium score (0.801 vs. 673 vs. 669,
p < 0.001) (71).

ML architectures have been used in a variety of different
situations in CT. Baskaran et al. applied deep learning which
verified with manual annotation for left ventricular volume
(r = 0.98), right ventricular volume (r = 0.97), and atrial
volumes in CT angiography (CTA) (P < 0.05) in 166 patients
(72). Oikonomou et al. utilized a random forest model to
predict cardiac risk from the radiomic profile of coronary
perivascular adipose tissue (PVAT) in CTA, the fat radiomic
profile (FRP) were able to augment MACE prediction beyond
conventional risk stratification scores (C statistic −0.126, p <

0.001) (73). Beecy et al. explored the role in acute ischemic
stroke identification on CT, the AUC for the ML model
was 0.91 for automated diagnosis of infarction and had a
93% diagnostic accuracy with expert physician interpretation
(74). Al’Aref et al. investigated the potential of supervised
learning in CTA to identify culprit lesion precursors from
acute coronary syndrome patients, the ML model displayed
higher AUC for distinguishing precursors than multiple other
models (0.774 vs. 0.599 vs. 0.532 vs. 0.672, p < 0.01) (75).
Eisenberg used deep learning to show epicardial adipose
tissue (EAT) volume (HR 1.35, p < 0.01) predicted MACE

on CT, while attenuation (0.83, p = 0.01) had an inverse
relationship (76).

ROLE OF AI IN NUCLEAR CARDIOLOGY

Single-photon emission computed tomography (SPECT)
myocardial perfusion imaging (MPI) is the cardinal test in
nuclear cardiology, plays a paramount role in the assessment
of obstructive CAD (17). SPECT is predominantly used to
evaluate myocardial perfusion and to identify possible perfusion
defects either during rest or stress imaging indicating underlying
ischemia (17). There are significant disparities in the diagnostic
performance of SPECT attributed to many aspects that can be
addressed by ML (77).

Betancur demonstrated deep learning was superior to total
perfusion deficit (TPD) inMPI for CAD prediction (78, 79).With
unsupervised learning, Betancur et al. exhibited higher (MACE)
compared to expert readers, automated total perfusion deficit
(TPD), and automated ischemic perfusion deficit in SPECT MPI
and clinical factors for 2619 patients (AUC: 0.81 vs. 0.65 vs.
0.73 vs. 0.71, p < 0.01 for all) (80). Hu et al. explored the
role of ML networks in automatic rest scan cancellation and
prognostic safety, patients selected for rest scan cancellation had
lower annualized MACE rates than the physician or clinical
selection rules (all, P < 0.0001) (81). Otaki et al. compared ML
with visual reading for predicting MACE in 19,495 patients,
it enabled more precise risk stratification than visual analysis
(82). Juarez-Orozco et al. assessed the role of deep learning in
1,185 patients for polar maps in ischemia by positron emission
tomography (PET), deep learning had an AUC of 0.90± 0.02 and
outperformed all comparator models (all pairwise p < 0.01) (83).
Hu et al. investigated the ML algorithm to per- vessel prediction
of early coronary revascularization within 90 days of SPECT
MPI, they found ML AUC was superior to regional stress TPD,
combined- view TPD, and ischemic TPD (0.79 vs. 0.71 vs. 0.72,
P < 0.001) (84).

ROLE OF AI IN CARDIAC MAGNETIC
RESONANCE IMAGING

Over the last several years, cardiac magnetic resonance imaging
(CMR) has emerged as an indispensable tool in the field
of cardiovascular imaging (12). Substantial strides in the
technological front have enhanced the capability of CMR for
risk stratification and diagnosis. CMR is heralded as the gold
standard for non-invasive assessment of the ejection fraction
and left ventricular volume (27). Furthermore, it enables tissue
characterization which can dictate medical management (85).
Similar to echocardiography, strain is an emerging biomarker
that can help in the ascension of CMR (86, 87). Nevertheless,
some processes in CMR take substantial time such as measuring
volume or contour tracing (86). The integration of ML
architectures can help expand the domain of CMR and transcend
into new frontiers in cardiovascular imaging.

Ruijsink et al. presented exceedingly high CNN algorithm
correlation with a manual analysis of LV and right ventricular
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FIGURE 3 | Functional significance of proximal left anterior descending artery stenosis. Adapted from Tang et al. (65). Permission obtained from the publisher.

volumes (all r > 0.95), strain (circumferential r = 0.89,
longitudinal r > 0.89), and filling and ejection rate (all r ≥ 0.93)
in CMR (88). Winter et al. showed deep learning achieved a
similar or higher performance with human experts for automatic
segmentation of the right and left ventricular endocardium and
epicardium (89). Bhuva et al. explored automated ML analysis
of cardiac structures in CMR, automated analysis was 186
times faster than humans (0.07 vs. 13min) (90). Jain et al.
utilized ML to demonstrate phasic right atrial (RA) phasic
is predictive of all-cause death in patients with and without
HF, adjusted RA reservoir strain (HR = 0.66, p = 0.0154),
RA conduit strain (HR = 0.58, p = 0.0039), and RA conduit
strain rate (HR = 1.51, p = 0.0373) independently predicted
all-cause mortality (91). Fahmy et al. investigated the role of
deep learning in CMR scar quantification for hypertrophic
cardiomyopathy, there was strong correlation between automatic
and manual segmented scar volumes (r = 0.9, p < 0.001
per patient and (r = 0.84, p < 0.001 per slice) and LV
mass (r = 0.96, p < 0.001 per-patient and r = 0.93, p <

0.001) (92). Neisius applied ML and radiomics to differentiate
hypertensive heart disease and hypertrophic cardiomyopathy
with native T1 mapping. The selected texture attributes in
conjunction with the support vector machine classifier provided
maximal diagnostic accuracy (c statistic −0.820) in comparison

to T1 mapping (c statistic −0.549) for distinguishing between
the two entities (93). Knott et al. studied the role of AI-
based quantification of stress myocardial blood flow (MBF) and
myocardial perfusion reserve (MPR) in CMR for CAD, reduced
quantities of both factors were independently associated with
death and MACE (94). Swift et al. utilized ML in CMR to extract
features and automated pulmonary artery hypertension (PAH)
diagnosis, the AUC of the diagnostic approach was superior
to CMR metrics (0.92 for PAH, p < 0.001) and less time
consuming (95).

DISCUSSION

Our Contemporary Views on Artificial
Intelligence and Machine Learning
CAD is one of the leading causes of mortality in the world and
is responsible for a host of cardiovascular-related complications
(59, 96, 97). Although it may be relatively easy to pinpoint
the exact cause of death but implementing universal solutions
in terms of medications or intervention is not necessarily
straightforward. There is a fundamental concept present at
hand, it must be greatly emphasized that cardiovascular disease
is heterogeneous in nature (98). The pathophysiology of
cardiovascular disease encompasses various interactions between
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etiological factors, molecular components, genetic attributes,
and intricate pathways (98). This is further compounded by
varying clinical presentations which further complicate diagnosis
and prognostication (22). These clinical dilemmas underpin
the necessity and integration of ML frameworks in imaging or
clinical pipelines in cardiovascular care (13). ML algorithms can
extrapolate information from these multi-dimensional matrices
to delineate unique patterns not witnessed before (24). Cloud-
based infrastructures enhance data collection allowing for
individualized care (20). Many studies have already shown the
superiority of big data ML algorithms over standard care in
areas including heart failure, AS, and ischemic heart disease
(Table 2). By harvesting this information routinely, we can
customize individualized solutions for medical management. AI
can truly usher the era of precision medicine into modern-day
medicine (1, 99).

The integration of genomics into ML algorithms will be
more beneficial than popular risk scores which are restricted
to a few variables. The Framingham Risk Score, for instance,
is widely utilized for this purpose but does not have a genetic
aspect. Genomics is being increasingly integrated into clinical
databases or pan-omic datasets (98). Furthermore, they can
provide valuable insight into underlying pathophysiology in
various cardiac diseases (23). Among all current approaches,
ML algorithms can truly appreciate the depth of information
present dormant in these datasets (13, 30). This can lead to
the development of new biomarkers or potential drug pathways
(22, 23). In the coming days, combing cardiovascular imaging
with pan-omic techniques will become the eventual standard
in patient care (23). Also, this new information can help better
stratify patient populations appropriately (8).

The rise of radiomics will be catapulted by the rise
of ML architectures (20). Radiomics allows to extract of
more features from imaging in greater detail and facilitates
quantitative assessment. These features can be measured and
evaluated. They can be particularly advantageous in various
heterogeneous conditions. It can also help distinguish between
various pathological entities that appear similar to imaging.
Furthermore, it can be used to detect certain phenotypes within
these conditions (100).

AI is driving the current philosophy in research to evolve
and be flexible. The current norm of research is very linear,
moving from a hypothesis to a conclusion (14). In reality, our
lives and even our pathophysiology are actually multilinear.
ML algorithms can analyze data in a variety of manners, we
should be able to modify our hypothesis accordingly (23). This
allows our research to be very dynamic and this can lead to
new data-driven discoveries (14). This mindset may be needed
as we move forward with the integration of ML algorithms in
cardiovascular imaging.

AI can even improve randomized clinical trials (RCTS)
in clinical research and cardiovascular imaging. The findings
from RCTS define clinical care and are incorporated into
national or international guidelines. Many pivotal RCTs fail
to reach enrollment goals or have lofty expectations (101).
If AI can analyze preliminary results from clinical trials,
investigators can use this information appropriately (102). Better

classification of the disease in question will allow the superior
design of the RCT, there will be a more precise definition
of the underlying condition. ML algorithms can determine
which patient profiles may predict response to treatment or
susceptibility to complications, this will enable better enrollment
strategies (102). The early analysis can be used to redesign the
trial or not conduct the trial in the first place which can save
resources and time. Implementation of ML algorithms can also
augment randomization by introducing additional imaging or
clinical attributes (101).

The benefits of AI and ML algorithms will trickle downwards
toward peripheral or community level hospitals. Besides, it can
have significant advantages in the imaging lab setting also. AI
can automatically develop complex protocols in cardiovascular
imaging (Figure 4). Furthermore, it has the capability of
adjusting these protocols depending on the situation. It can
reduce errors in the acquisition, automate measurements, and
greatly improve efficiency (11). This will result in increased
decision support and confidence in imaging findings (11). As
a result, this can help standardize reporting and improve the
overall process. Recent developments are showing the promise of
AI in prediction during intervention and management. AI can
be used in combination with virtual planning to create digital
twins (103). Interventional treatment can be simulated on twin
which can plan actual intervention. This can lead to a number of
individualized treatment options.

Potential Issues in Machine Learning
Though the potential of ML algorithms is tremendous, several
looming issues need to be addressed for successful integration
(12). For any ML algorithm to thrive, it needs adequate exposure
to large data sets. This is simpler said than done. Many hurdles
need to be overcome before procuring these unique data sets.
Institutions must learn to share data among themselves or
have some form of agreement in place. Furthermore, multiple
institutional review boards (IRBs) are required to share data and
it can be a tedious process (17). Besides, data sets need to be de-
identified to maintain patient security. If these datasets can be
made publicly accessible, then centers can benefit.

Multiple imaging storing systems exist within institutions
which include picture archive and communication systems
(PACS) or digital imaging and communications in medicine
(DICOM). Each academic center may have different protocols
in place. A universal data standard needs to be recognized and
implemented with minimal variation (104). This will enable the
growth of ML in various institutions (104).

The potential for false discovery is a potential pitfall with
ML algorithms (12, 25). This can occur with smaller data sets.
Investigators need to clearly define the purpose of their research
before they interact with ML algorithms. Besides, Investigators
need to be constantly vigilant to prevent unintentional biases
from creeping into the model. Sampling bias can occur if
the data does not capture the heterogeneity of cardiovascular
disease. Unintentional prejudicial biases can be introduced
into the model. One also must be aware of measurement
bias as well. Frequent discussions are needed between the
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TABLE 2 | Recent examples of studies applying machine learning in cardiovascular interpretation.

Study ML approach Imaging type Brief Study description

Samad et al. (36) Supervised learning Echo To predict survival by using clinical and echocardiographic data

Zhang et al. (37) Deep learning Echo To achieve automatic interpretation with echocardiographic data

Sanchez-Martinez et al. (38) Unsupervised learning Echo To examine differences between HFpEF and healthy patients

Tabassian et al. (39) Supervised learning Echo To identify patients with HFpEF through spatiotemporal variations of strain during

stress and exercise

Mishra et al. (40) Unsupervised learning Echo To identify clusters of HF patients and the risk of HF hospitalization

Przewlocka-Kosmala et al. (41) Unsupervised learning Echo To identify clusters of HFpEF patients

Omar et al. (42) Unsupervised learning Echo To perform cluster analysis of left atrial and left ventricular strain in diastolic

dysfunction patients

Salem Omar et al. (43) Supervised learning Echo To characterize left ventricular filling pressure in diastolic dysfunction patients

Lancaster et al. (44) Unsupervised learning Echo To cluster echocardiographic variables to isolate high-risk phenotyping patterns

Asch et al. (45) ML algorithm Echo To examine automatic quantification of ejection fraction

Benjamin et al. (46) Deep learning Echo To examine the relationship between lung Doppler signal with mitral E’/e ratio and

outcomes

Kusunose et al. (47) Deep learning Echo To detect wall motion abnormalities

Kusunose et al. (48) Deep learning Echo To automate LVEF

Donal et al. (49) Supervised learning Echo To assess response to cardiac resynchronization therapy

Casaclang-Verzosa et al. (51) Unsupervised learning Echo To identify unique phenotypes during AS progression

Kwak et al. (53) Unsupervised learning Echo To identify which AS clusters are associated with cardiovascular complications

Tokodi et al. (54) Unsupervised learning Echo To detect clusters of patients and predict MACE events

Cho et al. (52) Unsupervised learning Echo To identify clusters of heart failure patients and predict cardiovascular complications

Baskaran et al. (72) Deep learning CT To compare the automatic and manual assessment of left and right heart sided

structures and function

Zhou et al. (63) Multiple ML algorithms CT To utilize CT FFR to predict myocardial bridge formation

Oikonomou et al. (73) Supervised learning CT To assess the potential of perivascular fat in cardiac risk prediction

Beecy et al. (74) Deep learning CT To identify acute ischemic stroke in CT

Al’Aref et al. (75) Supervised learning CT To detect culprit coronary lesions in CT for acute coronary syndrome patients

Coenen et al. (64) Supervised learning CT To detect CAD

Kay et al. (70) ML algorithm CT To detect phenotypic information about left ventricular hypertrophy

Eisenberg et al. (76) Deep learning CT To assess the role of epicardial tissue in MACE events

Al’Aref et al. (68) Multiple ML algorithm CT To use coronary calcium and clinical factors to predict CAD

Tesche et al. (69) ML algorithm CT To compare ML CT FFR and CT and CAC

Tang et al. (65) ML algorithm CT To compare ML CT FFR with CTA and invasive angiography

Hou et al. (71) Supervised learning CT To calculate the pre-test probability of CAD

Betancur et al. (78) Deep learning Nuclear To assess CAD prediction

Betancur et al. (79) Deep learning Nuclear To assess CAD prediction in semi-upright and supine stress MPI

Betancur et al. (80) Supervised learning Nuclear To compare MACE predictive accuracy Of ML with expert evaluation

Hu et al. (81) ML algorithm Nuclear To compare rest scan cancellation rates and complications between ML algorithm

and physician or clinical systems

Otaki et al. (82) ML algorithm Nuclear To compare MACE predictive accuracy of visual reading with ML networks

Juarez-Orozco et al. (83) Deep learning Nuclear To assess the role of deep learning in polar maps for ischemia

Hu et al. (84) ML algorithm CMR To predict per-vessel prediction of early coronary revascularization in SPECT MPI

Ruijsink et al. (88) Deep learning CMR To compare automatic ventricular measurements with CMR manually

Winther et al. (89) Deep learning CMR To evaluate automatic segmentation of epicardium and endocardium by deep learning

Bhuva et al. (90) Deep learning CMR To evaluate automated analysis

Jain et al. (91) ML algorithm CMR To evaluate right atrial phasic function in predicting all-cause death

Fahmy et al. (92) Deep learning CMR To estimate CMR scar quantification in hypertrophic cardiomyopathy

Neisius et al. (93) Supervised learning CMR To differentiate hypertrophic cardiomyopathy and hypertensive heart disease

Knott et al. (94) AI algorithm CMR AI-based quantification of myocardial blood flow and myocardial perfusion reserve

Swift et al. (95) Multiple ML algorithm CMR To extract features and automate PAH diagnosis

ML, Machine Learning; AI, Artificial Intelligence; Echo, Echocardiography; CMR, Cardiac Magnetic Resonance; CT, Computed Tomography; CT-FFR, CT Fractional Flow Reserve; MPI,

Myocardial Perfusion Imaging; SPECT, single photon emission computed tomography; CAD, Coronary Artery Disease; MACE, major adverse cardiovascular events; PAH, Pulmonary

Artery Hypertension; CAC, Coronary Artery Calcium.
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FIGURE 4 | Steps for building a machine learning pipeline and the reporting items in a checklist. Adapted from Sengupta et al. (2).

physician and engineers before ML initiation in various research
endeavors (18).

The “black box” nature has always been the Achilles heel
of ML algorithms and has been a deterrent in its adoption.
These algorithms are not programmed to have ethics. For ML
algorithms to truly advance in the medical field, physicians
need to be properly educated about these topics. Medical
school curriculums should introduce ML to medical students,
so they have adequate exposure (67). Once they complete their

medical training, they can be well-versed and conduct proper
research (67).

FUTURE DIRECTIONS OF MACHINE
LEARNING

Telemedicine has experienced phenomenal growth in recent
years due to miniaturized equipment and wearable devices (3,
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105). With the evolution of smartphone applications, this will
have a revolutionary impact on medical management (4). With
infrastructures, these devices and applications can deliver clinical
care to underserved regions throughout the world. We have
had positive experiences with handheld ultrasound with cloud
technology integration in remote regions of India (106, 107). The
data arising from these devices cannot be adequately analyzed by
current statistical approaches, it will only be possible with ML
algorithms (3).

In parallel with the growth of telemedicine and mhealth,
the rapid advances in technology can have a fundamental
impact on various healthcare business models. This will lead
to the eventual development of “smart” clinics. These clinics
usually have an array of miniaturized devices such as pocket
ultrasound and smartphone applications. These services will
be linked to AI or ML algorithm-driven operations that can
analyze information in real-time. This will allow precision
medicine to be delivered in each admission or routine

follow up. These clinics will be integral to the field of
cardiovascular imaging.

CONCLUSION

The profound impact of AI in cardiovascular imaging will have
monumental effects on clinical care. ML algorithms will connect
information from multiple sources in a seamless transition. It
will automate several tasks which will provide more time for
patient interactions for cardiologists. It will greatly augment
the workflow and ultimately improve medical management. AI
and ML-driven algorithms are no longer a possibility but an
inevitability in the field of cardiovascular imaging.
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