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Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular

diseases (CVD) and loss of muscular mass and function. Its benefits are widely docu-

mented but incompletely characterized. It has been reported that exercise can induce

changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1

and limits the rise in oxidative stress commonly associated with CVD. These enzymes can

be subjected to epigenetic regulation, such as DNAmethylation, in response to environ-

mental cues. The aim of our study was to determine whether in the early stages of athero-

genesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing

human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of

antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels

of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2,
Txr1, Prdx3 andGpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-

mo dyslipidemic mice. Of these genes, onlyGpx1 exhibited changes in DNA methylation

associated with dyslipidemia and exercise: we observed both increased DNAmethylation

with dyslipidemia and a transient decrease in DNA methylation with exercise. These epige-

netic alterations are found in the second exon of theGpx1 gene and occur alongside with

inverse changes in mRNA expression. Inhibition of expression by methylation of this spe-

cific locus was confirmed in vitro. In conclusion,Gpx1 expression in the mouse skeletal

muscle can be altered by both exercise and dyslipidemia through changes in DNA methyla-

tion, leading to a fine regulation of free radical metabolism.

Introduction
Chronic inflammatory diseases such as atherosclerosis are characterized in part by high levels
of free radicals, inducing oxidative stress [1]. This oxidative stress targets DNA, lipids and pro-
teins, altering cellular functions and leading to organ failure [2]. To maintain a healthy redox
equilibrium, cells normally express endogenous antioxidant enzymes including peroxiredoxins
(Prx), thioredoxins (Trx), superoxide dismutases (SOD) and gluthatione peroxidases (Gpx).
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These enzymes inactivate reactive oxygen species (ROS) and maintain them to physiological
levels. ROS are indeed signalling molecules and natural by-products of the metabolic machin-
ery and are therefore necessary for cellular function [3].

ROS are poorly regulated in the presence of a chronic inflammatory state such as diabetes,
cancer and dyslipidemia [4]. With inflammation, the redox equilibrium tips towards the gener-
ation of free radicals by simultaneous occurrences of pro-oxidative events, including dysregula-
tion of ROS-generating enzymes such as NADPH oxidases (NOX) normally involved in cell
survival, growth and death [5], as well as regulators of the mitochondrial respiratory chain
such as uncoupling proteins (UCP) [6]. The primary consequence of a rise in oxidative stress is
a vascular endothelial dysfunction, a marker of future cardiovascular events [7]. However, clin-
ical trials using antioxidants in patients with cardiovascular diseases (CVD) have provided con-
troversial and still inconclusive results [8, 9]. In contrast, while physical exercise paradoxically
increases ROS production both in animal studies [10] and humans [11], physical training is an
excellent primary and secondary prevention strategy in CVD [12] and delay the loss muscle
mass and function (sarcopenia) [13], including in patients suffering from atherosclerosis [14,
15]. While an acute bout of exercise increases ROS production, chronic regular exercise upre-
gulates antioxidant defenses [16–18].

Little is known, however, about the molecular mechanisms increasing stress resistance. Dur-
ing physical exercise, the main source of ROS is the skeletal muscle [13]. Muscles of the lower
limbs are high producers of mitochondria-derived metabolites, and it is therefore likely that
ROS arising from the metabolic activity of the skeletal muscle could potentially damage the
vascular endothelium if the appropriate defense mechanisms are not maintained properly [13].
This supposes that genes coding for antioxidant proteins are partly regulated by the level of
physical activity.

Epigenetic regulation of gene expression in response to environmental stimuli is well docu-
mented [19]. In mammals, the addition of a methyl group to a cytosine preceding a guanine
(CpG), usually leads to gene silencing if located in CpG-dense promoter regions. However, the
regulatory effects of methylation in the gene body are more ambiguous [20–22]. DNAmethyla-
tion is a dynamic process that can respond to most extracellular cues including diet [23] and
physical activity [24]. This sensitivity of DNAmethylation to environmental signals is sug-
gested to contribute to the development of various pathological conditions since gene-specific
and genome-wide DNA methylation have been linked to a wide variety of disease states rang-
ing from inflammatory [25] and CVD [26] including atherosclerosis [27, 28] and skeletal mus-
cle [29]. This highlights the importance of epigenetic plasticity to the environment.

Studies have shown that antioxidant enzymes could be induced or repressed by methylation
of regions in the corresponding gene, while aberrant methylation patterns have been associated
with pro-oxidative and pro-inflammatory diseases [30–32]. We therefore hypothesised that in
young mice, severe dyslipidemia would alter antioxidant gene expression while chronic physi-
cal exercise would maintain it, in part due to epigenetic regulation. In this study, we demon-
strate the dynamic nature of antioxidant genes expression in the mouse skeletal muscle in
sedentary and active dyslipidemic mice. Our results show for the first time that Gpx1 expres-
sion is associated with changes in DNA methylation in a specific region in the gene body.
Hence, physical exercise influences Gpx1 gene expression through epigenetic regulation and
may ultimately contribute to the cellular defense against metabolic stress.

Materials and Methods
Approval by the Montreal Heart Institute Animal Ethical Committee (#R2014-62-02) was
given for all animal experiments, which were performed in accordance with the Guide to Care
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and Use of Experimental Animals (vol.1, 2nd ed., 1993) of the Canadian Council on Animal
Care. No animals became ill or died prior to the experimental endpoint. Experiments were con-
ducted on the femoral artery and the skeletal muscle (soleus and gastrocnemius) isolated from
6-months old (6-mo) male C57/bl6 control wild type (WT) compared to severely dyslipidemic
and spontaneously atherosclerotic (ATX) mice. Transgenic LDLr-/-:hApoB+/+ ATX mice dis-
play high levels of cholesterol, they spontaneously develop atherosclerotic lesions (under a nor-
mal diet) and endothelial dysfunction in the aorta, carotids and renal arteries [33, 34]. Both
3-moWT and ATX mice were randomly assigned to two groups; one remained in control sed-
entary (SED) conditions (n = 10) and one was exposed to 3 months of voluntary exercise (EX)
(n = 10). To this end, mice were kept individually in cages instrumented with a running wheel
(Lafayette Instrument Company, Lafayette, IN) [34]. Heart rate, systolic and diastolic blood
pressure were monitored weekly by tail-cuff (Kent Scientific Corporation, Torrington, CT).
Mice were studied at 6-mo and were sacrificed after anesthesia with a 1:1 mixture of Xylazine
(Bayer Inc, Toronto, ON, Canada) and Ketamine hydrochloride (Bioniche, Belleville, ON, Can-
ada) at two different times of the day, either at 10:00 AM while being inactive or at 2:00 AM,
i.e. during their running time (Fig 1).

DNA and RNA extraction
Upon sacrifice, skeletal muscle tissues were harvested and snap-frozen. Total DNA and RNA
were extracted using Qiagen RNeasy mini kit and DNeasy Blood & tissue kit (Qiagen, Toronto,
ON), respectively, following manufacturer’s protocol.

Gene expression
Total RNA was reverse transcribed with RT-MMLV (Invitrogen, Burlington, ON) and ampli-
fied using EvaGreen (Applied Biological Materials, Richmond, BC) for quantitative real-time
PCR. Target genes UCP2/3, NOX2/4, Trx1, Sod2, Prdx3, Gpx1 and the internal control, cycloA,
were amplified with gene specific primers (S1 Table).

DNAmethylation quantification
Following extraction, DNA was converted by bisulfite reaction using the EZ DNAMethyla-
tion-Gold kit (Zymo Research, Irvine, CA). Global DNAmethylation was measured by ELISA
with the 5-mC DNA ELISA kit (Zymo Research). Gene-specific DNAmethylation was quanti-
fied by EpiTYPER assay (Sequenom, San Diego, CA), as previously described [35]. We chose
to target regions identified as CpG islands, by the UCSC Genome Browser at http://genome.
ucsc.edu/ [36], found in our genes of interest with bisulfite-specific primers (S2 Table) required
for the assay.

Cloning of pCpG free-Gpx1 vector
To study the regulatory consequence of in vitromethylation of the targeted CpG island, we
first used the commercially available reporter plasmid pCpGfree-promoter as the backbone
(Invivogen, San Diego, CA). This plasmid containing both a sequence for secreted luciferase
and a promoter devoid of CpG dinucleotides, which renders it insensitive to DNAmethylation.
We then synthetized the Gpx1 CpG island region by PCR amplification using forward 5’-TAT
AAGCTTGAAGTGAATGGTGAGAAGGCTCACCCGC-3’ and reverse 5’- ATATGTACAA
CCAAGCCAATGCCAGGGCCGCCTTAG-3’ primers on mouse genomic DNA as a template.
This newly generated CpG-rich sequence was then inserted in the pCpG free-promoter
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plasmid using HindIII and BsrGI restriction sites. We named the resulting vector “pCpG free-
Gpx1” (see “results”).

In vitromethylation, transient transfection and Luciferase assay
Cloned vectors were isolated by Qiagen QIAprep Spin Miniprep kit (Qiagen). M. SssI CpG
methyltransferase (New England Biolabs, Frankfurt, Germany) was used for in vitromethyla-
tion according to manufacturer’s instructions. Methylated DNA was then purified using the
QIAquick gel extraction kit (Qiagen) and quantified by NanoDrop (Thermo Scientific Nano-
Drop products, Wilmington, DE). Methylation was confirmed by digestion with the

Fig 1. Voluntary running activity is similar betweenWT and ATX. (A) Average of the daily running distance over the course of the 3 months exposure to
voluntary exercise for both WT and ATX groups. (B) Typical distribution of the running activity during an arbitrary day of voluntary exercise. Arrows indicate
the two different times of sacrifice (2:00 AM and 10:00 AM).

doi:10.1371/journal.pone.0151526.g001
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methylation-sensitive restriction enzymes HhaI andHpaII. HEK293 cells grown to confluence
on 96-well plates were transfected with the pCpG free-Gpx1 vector using Lipofectamine 2000
(Invitrogen). 24 h after transfection, luciferase activity was measured with the QUANTI-Luc
reagent (Invivogen, San Diego, CA) by luminescence detection. Promoter activity was normal-
ized to the total amount of protein measured by a Bradford assay (Biorad, Hercules, CA).

Oxidative stress quantification
The fluorescent probe dihydroethidium (DHE) (Sigma-Aldrich Canada, Oakville, ON, Can-
ada) was used to indirectly assess the amount of superoxide production. DHE is a dye that will
bind to DNA once it is oxidized by superoxide. An antibody against 4-hydroxynonenal
(4-HNE) (Abcam Inc, Toronto, ON, Canada) was used to detect 4-HNE expression, a marker
of lipid peroxidation, by immunostainig. Tissue cross-sections were obtained from OCT-pre-
served skeletal muscle and confocal images were taken.

Statistical Analysis
Results are presented as mean±SEM of (n) mice. Two-way ANOVA (with Bonferonni post-
tests) and unpaired t-tests were used where applicable to test the differences between condi-
tions. A p value of p<0.05 was considered statistically significant.

Results

Phenotypic effects of exercise on severely dyslipidemic mice
We previously reported that LDLr-/-; hApoB+/+ atherosclerotic (ATX) mice exhibit severe dys-
lipidemia: compared to wild-type (WT) mice, in 6 months old ATX mice plasma levels of total
cholesterol, LDL-cholesterol and triglycerides are ~7, ~13 and ~10 folds higher, respectively
[34, 37, 38]. In addition, 3 months of voluntary running had no influence on the observed
severe dyslipidemia in ATX mice [34]. At 6-mo, as expected resting systolic and diastolic blood
pressures were higher in ATX mice when compared to WT, and this was not affected by volun-
tary exercise (Table 1). The heart rate was similar across all groups (Table 1). Severe dyslipide-
mia did not interfere with the running capacity of ATX mice; they ran an average of 4.3 ± 0.4
km/d over the course of the study compared to 4.7± 1.0 km/d for WT mice (p>0.05) (Fig 1A).
Both WT and ATX mice ran during the night (Fig 1B).

Dyslipidemia and exercise influence the expression of ROS generating
enzymes in the skeletal muscle
To evaluate the level of expression of endogenous producers of ROS, we quantified the expres-
sion of NOX and mitochondrial UCP. UCP2mRNA levels was significantly decreased in ATX
mice when compared to WT for both sedentary and EX groups (Fig 2A). UCP3 expression did
not vary between groups (Fig 2B). We did not find differences in expression between WT and
ATX sedentary mice for both NOX2 and NOX4. However, NOX2 expression was significantly
stimulated by exercise in both WT and ATX groups (Fig 2C), while NOX4 expression did not
change with exercise (Fig 2D).

Dyslipidemia and exercise induce changes in antioxidant enzymes
expression in the skeletal muscle
We next examined some of the antioxidant enzymes expressed in the skeletal muscle. In seden-
tary conditions, both Trx1 (Fig 3A) and Sod2 (Fig 3B) were up-regulated in ATX when
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compared to WT. This change in expression associated with dyslipidemia was prevented by
exercise (Fig 3A and 3B). Prdx3 was up-regulated in both sedentary and exercising ATX mice
when compared to the corresponding WT group (Fig 3C). Gpx1mRNA expression was signifi-
cantly lower in sedentary ATX mice in comparison to sedentary WT mice (Fig 3D). Gpx1

Table 1. Hemodynamic parameters in wild type and dyslipidemic mice exposed or not to a 3 months period of voluntary exercise.

n WT SED WT EX ATX SED ATX EX

Systolic 10 115 ± 7 129 ± 5 156 ± 5 * 160 ± 6 *

(mmHg)

Diastolic 10 84 ± 8 95 ± 5 121 ± 5 * 126 ± 5 *

(mmHg)

HR 10 605 ± 21 595 ± 18 651 ± 20 640 ± 14

(beats/min)

Systolic and diastolic blood pressure (mmHg) and heart rate (HR; beats/min) were measured by tail-cuff. Date are mean ± SEM of 10 mice. WT: wild type;

ATX: dyslipidemic mice; SED: sedentary; EX: exercise

*: p<0.05 vs. WT (Two-way ANOVA).

doi:10.1371/journal.pone.0151526.t001

Fig 2. Dyslipidemia and exercise-induced changes in ROS-generating enzymes expression.mRNA levels of UCP2, UCP3, NOX2 andNOX4 in the
skeletal muscle of wild type (WT) and dyslipidemic (ATX) mice in the sedentary (SED) and exercise (EX) groups. UCP2/3: uncoupling protein (mitochondrial
proton carrier) 2/3; NOX2/4: NADPH oxidase 2/3. Data are mean ± SEM, n = 9–10 mice. α: p<0.05 vs. WT; β: p<0.05 vs. SED (Two-way ANOVA).

doi:10.1371/journal.pone.0151526.g002

Skeletal Muscle Epigenetics in Dyslipidemia

PLOS ONE | DOI:10.1371/journal.pone.0151526 March 24, 2016 6 / 17



mRNA expression was also higher in exercising WT and ATX mice when compared to seden-
tary WT and ATX mice (Fig 3D). These changes in Gpx1 mRNA expression are also repro-
duced in Gpx1 protein expression of WT, but not ATX mice (S1 Fig). Therefore, in ATX mice
at this young age corresponding to the early stages of atherosclerosis, skeletal muscle antioxi-
dant enzymes are up-regulated except for Gpx1.

Differential DNA methylation ofGpx1 in the skeletal muscle of ATX mice
We targeted CpG islands located in genes coding for the aforementioned antioxidant enzymes
in order to test the hypothesis that epigenetic regulation contributes to the changes in gene
expression. DNA methylation was below detection levels for Trx1 and Prdx3, while Sod2meth-
ylation (>10%) did not vary between conditions (S2 Fig). Quantification of Gpx1 gene methyl-
ation by regions regrouping a single or more CpGs revealed differential methylation levels in
the second exon (Fig 4A). Levels of methylation were significantly higher in ATX mice when
compared to WT mice for both sedentary (regions 2 and 4) and EX conditions (regions 1, 3
and 4) (Fig 4B). Three months of voluntary exercise did not, however, alter the methylation of
this gene, neither in WT nor in ATX mice (Fig 4B).

Fig 3. Dyslipidemia and exercise-induced changes in antioxidant enzymes expression.mRNA levels of Trx1, Sod2, Prdx3 andGpx1 in the skeletal
muscle of wild type (WT) and dyslipidemic (ATX) mice from the sedentary (SED) and exercise (EX) groups. Trx1: thioredoxin 1; Gpx1: glutathione peroxidase
1; Prdx3: peroxiredoxin 3; Sod2: superoxide dismutase 2, mitochondrial. Data are mean ± SEM, n = 6–10 mice. α: p<0.05 vs. WT; β: p<0.05 vs. SED (Two-
way ANOVA).

doi:10.1371/journal.pone.0151526.g003
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Transient changes in DNA methylation following exercise
To assess whether exercise could induce rapid changes in DNAmethylation immediately after
an exercise bout, we sacrificed WTmice during the last hour of their daily running activity
(2:00 AM; Fig 1B), rather than during the day when they are inactive (Fig 1B). Interestingly,
when methylation levels were measured in active WT mice (at t = 2:00), we observed that CpG
regions 2 and 4 were demethylated during exercise, CpG region 1 tended to be demethylated,
while region 3 remained unaffected (Fig 5). By comparison, methylation of none of these
regions was affected in trained WTmice sacrificed during their inactive time (Fig 4B). This
demonstrates the highly dynamic nature of epigenetic regulation.

In vitromethylation decreases gene expression
To investigate the direct effect of DNAmethylation on gene expression, the CpG-rich region of
Gpx1, along with a CpG free promoter, was subcloned into the CpG-free-basic lucia vector.
This new construction, CpG free-Gpx1 (Fig 6A), was methylated and transiently transfected in
HEK293 cells to measure luciferase activity. The addition of the CpG-rich region significantly
increases promoter activity (Fig 6B). Previously methylated vectors show no increase in pro-
moter activity, similarly to empty vectors (Fig 6B). Therefore, methylation of this region is
expected to inhibit Gpx1 expression.

Fig 4. Dyslipidemia induces methylation changes in theGpx1 gene body. (A) Glutathione peroxidase 1 gene targeted for methylation quantification;
representation of (top track) all CpG sites located inGpx1 gene, (middle track) the coordinates of exons and (bottom track) the CpG islands containing the
four regions covered by DNAmethylation quantification. (B) Methylation percentage of four regions covering CpGs in the skeletal muscle of wild type (WT) or
dyslipidemic (ATX) mice under sedentary (SED) or exercise condition (EX). Data are mean ± SEM, n = 7–8 mice. *: p<0.05 (Two-way ANOVA).

doi:10.1371/journal.pone.0151526.g004

Skeletal Muscle Epigenetics in Dyslipidemia

PLOS ONE | DOI:10.1371/journal.pone.0151526 March 24, 2016 8 / 17



No sign of oxidative stress in the skeletal muscle of dyslipidemic mice
Assessment of superoxide production by DHE staining and quantification of lipid peroxidation
by 4-HNE immunostaining, in the skeletal muscle reveals similar oxidative stress between
ATX and WTmice across all conditions (Fig 7), suggesting an efficient antioxidant compensa-
tion at this age.

Discussion
Our findings indicate that the expression of Gpx1 in the skeletal muscle is sensitive to the
unstable redox environment associated with severe dyslipidemia and exercise. We also provide
evidence that its expression is associated with epigenetic regulation, namely DNAmethylation
of a novel locus located in a coding region of the gene.

To generate energy, mitochondria exert oxidative phosphorylation. This process needs to be
tightly regulated since electrons leakage from the electron transport chain reacts to oxygen gen-
erating superoxide. Uncoupling proteins (UCP) were first named as such for their ability to
carry protons and steers the respiratory chain away from ATP synthesis in favour of thermo-
genesis [39]. UCP1 is only expressed in the brown adipose tissue whereas UCP2 and UCP3 are
also found in the skeletal muscle where they play a role in fatty acid metabolism [40]. Regard-
ing their role in ROS production and oxidative stress regulation, knock-down experiments in

Fig 5. Exercise induces a temporary decrease in DNAmethylation.Methylation percentage of the four CpG groups covering the targeted CpG island
found inGpx1 comparing sedentary condition (SED, n = 7–8 mice) and exercise at time of sacrifice during their physically active time frame (EX (t = 2:00),
n = 3). For reference, see daily running activity on Fig 1. Data are mean ± SEM, n = 3–8 mice. *: p<0.05 versus SED (Unpaired t-test).

doi:10.1371/journal.pone.0151526.g005
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mice have shown increases in ROS production linked to deficiency in UCP2 [41] and UCP3
[42]. Our study reveals that expression of UCP2, but not UCP3, is lower in the skeletal muscle
of ATX mice, suggesting that ROS production is favoured under dyslipidemia and that oxida-
tive stress is more prone to happen.

Fig 6. DNAmethylation ofGpx1 decreases gene expression. In vitromethylation ofGpx1 target region inhibited transcriptional activity, as measured by a
luciferase reporter assay. (A) Schematic representation of the plasmid construction containing theGpx1 CpG island region. (B) Luciferase activity ratio of
methylated (M.SssI treated) to unmethylated control (CTL) plasmids containing a CpG-free promoter or theGpx1 CpG island region. The assay was
repeated 4 times and data are mean ± SEM. *: p<0.05 versusCTL (Unpaired t-test).

doi:10.1371/journal.pone.0151526.g006

Fig 7. Oxidative stress estimation.Oxidative stress was measured by the fluorescent dye DHE (top panels) and the expression of 4-HNE (bottom panels)
following staining of skeletal muscle cross-sections cut from (left to right) WT SED, WT EX, ATX SED and ATX EXmice.

doi:10.1371/journal.pone.0151526.g007
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Dysregulation of NOX activity is another well-known source of ROS in association with sys-
temic pathological conditions including atherosclerosis [43] as well as diseases specific to the
skeletal muscle [44, 45]. Importantly, NOX are expressed in both arteries and skeletal muscle
precursor cells [46]. NOX2 and NOX4 regulate basal ROS production and although they are
generally associated with inflammation, there is a controversy regarding their role in cell sig-
nalling, suggesting that there is an influence of the cell type and context [5]. In our study, we
observed that exercise induces Nox2 expression in the skeletal muscle of both WT and ATX
mice without changes in Nox4. Although we did not assess whether the overexpression of Nox2
is deleterious or beneficial to the skeletal muscle, this up-regulation of Nox2 by exercise is
somewhat surprising given the reports linking NOX2 to atherosclerotic lesions progression
[47]. The role of NOX2 in the skeletal muscle is unclear, but recent reports have shown that the
skeletal muscle contractile response triggers ROS production through a NOX2-dependent
pathway [48] in addition to evidence for NOX2-mediated superoxide production in the aorta
of rats following acute exercise [49]. Therefore, the contribution of ROS-generating enzyme to
the level of oxidative stress in the presence of chronic severe dyslipidemia is only suggested by
a change in their expression since non-specific DHE staining did not detect changes in ROS
levels and 4-HNE immuno-histological staining did not show changes in lipid peroxidation.
Antioxidant defense mechanisms are therefore expected to be up-regulated in these young dys-
lipidemic mice.

Expression of antioxidant enzymes is very dynamic, and changes in both expression and
activity have been linked to atherosclerosis [50–52] as well as exercise [53, 54] and are determi-
nant for preserving cellular functions [55–57]. In the present study, we found that expression
of each antioxidant enzyme responded differently to the environmental context. Trx1, Sod2
and Prdx3 are all up-regulated in the skeletal muscle of sedentary ATX mice, and this was pre-
vented by exercise, except for Prdx3. The increase in these antioxidant enzymes suggests a pro-
oxidative state requiring an antioxidant response from the organ to prevent oxidative damage.
These findings are consistent with other reports showing an increase in antioxidant enzymes
expression during the onset and development of oxidative stress-related diseases [58, 59]. Exer-
cise seems to lessen the amplitude of the antioxidant response by preventing the overexpression
of Trx1 and Sod2 only. The mechanistic origin of this regulation is however unknown. None-
theless, because exercise normalized their level of expression, this is likely secondary to a reduc-
tion in oxidative stress. If these two enzymes were responsible for the antioxidant effects of
exercise, we would anticipate that their levels had increased above sedentary levels measured in
WTmice.

In contrast to Trx1 and Sod2, we observed that Gpx1 varies in an opposite manner: not only
its expression is decreased in ATX mice, it is also increased by exercise above basal levels in
bothWT and ATXmice. A study has previously shown that low activity of Gpx1 is an indepen-
dent risk factor of cardiovascular events [60]. The increase in Gpx1 with exercise is also coher-
ent with the literature [61, 62] and concords with the known antioxidant properties of chronic
exercise [16, 17]. Therefore, our data, in support of the current knowledge, suggest that overex-
pression of Gpx1 is one of the mechanisms responsible for the antioxidant protection by
exercise.

Our next aim was to test the hypothesis that the chronic changes in expression of the antiox-
idant enzymes were driven by DNAmethylation. In our study, DNAmethylation was unde-
tectable for Trx1 and Prdx3 and did not vary between conditions for Sod2. Gpx1, however,
exhibited significant levels of methylation that were increased in ATX mice. Recent studies
have shown that this gene could be regulated by DNA methylation of regions near the pro-
moter in cancer cells, where a hypermethylation of Gpx1 and the consequent silencing of the
gene disturb the redox environment, favouring progression of the disease [63–65]. In line with
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these studies, we observed that hypermethylation of this novel CpG-rich region was associated
with a reduced Gpx1 expression, in the context of dyslipidemia.

The in vitromethylation assay allowed us to confirm that methylation of this specific locus
causes an inhibition of gene expression. By itself, the CpG-rich region increases gene activity
and when methylated, we observe transcriptional activity similar to that of a Gpx1-free
sequence. This suggests that methylation of the CpG island element blocks the binding and
subsequent activity of a transcription co-factor. An interesting finding is that although Gpx1
expression responds to both dyslipidemia and exercise, only changes in methylation are
detected with dyslipidemia and not exercise, at least not in the long-term. This finding could
contradict various studies that show changes of DNAmethylation in response to exercise for
various genes in the skeletal muscle [66–68]. Alternatively, changes in Gpx1 expression in
response to physical training may be modulated by mechanisms other than epigenetics. Albeit
this cannot be dismissed, a previous study in human skeletal muscle showed that acute exercise
induces transient changes in the methylation of genes with changes in expression only
observed later, once methylation changes reverted to pre-exercise levels [69]. This mismatch in
the timing of both events (changes in methylation and expression) could have occurred in our
study. Exercise could induce temporary epigenetic changes that would have disappeared as lit-
tle as minutes after the muscle work. In our first series of experiments, sacrifice of the animal
was performed at 10 AM, several hours after the last running session. Hence, to assess the
methylation profile in mice during physical activity, we sacrificed mice at 2 AM (t = 2:00)
when they are still running (Fig 1B); in these conditions we observed methylation changes that
were not detected in our previous experiments, demonstrating the temporary changes in meth-
ylation induced by physical exercise. Altogether, these data suggest that epigenetic mechanisms
could be responsible for the changes in expression in response to exercise that we observed for
Gpx1 in the long-term. Further investigation is required to understand the link between the ini-
tial transient changes in DNAmethylation that occurs during exercise bouts and lasting
changes in gene expression observed in the long-term.

Exacerbation of oxidative stress in the skeletal muscle cells in the context of dyslipidemia is
caused by a disturbance in the production and elimination of mitochondria-derived free radi-
cals [13]. This, in turn, impairs the organ, and the excess of ROS can diffuse to the femoral vas-
cular bed causing vascular endothelial dysfunction, consequently impeding blood flow
regulation to the muscle leading to sarcopenia [13]. This vicious circle has previously been
observed in hypertensive rats [70]. In our experimental conditions, there is no evidence of oxi-
dative stress-dependent damage in the skeletal muscle of our young, middle-age ATX mice,
suggesting that oxidative stress is well compensated in skeletal muscle, supporting the adaptive
responses of antioxidant gene expression reported above. This is confirmed by the demonstra-
tion that in these mice, skeletal muscle function was not altered as evidenced by their conserved
running capacity.

Limitations of the study
The nature of voluntary exercise makes it difficult to detect the minute changes in the methyla-
tion landscape in the long-term, if any. First, the impact of voluntary running used in the pres-
ent study could be considered as mild when compared to other types of experiments in the
field of exercise training: “forced” approaches such as treadmill or swim tests might be able to
induce greater and more stable epigenetic changes. However, one could argue that the stress
occurring during these forced bouts of exercise could have a significant impact on the observa-
tion. We chose to rule out the stress factor with our voluntary approach, knowing the signifi-
cant impact of stress on epigenetics [71, 72]. Secondly, a possible explanation for the
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discrepancies between dyslipidemia and exercise on epigenetics is that the former is a long-
term and continuous stimulation, as opposed to a short-term and intermittent stimulation for
the latter. In other words, mice are constantly exposed to dyslipidemia from intra utero but
they only practice intermittent voluntary bouts of exercise, starting at 3-month of age. Studies
in the field of developmental plasticity have shown that in utero and early life exposure to envi-
ronmental factors induces phenotypic adaptations that are reflected through adulthood and
that these changes are deeply rooted in the epigenome [73, 74]. Protein expressions of Gpx1
reveal yet another level of complexity and do not fully reflect the changes in mRNA levels in
ATX mice. This is likely associated with differential post-translational regulation in dyslipide-
mia beyond the scope of the present study. Finally, whether ROS are responsible for the epige-
netic changes observed both with dyslipidemia and during exercise was not directly tested. The
use of an antioxidant may help, although they most likely may directly impact on the
epigenome.

Conclusions
The overexpression of some pro- and anti-oxidant enzymes by severe dyslipidemia suggests a
pro-oxidative state in the skeletal muscle where the chronic rise in ROS could damage skeletal
muscle cells, to latter contribute to the damage of the neighbouring vascular cells. We show
that one of the mechanisms by which the antioxidant enzyme Gpx1 is modulated is by DNA
methylation; its lower expression is associated with the higher level of methylation of a novel
CpG island region in ATX mice. We also reinforced the cause-effect relationship between
DNAmethylation of this loci and its mRNA expression. Our data suggests, therefore, that
DNAmethylation is a possible mechanism for regulating gene expression in dyslipidemia as
well as following chronic voluntary exercise training. Whether ROS are directly involved
remains debatable.
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