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Health Sciences, Linköping University, Linköping, Sweden, 7 American Red Cross Scientific Support Office,

Gaithersburg, Maryland, United States of America

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to the work.

* wangwk@hawaii.edu

Abstract

The explosive spread of Zika virus (ZIKV) and associated complications in flavivirus-

endemic regions underscore the need for sensitive and specific serodiagnostic tests to dis-

tinguish ZIKV, dengue virus (DENV) and other flavivirus infections. Compared with tradi-

tional envelope protein-based assays, several nonstructural protein 1 (NS1)-based assays

showed improved specificity, however, none can detect and discriminate three flaviviruses

in a single assay. Moreover, secondary DENV infection and ZIKV infection with previous

DENV infection, both common in endemic regions, cannot be discriminated. In this study,

we developed a high-throughput and multiplex IgG microsphere immunoassay (MIA) using

the NS1 proteins of DENV1-DENV4, ZIKV and West Nile virus (WNV) to test samples from

reverse-transcription-polymerase-chain reaction-confirmed cases, including primary

DENV1, DENV2, DENV3, WNV and ZIKV infections, secondary DENV infection, and ZIKV

infection with previous DENV infection. Combination of four DENV NS1 IgG MIAs revealed

a sensitivity of 94.3% and specificity of 97.2% to detect DENV infection. The ZIKV and WNV

NS1 IgG MIAs had a sensitivity/specificity of 100%/87.9% and 86.1%/78.4%, respectively.

A positive correlation was found between the readouts of enzyme-linked immunosorbent

assay and MIA for different NS1 tested. Based on the ratio of relative median fluorescence

intensity of ZIKV NS1 to DENV1 NS1, the IgG MIA can distinguish ZIKV infection with previ-

ous DENV infection and secondary DENV infection with a sensitivity of 88.9–90.0% and

specificity of 91.7–100.0%. The multiplex and high-throughput assay could be applied to

serodiagnosis and serosurveillance of DENV, ZIKV and WNV infections in endemic regions.
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Stramer SL, Lehrer AT, et al. (2019) A high-

throughput and multiplex microsphere

immunoassay based on non-structural protein 1

can discriminate three flavivirus infections. PLoS

Negl Trop Dis 13(8): e0007649. https://doi.org/

10.1371/journal.pntd.0007649

Editor: Duane J. Gubler, Duke-NUS GMS,

SINGAPORE

Received: April 30, 2019

Accepted: July 22, 2019

Published: August 23, 2019

Copyright: © 2019 Tyson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by grants

R01AI110769-01 (WKW) and R21AI135292-01A1

(WKW) from the National Institute of Allergy and

Infectious Diseases, NIH; P30GM114737 from the

National Institute of General Medical Sciences, NIH;

and MOHW108-TDU-B-212-133006 (JJT) from the

Ministry of Health and Welfare, NHRI-MR-107-PP-

http://orcid.org/0000-0002-6670-4663
https://doi.org/10.1371/journal.pntd.0007649
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007649&domain=pdf&date_stamp=2019-08-23
https://doi.org/10.1371/journal.pntd.0007649
https://doi.org/10.1371/journal.pntd.0007649
http://creativecommons.org/licenses/by/4.0/


Author summary

Although there was a decrease of Zika virus (ZIKV) infection since late 2017, the specter

of congenital Zika syndrome and its re-emergence in flavivirus-endemic regions empha-

size the need for sensitive and specific serological tests to distinguish ZIKV, dengue virus

(DENV) and other flaviviruses. Compared with traditional tests based on envelope pro-

tein, several nonstructural protein 1 (NS1)-based assays had improved specificity, how-

ever, none can discriminate three flaviviruses in a single assay. Moreover, secondary

DENV infection and ZIKV infection with previous DENV infection, both common in

endemic regions, cannot be distinguished. Herein we developed a high-throughput and

multiplex IgG microsphere immunoassay using the NS1 proteins of four DENV serotypes,

ZIKV and West Nile virus to test samples from laboratory-confirmed cases with different

primary and secondary flavivirus infections. Combination of four DENV NS1 assays

revealed a sensitivity of 94.3% and specificity of 97.2%. The ZIKV and WNV NS1 assays

had a sensitivity/specificity of 100%/87.9% and 86.1%/78.4%, respectively. Based on the

signal ratio of ZIKV NS1 to DENV1 NS1, the assay can distinguish ZIKV infection with

previous DENV infection and secondary DENV infection with a sensitivity of 88.9–90.0%

and specificity of 91.7–100.0%. This has applications to serodiagnosis and serosurveillance

in endemic regions.

Introduction

Despite a marked decrease of Zika virus (ZIKV) infection since late 2017, the specter of con-

genital Zika syndrome (CZS) and its re-emergence in flavivirus-endemic regions highlight the

need for sensitive and specific diagnostic tests [1–4]. Similar to the laboratory diagnosis for

other flaviviruses, detection of nucleic acid as soon as possible post-symptom onset (PSO) is

considered as the gold standard to confirm ZIKV infection, [5,6]. Since many individuals test

for ZIKV infection beyond the period when RNA is detectable and most (~80%) of ZIKV

infections are asymptomatic, serological tests remain as a key component of ZIKV confirma-

tion [5,6]. Furthermore, ZIKV can be transmitted sexually or following asymptomatic infec-

tion [7–9].

ZIKV is a member of the genus Flavivirus of the family Flaviviridae, which includes several

pathogenic mosquito-borne viruses in different serocomplexes. The four serotypes of dengue

virus (DENV) belong to the DENV serocomplex; West Nile virus (WNV) and Japanese

encephalitis virus (JEV) to the JEV serocomplex; yellow fever virus (YFV) as a single member;

and ZIKV10. Given that the envelope (E) protein is the major target of antibody response after

flavivirus infection, different E antigens such as recombinant E protein, inactivated virions or

virus-like particles have been developed for serological tests [10–13]. Due to the presence of

several highly conserved residues of flavivirus E proteins, anti-E antibodies in serum are com-

monly cross-reactive to different flaviviruses [13–17]. The guidelines of Centers for Disease

Control and Prevention (CDC) recommend that positive or equivocal results of E protein-

based IgM tests require further testing with time-consuming plaque reduction neutralization

tests (PRNT) [5,6]. However, PRNT can confirm ZIKV-infected individuals who acquire

ZIKV as the first flavivirus infection, known as primary ZIKV (pZIKV) infection, but often

can only be interpreted as unspecified flavivirus infections for those who have experienced pre-

vious DENV or other flavivirus infections, limiting its application for ZIKV serodiagnosis in

flavivirus-endemic regions.

NS1-based MIA discriminates three flavivirus infections
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When 795 sera that were IgM positive for ZIKV antigen by ELISA were tested for flavivirus

neutralizing antibodies by PRNT, 45% were positive for ZIKV and at least one other flavivirus

[18]. This non-specificity may be an inherent property of the early post-infection response to

ZIKV or reflect prior flavivirus experience. A large number of Americans (7 million) have

experienced a WNV infection since 1999 [19] and ~8 million traveled to yellow fever endemic

countries in 2015 [20,21]. Thus, a sensitive, specific and multiplex serological test that can dis-

tinguish ZIKV and other flavivirus infections is needed in both U.S. and flavivirus-endemic

countries [18]. Moreover, several studies have shown that anti-DENV or WNV antibodies can

enhance ZIKV infection in vitro [22–26] and in small animals, in which administration of

DENV-immune plasma resulted in increased viremia and mortality in stat2 knock out mice

[27]. This is known as antibody-dependent enhancement, in which antibody at suboptimal

concentration for neutralization can enhance DENV, ZIKV or other flavivirus entry and repli-

cation in Fcγ receptor-bearing cells such as monocytes and is believed to contribute to disease

pathogenesis [28]. Despite ADE of ZIKV by previous DENV immunity was not supported by

two studies in non-human primates [29,30], more in-depth studies of DENV immunity on

ZIKV disease outcome and complication in humans are warranted [31–33]. Thus, serological

tests that can distinguish pZIKV infection (p = primary) from ZIKV infection with previous

DENV (ZIKVwprDENV, wpr = with previous) infection are crucial to understand the patho-

genesis of ZIKV and CZS in regions where ZIKV and DENV co-circulate.

Compared with traditional E protein-based assays, several enzyme-linked immunosorbent

assays (ELISAs) based on ZIKV nonstructural protein 1 (NS1), including a recently reported

blockade of binding ELISA, have shown improved specificity [34–39]. However, secondary

DENV (sDENV) and ZIKVwprDENV infections, of which both were common in endemic

regions, cannot be discriminated [34–39]. Moreover, none can detect and distinguish ZIKV,

DENV and other flavivirus in a single assay.

With its high-throughput and multiplex (up to 100-plex) capacity, microsphere immunoas-

say (MIA) has been employed in the detection of cytokines, transplantation and transfusion

antigens, and various bacterial and viral pathogens [40–43]. Previously, we reported that a

combination of ELISAs based on the NS1 proteins of DENV and ZIKV can distinguish various

DENV and ZIKV infections [44,45]. In this study, we developed a high-throughput and multi-

plex IgG MIA using NS1 proteins of DENV1 to DENV4, ZIKV and WNV, and showed that

the NS1 IgG MIA can detect and distinguish not only primary DENV, ZIKV and WNV infec-

tions but also sDENV and ZIKVwprDENV infections.

Methods

Ethics statement and human samples

The Institutional Review Boards (IRB) of the University of Hawaii approved this study (CHS

#17568, CHS#23786). S1 Table summarizes the numbers, serotypes, sampling time and

sources of different panels of serum or plasma samples, including those from primary DENV1

(pDENV1), primary DENV2 (pDENV2), primary DENV3 (pDENV3), primary WNV

(pWNV), pZIKV, sDENV and ZIKVwprDENV infections as well as flavivirus-naïve individu-

als. Samples collected<3 months or�3 months PSO were designated as convalescent- or

post-convalescent-phase samples, respectively. Samples from reverse transcription-PCR

(RT-PCR) confirmed Zika cases were from the Pediatric Dengue Cohort Study (PDCS) and

the Pediatric Dengue Hospital-based Study in Managua, Nicaragua between July 2016 and

March 2017 [46,47]. The Zika cases that were DENV-naïve or previously DENV-exposed were

defined as pZIKV (p = primary) or ZIKVwprDENV (wpr = with previous) panels, respectively.

The DENV-immune status was based on anti-DENV antibody testing by an inhibition ELISA

NS1-based MIA discriminates three flavivirus infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007649 August 23, 2019 3 / 19

https://doi.org/10.1371/journal.pntd.0007649


at entry and annually of the PDCS [44–47]. Parents or legal guardians of all participants pro-

vided written informed consents, and participants�6-year old provided assents. These studies

were approved by the IRBs of the University of California, Berkeley, and Nicaraguan Ministry

of Health. Thirty-six plasma samples from blood donors, who were tested WNV-positive by

the transcription-mediated amplification (a sensitive nucleic acid detection method used in

blood bank), IgM and IgG antibodies between 2006 and 2015, designated as pWNV infection,

were provided by the American Red Cross at Gaithersburg, Maryland [48]. Pre-2015-16 ZIKV

epidemic convalescent- and post-convalescent-phase samples from RT-PCR confirmed cases

with different primary DENV infections (pDENV1, pDENV2, and pDENV3) or sDENV infec-

tion were from Taiwan, Hawaii and Nicaragua; 53 flavivirus-naïve samples from a seropreva-

lence study in Taiwan were included as control in this study [44,45,49–52]. Samples from cases

with primary DENV4 infection were not available. Primary DENV or sDENV infection was

determined by IgM/IgG ratio or focus-reduction neutralization tests as described previously

[49–51].

Recombinant NS1 proteins

The NS1 gene (corresponding to amino acid residues 1–352) of ZIKV (HPF2013 strain) with a

His-tag at the C-terminus was codon-optimized (Integrated DNA Technologies, Skokie, IL)

and cloned into pMT-Bip vector to establish a Drosophila S2-cell stable clone [44]. ZIKV-NS1

protein from supernatants of the stable clone was purified by fast purification chromatography

system (AKTA Pure, GE Health Care Bio-Science, Pittsburg, PA) [44]. Purified DENV1-4 and

WNV NS1 proteins were purchased from The Native Antigen (Oxford, UK).

Coupling of microspheres

Ten μg each of the 6 purified NS1 proteins, bovine serum albumin (BSA) and PBS (as negative

antigen control) were coupled individually onto 8 types of magnetic carboxylated miscro-

sphere beads (1.25 X 106 each) containing different fluorophores (MagPlexTM-C) (Luminex,

TX, Austin) using two-step carbodiimide process at room temperature [53,54]. The antigen-

conjugated microspheres were stored in 250 uL PBN buffer (PBS with 1% BSA and 0.05%

sodium azide, Sigma Aldrich) at 4˚C until use.

MIA

Eight types of microsphere beads coupled with different NS1 proteins, BSA or PBS were com-

bined and diluted in PBS-1% BSA. Fifty μL of the mixture (containing ~1250 beads of each

type) were added to each well of a flat-bottom 96-well plate, and incubated with 50 μL diluted

serum or plasma (1:100 dilution in PBS-1% BSA) at 37˚C for 30 min in the dark, followed by

wash with 200 μL of PBS-1% BSA twice, incubation with 50 μL of red phycoerythrin-conju-

gated anti-human or anti-mouse IgG (Jackson Immune Research Laboratory, West Grove,

PA) at 37˚C for 45 min in the dark, and wash with 200 μl of PBS-1% BSA twice [54]. Micro-

spheres were then resuspended in 100 μl of PBS-1% BSA, incubated for 5 min and read by

Luminex 200 machine (Austin, TX). All incubations were performed on a plate shaker at 700

rpm and all wash steps used a 96-well magnetic plate separator (Millipore Corp., Billerica,

MA) [54]. Each plate includes two positive controls (confirmed-ZIKV or DENV infection),

four negative controls (flavivirus-naïve samples), samples, and mouse anti-His mAb (all in

duplicates). The median fluorescence intensity (MFI) was determined for 100 microspheres

for each well. The MFI values for each antigen were divided by the mean MFI value of one pos-

itive control (MFI~104) and multiplied by 104 to calculate to rMFI for comparison between

plates (S1 Fig). The cutoff rMFI for each antigen was defined by the mean rMFI value of 19

NS1-based MIA discriminates three flavivirus infections
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flavivirus-naïve samples plus 5 standard deviations, which gave a confidence level higher than

99.9% from 4 negatives [55]. Each MIA was performed twice (each in duplicate). New batch of

conjugated antigens was tested with flavivirus-naïve panel to determine the cutoff rMFI.

ELISAs

DENV1-, DENV2-, DENV3-, and ZIKV-NS1 IgG ELISAs have been described previously

[44,45]. Briefly, purified NS1 proteins (16 ng for individual NS1 protein per well) were coated

on 96-well plates at 4˚C overnight, followed by blocking (StartingBlock blocking buffer,

Thermo Scientific, Waltham, MA), incubation with primary antibody (serum or plasma at

1:400 dilution) and secondary antibody (anti-human IgG conjugated with horseradish peroxi-

dase, Jackson Immune Research Laboratory, West Grove, PA), and wash [44,45]. After adding

tetramethylbenzidine substrate (Thermo Scientific, Waltham, MA) followed by stop solution,

the optical density (OD) at 450 nm was read with a reference wavelength of 630 nm. Each

ELISA plate included two positive controls (confirmed-ZIKV or DENV infection), four nega-

tive controls (flavivirus-naïve sample), and samples (all in duplicate). The OD values were

divided by the mean OD value of one positive control (OD close to 1) in the same plate to cal-

culate the relative OD (rOD) values for comparison between plates [44,45]. The cutoff rOD

was defined by the mean rOD value of negatives plus 12 standard deviations, which gave a con-

fidence level of 99.9% from 4 negatives [55]. Each ELISA was performed twice (each in

duplicate).

Statistical analysis

Two-tailed Mann-Whitney test was used to determine the P values between two groups, the

two-tailed Spearman correlation test the relationship between the rOD and rMFI values, and

the receiver-operating characteristics (ROC) analysis the cutoffs of the rMFI and rOD ratios

(GraphPad Prism 6). The 95% confidence interval (CI) was calculated by Excel.

Results

Multiplex NS1 IgG MIA can distinguish different primary flavivirus

infections

We first employed the multiplex NS1 IgG MIA to test samples from primary DENV

(pDENV1, pDENV2 and pDENV3), pZIKV and pWNV infection panels. Compared with fla-

vivirus-naïve panel, the pDENV1 panel recognized the NS1 proteins of DENV1 (100%) and

other DENV serotypes (33.3 to 61.9%), but not those of different serocomplexes (ZIKV and

WNV NS1 proteins) (Fig 1A and 1B). Similarly, the pDENV2 and pDENV3 panels recognized

the NS1 protein of the homologous serotype (DENV2, DENV3) better than those of other

serotypes (Fig 1C and 1D), but did not recognize ZIKV or WNV NS1 protein except two sam-

ples (recognizing WNV, 2/13). The pZIKV panel recognized ZIKV NS1 protein but not those

of WNV and DENV except two sample recognizing DENV2 (2/38), whereas the pWNV panel

recognized WNV proteins rather than those of ZIKV and DENV except one sample (recogniz-

ing DENV4, 1/36) (Fig 1E and 1F). Taken together, these findings suggested that primary

infection panels recognized the homologous (infecting serotype) NS1 protein better than other

NS proteins within the same serocomplex, and in general did not recognize an NS protein of

different serocomplexes (Fig 1G).

NS1-based MIA discriminates three flavivirus infections
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Cross-reactivity to multiple NS1 proteins after repeated flavivirus

infections

We next tested samples from sDENV and ZIKVwprDENV panels. For convalescent-phase

samples, sDENV panel not only recognized NS1 proteins of DENV1-4 (66.7 to 100%) but also

those of ZIKV and WNV (45.8 to 54.2%) (Fig 2A). The ZIKVwprDENV panel recognized

ZIKV NS1 protein (100%) as well as DENV1-4 and WNV NS1 proteins (60.0 to 90.0%) (Fig

2B). A similar trend was observed for post-convalescent-phase samples (Fig 2C and 2D).

These findings were in agreement with our previous reports based on NS1 IgG ELISAs

[44,45], and suggested that after repeated flavivirus infections, such as sDENV and ZIKVwpr-

DENV infections, anti-NS1 antibodies cross-reacted to multiple NS1 proteins, including those

from prior exposure or sometimes those with no prior exposure.

Distinction between sDENV and ZIKVwprDENV panels

Previously we reported that sDENV panel not only recognized DENV1 NS1 protein but also

ZIKV NS1 protein in IgG ELISA (95.8 and 66.7%, respectively); similarly the ZIKVwprDENV

panel recognized both ZIKV and DENV1 NS1 proteins (95.0 and 85.0%, respectively) [44].

Using the rOD ratio of ZIKV NS1 to DENV1 NS1 with a cutoff at 0.24, we can distinguish

ZIKVwprDENV and sDENV panels. Since the same sDENV and ZIKVwprDENV panels rec-

ognized both DENV1 and ZIKV NS1 proteins in IgG MIA (Fig 2A and 2B), we calculated the

ratio of relative median fluorescence intensity (rMFI) of ZIKV NS1 to that of DENV1 NS1 and

found that a cutoff of the rMFI ratio at 0.62, as determined by ROC analysis, can distinguish

these two panels with a sensitivity of 88.9% and specificity of 91.7% (Fig 2E). Since both panels

also recognized DENV2 NS1 protein, we further calculated the ratio of rMFI of ZIKV NS1 to

DENV2 NS1; interestingly a cutoff of the rMFI ratio at 0.62 was able to distinguish these two

panels with a sensitivity of 94.4% and specificity of 90.9% (Fig 2F). Similar observations were

found for post-convalescent-phase sDENV and ZIKVwprDENV panels; these two panels can

be distinguished by a cutoff (0.62) of the rMFI ratio for ZIKV NS1 to DENV1 NS1 or DENV2

NS1 with a sensitivity/specificity of 90.0/100% or 83.3/100%, respectively (Fig 2G and 2H).

Comparison between NS1 IgG MIA and ELISA

Since these panels have been tested with individual DENV1 to DENV4 and ZIKV NS1 IgG

ELISAs previously [45], we compared the detection rates for each NS1 protein between ELISA

and MIA. For the pZIKV panel, ZIKV NS1 ELISA had a detection rate of 100%, comparable

to that of MIA, for the post-convalescent-phase samples, but only 5% for the convalescent-

phase samples, which was much lower than that of MIA (100%) (Fig 3A and 3B). Although 19

convalescent-phase pZIKV samples were tested negative by ZIKV NS1 IgG ELISA, the relative

optical density (rOD) values were positively correlated with the rMFI values (correlation coef-

ficient r = 7464, P = 0.0002) (Fig 3C), suggesting that ZIKV NS1 MIA was more sensitive than

ELISA. A positive correlation was also found between rOD and rMFI values for the post-con-

valescent-phase samples (r = 8922, P<0.0001) (Fig 3D). For pDENV1 panel, DENV1 NS1

ELISA and MIA had comparable detection rates (100%) for both convalescent and post-

Fig 1. Results of the multiplex NS1 IgG MIA tested with different primary flavivirus infection and naïve panels. (a-f) Convalescent-phase and

post-convalescent-phase samples of pDENV1 (b), pDENV2 (c), pDENV3 (d), pZIKV (e) and pWNV (f) panels as well as flavivirus naïve (a) panel

were tested. (g) Detection rates of different NS1 IgG MIA by each panel. Data are the means of two separate experiments (each in duplicate). Dashed

lines indicate cutoff rMFI; horizontal lines the means of each NS1 in panel a.

https://doi.org/10.1371/journal.pntd.0007649.g001
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convalescent-phase samples (Fig 3E and 3F). Similarly, a positive correlation was found

between rOD and rMFI values (Fig 3G and 3H).

For ZIKVwprDENV panels, ZIKV NS1 IgG ELISA and MIA had comparable detection

rates for both convalescent and post-convalescent-phase samples (Fig 4A and 4B). A positive

correlation was found between rOD and rMFI values for ZIKV NS1 as well as DENV1,

DENV2, DENV3 and DENV4 NS1 tested (Fig 4C–4E). Similar observations were found for

sDENV panels (S2 Fig).

Sensitivity and specificity of the multiplex MIA

Table 1 summarizes the results of all samples tested with different NS1 proteins (DENV1,

DENV2, DENV3, DENV4, DENV1, 2, 3 or 4, ZIKV and WNV) in the IgG MIA. For statistical

analysis comparing different panels, one sample from each participant was included (S2

Table). The overall sensitivity of each DENV (DENV1, DENV2, DENV3) NS1 IgG MIA to

detect different DENV infections ranged from 73.6 to 90.1% and specificity from 98.1 to 100%

(Table 2). Interestingly, combination of four DENV NS1 IgG MIA increased the sensitivity to

94.5%, while maintaining the specificity of 97.2%, suggesting that this multiplex assay can be

applied to detect DENV infections rather than distinguish different DENV serotypes. For the

ZIKV NS1 IgG MIA, the overall sensitivity was 100% and specificity 87.9%. For the WNV NS1

IgG MIA, the overall sensitivity was 86.1% and specificity 78.4% (Table 2).

Discussion

In this study, we developed a high-throughput and multiplex IgG MIA using NS1 proteins of

DENV1 to DENV4, ZIKV and WNV to detect and distinguish various DENV, ZIKV and

WNV infections. Based on the results, we propose an algorithm to discriminate primary

DENV, pZIKV and pWNV infections, sDENV infection and ZIKVwprDENV infection (Fig

5). Previous studies of flavivirus serodiagnosis mainly focused on two flaviviruses. Compared

with a recent study of IgG MIA containing ZIKV and DENV antigens, our multiplex IgG MIA

consists of 6 antigens (DENV1 to DENV4, WNV and ZIKV NS1 proteins) plus two controls

(BSA and PBS) [56]. To our knowledge, this is the first report of a single serological test to

detect three flavivirus infections. Our findings that combination of DENV1 to DENV4 NS1

IgG MIA increased the sensitivity to 94.3% while maintaining a specificity of 97.2% and that

the rMFI ratio of ZIKV NS1 to DENV1 or DENV2 NS1 can distinguish ZIKVwprDENV and

sDENV infections with a sensitivity of 83.3–94.4% and specificity of 90.9–100.0% have impor-

tant applications to serodiagnosis and serosurveillance of DENV and ZIKV infections in

regions where both viruses co-circulate.

Generally in agreement with our recent study of individual DENV NS1 ELISAs [45], we

found that DENV1 and DENV3 NS1 IgG MIAs can detect primary DENV infection of the

homologous serotype with a sensitivity (100%) higher than that for heterologous serotypes

(25.0 to 100%) (Table 2). DENV1, DENV2 and DENV3 NS1 IgG MIAs can detect secondary

DENV infection with a sensitivity of 95.5 to 100%. This was also consistent with our previous

study using Western blot analysis, in which anti-NS1 antibodies recognized NS1 protein

Fig 2. Results of the multiplex NS1 IgG MIA tested with repeated flavivirus infection panels. (a-d) These include sDENV panel at the

convalescent (a) and post-convalescent (c) phases and ZIKVwprDENV panel at the convalescent (b) and post-convalescent (d) phases.

Data are the means of two experiments (each in duplicate). Dashed lines indicate cutoff rMFI. (e-h) The rMFI ratio of ZIKV NS1 to

DENV1 NS1 for the convalescent-phase (e) and post-convalescent-phase (g) samples, and the rMFI ratio of ZIKV NS1 to DENV2 NS1 for

the convalescent-phase (f) and post-convalescent-phase (h) samples were shown. Data are the means of two experiments (each in

duplicate). Dashed lines indicate cutoff rMFI ratio (0.62). The two-tailed Mann-Whitney test was used to compare two groups.

https://doi.org/10.1371/journal.pntd.0007649.g002
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predominantly of the infecting serotype after primary DENV infection and multiple NS1 pro-

teins after secondary infection [13]. Taken together, due to the variable and extensive cross-

reactivity of anti-NS1 antibodies after primary and secondary DENV infections, respectively,

it is difficult to use a single NS1 IgG MIA or ELISA to identify the infecting DENV serotype.

Notably, the combination of four DENV NS1 IgG MIA can detect different primary and sec-

ondary DENV infections with a sensitivity of 94.3% and specificity of 97.2% (Table 2), suggest-

ing the feasibility and application of this multiplex NS1 IgG MIA to detect DENV infection

rather than distinguish DENV serotypes.

The overall sensitivity of the ZIKV NS1 IgG MIA was 100% and the specificity was 87.9%,

primarily due to the cross-reactivity of the sDENV panel (Table 2). The sensitivity (100%) was

higher than or comparable with those previously reported (79 to 100%) using the Euroimmun

ZIKV NS1 IgG ELISA kit [34–37]. The ZIKV NS1 blockade of binding ELISA had an overall

specificity of 91.4–92.6%, which reduced to 77.6–90.5% when comparing with sDENV panel

[38,39]. A recently reported ZIKV NS1 IgG3 ELISA had a sensitivity of 97% based on samples

from Salvador, but it reduced to 83% when comparing with samples outside of Salvador [32].

A previous study of multiplex IgG MIA including ZIKV NS1 reported a sensitivity of 100%

and specificity of 78% for pZIKV panel based on PRNT results, however, the sDENV and

ZIKVwprDENV panels were not distinguished [56]. For the WNV NS1 IgG MIA, the overall

sensitivity was 86.1% probably due to sampling during the early convalescent-phase for this

pWNV panel (S1 Table), and the specificity was 78.4%, mainly due to the cross-reactivity from

the sDENV and ZIKVwprDENV panels (Table 2). Using the rMFI ratio of ZIKV NS1 to

DENV1 or DENV2 NS1, we can distinguish ZIKVwprDENV and sDENV panels with a sensi-

tivity of 83.3–94.4% and specificity of 90.9–100.0%. This was consistent with our previous

reports of IgG ELISAs using the rOD ratio of ZIKV NS1 to DENV1 NS1 or mixed DENV1-4

NS1 to distinguish these two panels with a sensitivity of 91.7–94.1% and specificity of 87.0–

95.0% [44,45]. It is worth noting since DENV3 and DNV4 NS1 proteins were not recognized

by several samples from the sDENV and ZIKVwprDENV panels (Fig 2A and 2D), they were

not included in the analysis of the rMFI ratio.

Comparing the results of individual NS1 IgG MIA in this study and those of NS1 IgG

ELISA reported previously [45], we found comparable detection rates between MIA and

ELISA, and positive correlations between the rMFI and rOD values for both convalescent-

phase and post-convalescent-phase samples of most panels tested including pDENV1, sDENV

and ZIKVwprDENV panels except pZIKV panel (Figs 3 and 4 and S2 Fig). Of note, the IgG

MIA detection rates for DENV1-4 for the post-convalescent-phase ZIKVwprDENV panel

were much lower than those for the sDENV panel (Fig 4E and S2E Fig), suggesting that prior

DENV exposure of the ZIKVwprDENV panel may have been only to a single DENV serotype.

For the convalescent-phase pZIKV panel, the higher detection rate of ZIKV NS1 IgG MIA

(100%) than that of ELISA (5%) and the positive correlation between rOD and rMFI values

suggest that MIA was more sensitive than ELISA (Fig 3A–3C). Thus, we did not observe a

trend of increased detection rates of NS1 IgG MIA from convalescent to post-convalescent

phases for primary infection panels (pZIKV, pDENV1) (Fig 3B and 3F) as previously reported

Fig 3. Comparison between NS1 IgG MIA and ELISA for pZIKV and pDENV1 panels. (a-d) The results of ZIKV

NS1 IgG ELISA (a) and MIA (b) for convalescent- and post-convalescent-phase samples of pZIKV panel. Relationship

between rOD and rMFI values for the convalescent-phase (c) and post-convalescent-phase (d) samples. (e-h) The

results of DENV1 NS1 IgG ELISA (e) and MIA (f) for convalescent- and post-convalescent-phase samples of pDENV1

panel. Relationship between rOD and rMFI values for the convalescent-phase (g) and post-convalescent-phase (h)

samples. Data are the means of two experiments (each in duplicate). Dashed lines indicate cutoff rOD or rMFI. The

two-tailed Spearman correlation test was performed; r, correlation coefficient.

https://doi.org/10.1371/journal.pntd.0007649.g003
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Fig 4. Comparison between NS1 IgG MIA and ELISA for ZIKVwprDENV panel. (a-d) The results of ZIKV NS1 IgG ELISA (a) and MIA (b) for

convalescent- and post-convalescent-phase samples. Relationship between rOD and rMFI values for the convalescent-phase (c) and post-convalescent-

phase (d) samples. Data are the means of two experiments (each in duplicate). Dashed lines indicate cutoff rOD or rMFI. The two-tailed Spearman

correlation test was performed; r, correlation coefficient. (e) Summary of the relationship between rOD and rMFI values of different NS1 IgG ELISAs

and MIAs for the convalescent-phase and post-convalescent-phase samples of ZIKVwprDENV panel.

https://doi.org/10.1371/journal.pntd.0007649.g004
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for NS1 IgG ELISA and blockade of binding of NS1 ELISA [38,45]. Notably we incubated 16

ng antigen coated on each well with 50 μL of serum (1:400) in ELISA, whereas we incubated

~10 ng antigen (in 1250 beads) with serum (final dilution 1:200) per well in MIA. The higher

concentration of serum and more surface area of antigen coupled on beads may account for

the higher sensitivity of the IgG MIA compared with IgG ELISA for the pZIKV convalescent-

phase panel.

Although neutralization tests are still considered a confirmatory assay, they are time-con-

suming and can be performed only in reference laboratories. Compared with PRNT and

Table 1. Results of NS1 IgG MIA in different serum/plasma panels.

No. of positive/total samples (%) in different serum/plasma panels a

NS1 IgG MIA naïve pWNV pDENV1 pDENV2 pDENV3 pZIKV sDENV ZIKVwprDENV

DENV1 1/53(1.9%) 0/36(0%) 21/21(100%) 3/13 (23.1%) 8/10(80.0%) 0/38(0%) 44/44(100%) 28/35(80.0%)

DENV2 1/53(1.9%) 0/36(0%) 13/21(61.9%) 8/13 (61.5%) 8/10 (80.0%) 2/38(5.3%) 42/44(95.5%) 30/35(85.7%)

DENV3 0/53(0%) 0/36(0%) 8/21(38.1%) 3/13 (23.1%) 10/10(100%) 0/38(0%) 42/44(95.5%) 28/35(80.0%)

DENV4 0/53(0%) 1/36(2.8%) 7/21(33.3%) 2/13 (15.4%) 2/10(20.0%) 0/38(0%) 36/44(81.8%) 15/35(42.9%)

DENV1, 2, 3 or 4 1/53(1.9%) 1/36(2.8%) 21/21(100%) 8/13(61.5%) 10/10(100.0%) 2/38(5.3%) 44/44(100%) 30/35(85.7%)

ZIKV 0/53(0%) 0/36(0%) 0/21(0%) 0/13(0%) 0/10(0%) 38/38(100%) 20/44(45.5%) 35/35(100%)

WNV 0/53(0%) 31/36(86.1%) 0/21(0%) 2/13(15.4%) 0/10(0%) 0/38(0%) 27/44(61.4%) 24/35(68.6%)

a MIA: microsphere immunoassay; pWNV: primary WNV infection; pDENV1: primary DENV1 infection; pDENV2: primary DENV2 infection; pDENV3: primary

DENV3 infection; pZIKV: primary ZIKV infection; sDENV: secondary DENV infection; ZIKVwprDENV: ZIKV infection with previous DENV infection.

https://doi.org/10.1371/journal.pntd.0007649.t001

Table 2. Sensitivity and specificity of different NS1 IgG MIA a.

DENV1 NS1 DENV2 NS1 DENV3 NS1 DENV1, 2, 3 or 4 NS1 ZIKV NS1 WNV NS1

Panels b % Sens

(95% CI)

% Spec

(95% CI)

% Sens

(95% CI)

% Spec

(95% CI)

% Sens

(95% CI)

% Spec

(95% CI)

% Sens

(95% CI)

% Spec

(95% CI)

% Sens

(95% CI)

% Spec

(95% CI)

% Sens

(95% CI)

% Spec

(95% CI)

overall 89.7(83.3–

92.9)

99.1(97.2–

100)

83.9(76.2–

87.9)

98.1(95.6–

99.4)

73.6(64.3–

78.3)

100(100–

100)

94.3(89.4–

96.8)

97.2(94.1–

98.8)

100(100–

100)

87.9(82.9–

90.4)

86.1(74.8–

91.9)

78.4(72.1–

81.6)

pDENV1 100(100–

100)

NA 58.8(35.4–

70.7)

NA 29.4(7.8–

40.5)

NA 100(100–

100)

NA NA 100(100–

100)

NA 100(100–

100)

pDENV2 42.9(6.2–

61.6)

NA 71.4(38.0–

88.5)

NA 42.9(6.2–

61.6)

NA 71.4(38.0–

88.5)

NA NA 100(100–

100)

NA 71.4(38.0–

88.5)

pDENV3 100(100–

100)

NA 100(100–

100)

NA 100(100–

100)

NA 100(100–

100)

NA NA 100(100–

100)

NA 100(100–

100)

sDENV 100(100–

100)

NA 95.5(89.3–

98.6)

NA 95.5(89.3–

98.6)

NA 100(100–

100)

NA NA 54.6(39.8–

62.1)

NA 38.6(24.3–

46.0)

Naïve NA 98.1(94.5–

100)

NA 98.1(94.5–

100)

NA 100(100–

100)

NA 98.1(94.5–

100)

NA 100(100–

100)

NA 100(100–

100)

pWNV NA 100(100–

100)

NA 100(100–

100)

NA 100(100–

100)

NA 97.2(91.9–

100)

NA 100(100–

100)

86.1(74.8–

91.9)

NA

pZIKV c NA 100(100–

100)

NA 94.4(83.9–

99.8)

NA 100(100–

100)

NA 94.4(83.9–

99.8)

10(100–

100)

NA NA 100(100–

100)

ZIKVwprDENV
c

NA 33.3(9.5–

45.5)

NA 20(0–

30.3)

NA 33.3(9.5–

45.5)

NA 20(0–

30.3)

100(100–

100)

NA NA 60.0(35.2–

72.7)

a MIA: microsphere immunoassay; Sens: sensitivity. Spec: specificity; CI: confidence interval. For those with repeated samples, only one sample from each subject was

included.
b pDENV1: primary DENV1 infection; pDENV2: primary DENV2 infection; pDENV3: primary DENV3 infection; pWNV: primary WNV infection; pZIKV: primary

ZIKV infection; sDENV: secondary DENV infection; ZIKVwprDENV: ZIKV infection with previous DENV infection.
c For pZIKV and ZIKVwprDENV panels, samples at post-convalescent phase (�3 months post-symptom onset) were presented.

https://doi.org/10.1371/journal.pntd.0007649.t002
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ELISA, the multiplex MIA requires less time (2.5 h vs. 7 h for ELISA and 5–6 days for PRNT)

and less sample volume (1 μL vs. 8 μL for ELISA and 144 μL for PRNT for 8 antigens or

viruses). The newly developed multiplex NS1 IgG MIA could have wide-ranging applications,

such as serodiagnosis, blood screening, serosurveillance of ZIKV, DENV and WNV infections,

and retrospective study of ZIKV infection among pregnant women with CZS [57,58]. The cur-

rent octaplex (6 NS1 antigens plus PBS and BSA controls) IgG MIA serves as a “proof-of-con-

cept” assay to demonstrate that NS1-based MIA can distinguish three flavivirus infections;

incorporation of other antigens would increase the detection capacity for different clinical set-

tings and studies. These together would further our understanding of the epidemiology, patho-

genesis and complications of ZIKV in regions where multiple flaviviruses co-circulate [1–4].

There are several limitations of this study. First, due to limited samples of< 3 months PSO

from patients with primary DENV infection (S1 Table), the study focused on NS1 IgG MIA.

Future studies on NS1-based IgM MIA are warranted. Second, despite the availability of two-

time point samples for the pZIKV and ZIKVwprDENV panels, future studies involving more

sequential samples are needed to validate these observations. Additionally, the sample size in

each panel with well-documented infection is small. Third, although this multiplex assay can

distinguish various panels of samples with three flavivirus infections, future tests that can dis-

tinguish other pathogenic flaviviruses such as JEV, YFV and tick-borne encephalitis virus

Fig 5. Proposed algorithm of using multiplex NS1 IgG MIA to distinguish three flavivirus infections. Based on positivity to NS1 proteins of three serocomplexes

(DENV [DENV1, 2, 3 or 4], ZIKV and WNV NS1), the samples that were negative to all NS1 proteins or positive to NS1 protein of one serocomplex (DENV, ZIKV or

WNV) could be flavivirus naïve or primary DENV, pZIKV or pWNV infection. For samples that were positive to NS1 proteins of two or more serocomplexes, the rMFI

ratio of ZIKV NS1 to DENV1 or DENV2 NS1 was calculated to distinguish sDENV and ZIKVwprDENV infections.

https://doi.org/10.1371/journal.pntd.0007649.g005
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(TBEV) remain to be exploited [59,60]. Moreover, samples with well-documented repeated fla-

vivirus infections such as DENV with previous ZIKV infection and sequential DENV and

WNV infections are lacking and remain to be investigated in the future. In light of the success-

ful implementation of several flavivirus vaccines and vaccine trials in flavivirus-endemic

regions, serological tests that can distinguish ZIKV infection from vaccinations with DENV,

JEV, YFV and TBEV vaccines are warranted [59,60].
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