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Abstract: Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining
hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated
adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral
for collagen-induced platelet activation and participates in the thrombus consolidation process, being
a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated
depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic
diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review
describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation
and its downstream signaling pathways in this context.
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1. Introduction

Atherosclerosis is one of the leading causes of peripheral arterial disease (PAD) and
coronary artery disease (CAD) [1]. In this pathological process, the adhesion and aggrega-
tion of the platelets following the disruption of the vascular surface is a critical point in
thrombus formation [2]. Considering this, the presence of an unregulated platelet activa-
tion leads to thrombus formation and possible organ failure [3]. In this sense, antiplatelet
therapy is designed to decrease the chance of thrombotic events, but without secondary
effects such as a high risk of bleeding [4]. This risk increment is increased in older adults
over 75 years old, which can be observed in therapies based on aspirin, prasugrel, and
clopidogrel plus aspirin) [5–7]. Even the administration of aspirin in a lower dose (primary
prevention strategy, 100 mg of enteric-coated aspirin) resulted in a significant increase
in the risk of major bleeding with a low therapeutic effect [8]. This problem has led to
the need to improve the efficacy of the current approaches, which is the inhibition of
the platelet glycoprotein GPVI and associated pathways, a promising therapy without
secondary effects [9,10].

Platelet membranes and their glycoproteins offer various receptors to regulate platelet
responsiveness under diverse pathophysiological conditions [11].

In particular, the receptor GPVI, a platelet-specific collagen membrane glycoprotein
expressed in platelets and megakaryocytes [11], plays a critical role in the arterial thrombo-
sis process because of its associated function with the initial interaction with collagen in
the atherosclerotic plaque rupture [12–15]. Specifically, GPVI initiates the pathway induced
by collagen [16,17] through a rapid formation or rise of GPVI dimers, along with vascular
injury [18]. This look, reflected in the evidence of higher surface expression levels and the
altered activation state of GPVI, has been described in patients with an increased risk of
thromboses, such as obese patients [19] and ST elevation myocardial infarction patients [20].

Current evidence points to GPVI as a suitable target in thrombosis prevention with no
or only a mild bleeding tendency [21]. This is supported because GPVI is not critical for
hemostasis, since the genetic deficiency of GPVI or its dysfunction diminishes the platelet
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responses to collagen without a bleeding tendency [22–24]. Even a total reduction in GPVI
improves outcomes in the case of stroke without an increase in cerebral hemorrhage risk [25].
This evidence demonstrates that GPVI is a promising antiplatelet target with minimal effects
on hemostasis in pathologies such as thrombosis [20,26,27]. In this context, this review
describes the current knowledge regarding GPVI modulation and its downstream pathways
as an antiplatelet target.

2. Glycoprotein VI and Its Function in Hemostasis

The chromosome responsible for the expression of the human GPVI was mapped to
chromosome 19 in the long arm, region one, band three (19q13), along with several members
of the Ig superfamily [14]. GPVI is the central platelet receptor for collagen and has been
well-described as a 62-kDa glycoprotein located in the membrane and expressed in a
noncovalent association with the Fc receptor gamma (FcRγ) chain from murine and human
platelets [28,29]. Fcrγ and GPVI form the collagen receptor in platelets, and the activation
of this receptor leads to the phosphorylation of FcRγ [30]. The coupling to FcRγmediated
by GPVI is necessary for signal transduction. It is facilitated by an arginine located in the
transmembrane region (close to the extracellular side) of GPVI and the intracellular C-tail
on the platelet surface [31]. On the other hand, the integrin α2β1 is thought to be essential
for platelet adhesion to subendothelial collagen, facilitating subsequent interactions with
the activating GPVI [32].

GPVI is initially expressed as a monomer and, through a diffusion mechanism, can
form dimers in the membrane, forming a mixture of monomers and dimers on the cell
surface [33]. On the platelet, the dimeric form of GPVI shows the highest affinity to fibrous
collagen [34–36], and this is due to the fact that the association of the GPVI monomer is
too low to support a strong binding, which is necessary for the dimerization of GPVI for
correct interaction with collagen [37,38]. In dimerization processes, the collagen adhesion
induces the clustering of the GPVI dimer, increasing both avidities for collagen and the
proximity of molecules in the GPVI-associated signaling [39]. In concordance with the
above, the density of the GPVI receptor on the platelet surface is directly proportional to the
response to collagen and platelet adhesion [40]. Recently, a structural analysis revealed that
GPVI presents a collagen-binding site across the β-sheet of the D1 domain, which are the
amino-acids Trp76, Arg38, and Glu40, essential residues for binding to fibrillar collagens
and collagen-related peptides (CRPs) [41]. On the other hand, GPVI binds a site on collagen
comprising of two collagen chains, with the core formed by the sequence motif OGPOGP.
Likewise, this study confirms that GPVI binds sites in collagen created by two of the three
triple-helix chains and canonical OGPOGP sequence motifs [41].

Dimeric GPVI can also bind to the fibrinogen D-domain, enhancing the platelet adhe-
sion, activation, and aggregation on immobilized fibrinogen and polymerized fibrin [42,43].
In physiological conditions, a small activation of adhering platelets has been observed
because of the high content of plasma proteins in the fibrin formed in blood and plasma
that shield against epitopes that could activate GPVI [44]. During the coagulation phase,
the monomeric GPVI can cluster fibrinogen through αC-region binding, facilitating the
polymerization of fibrin into fibers and thrombin production; however, the dimeric form of
GPVI lacks this feature [45–49]. Moreover, the immobilized D-dimer (a fibrin degradation
product) can induce platelet spreading. This effect cannot be replicated by the E frag-
ment of fibrin, pointing out these results where only the D-dimer can bind to monomeric
GPVI [47]. Likewise, the evidence demonstrates that GPVI can weaken the luminal surface
of plaques through a mechanism dependent on fibronectin, enhancing the progression
of atherosclerotic disease towards a thrombotic event [50]. Moreover, evidence from the
last ten years confirms that GPVI is essential for the repair of neutrophil-induced vascular
injury in various inflamed organs and tissues [51–54].

Structural studies on the interactions between GPVI and different ligands and the
related cellular mechanisms of platelet activation have defined GPVI as one of the new
antithrombotic therapeutic targets because of the characteristics above. This knowledge has
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been crucial to designing different pharmacological approaches for inhibiting GPVI and
evaluating secondary effects on platelet functionality and survival. These considerations
are essential, because platelet activation and inhibition pathways related to GPVI are not
exclusive to this protein. In vitro and in vivo studies are necessary to confirm the findings.

3. Platelet Signaling Pathways Related to GPVI Activation

The current evidence demonstrates that GPVI has a central role in thrombosis and
a minor role in primary hemostasis [55–58]. Different agonists have carried out different
functionalities and pharmacological studies about the GPVI receptor in platelets (collagen,
fibrinogen, snake venom toxins, and charged exogenous ligands), but there are three mainly
used ones: convulxin (CVX), reelin, and CRP-XL [26]. CVX, a c-type lectin that comes from
the venom of a South-American rattlesnake, can bind up to eight individual GPVI receptors
and bridge GPVIs on different platelets. Reelin is a secreted glycoprotein that interacts with
GPVI with subnanomolar affinity, inducing platelet activation and aggregation. CRP-XL is a
triple-helical peptide that represents the synthetic cross-linked collagen-related peptide and
is the more specific and potent activator of GPVI for functional analysis in platelets [59]. In
the next section, we describe the main pharmacological approaches related to the inhibition
of GPVI signaling pathways associated with platelet activation.

3.1. Rho/RhoA Kinase Pathway

The activation of the Rho kinase pathway has been described as essential signaling for
platelet activation mediated by GPVI, observing that the activation mediated by convulxin
was inhibited significantly in platelets with a deficiency in RhoG [60]. Likewise, platelets
deficient in RhoG proteins showed an impaired secretion of dense granules and the in-
capacity to attract other platelets in the thrombi [61]. Moreover, the inhibition of GPVI
mediates the Rho kinase pathway without effects on tail bleeding times [61].

3.2. PI3K–Akt Pathway

The PI3K–Akt pathway is a key signaling pathway for GPVI downstream activation
induced by collagen [62–66]. Specifically, the isoforms α and β of phosphoinositide 3-kinase
(PI3K) play an important role for full platelet Ca2+ signaling dependent on GPVI, as well as
thrombus formation; however, the isoforms δ are not necessary for GPVI activation [62–64].
In murine models, the absence or inhibition of PI3Kα showed a small but significant
decrease in the size of the thrombi in a simulation of thrombosis in mesenteric arteries,
without a modification in bleeding times [65,66]. The inhibition of PI3Kβ by the selective
inhibitor TGX221 (2.5 mg/kg IV) in a Folts-like carotid artery stenosis model of thrombosis
regulated the blood flow rate to normal values without changing the heart rate, blood
pressure, or bleeding time [67]. Moreover, the use of another selective inhibitor of this
same protein, called AZD6482, in an in vivo model was associated with a significant
antithrombotic effect without an increase in the bleeding times [68]. Another study, which
used the AZD6482 inhibitor and aspirin in healthy subjects, had a better antiplatelet effect
compared to the combination of clopidogrel and aspirin, with a remarkably lower bleeding
risk [69].

Additionally, in this pathway, the protein kinase CK2 is considered an essential regula-
tor for the clustering of IP3 receptors, facilitating the rapid release of Ca2+ from internal
storage upon platelet activation dependent of GPVI [70]. In a murine model of photochem-
ical thrombosis, the use of CX-4945 (a selective inhibitor of CX2) showed a delay in the
induced thrombus formation [71,72]. Another study that used ck2β-/- mice (with a genetic
depletion of CK2) showed a significant decrease in the thrombi formation and stabilization
without increasing the bleeding times [70].

3.3. PKC Signaling Pathway

The protein kinase C (PKC) signaling pathway regulates the platelet response in throm-
bus formation, where the proteins PKCε and PKCδ play a crucial role in this process [73–75].
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In the activation of GPVI with collagen, the protein PKCε promotes platelet spreading,
secretion, and aggregation [76]. On the other hand, PKC-θ also helps to support adhesion
and filopodial generation, but does not affect GPVI-stimulated aggregation or secretion.
In contrast, the lack of both isoforms in a murine model showed a significant decrease in
aggregation induced by collagen, with a considerable increase in a tail bleeding study [76].
Moreover, studies show that PKC-θ is activated by GPVI agonists; observing a knockout
PKC-θ murine model (model of thrombosis induced with FeCl3) led to a compromised
hemostasis, prolonged bleeding time, an unstable formation of thrombi, and extended
arterial occlusion [77,78].

Concerning PKCδ, the platelet activation through GPVI was associated with an in-
creased platelet function. In this process, PKCδ is phosphorylated by Lyn and SHIP-1, and
enhances platelet dense granule secretion [79,80].

Other proteins with a vital role in the PKC pathway mediated by GPVI are phospholi-
pase A2 (PLA2) and the adapter protein SLP-76. The activation of the protein phospholipase
A2 (especially in isoform PLA2α) is an essential step for the generation of thromboxane A2
(TXA2) stimulated by GPVI [81]. In murine models lacking cPLA2α, the authors observed
efficient protection from thromboembolism, however, with a remarkably increased bleeding
time [82,83]. About the SLP-76 protein, it has been described that this adapter protein plays
an essential role in platelet activation through GPVI, both in the aggregation, shape change,
and granule release [84,85]. It is known that the normal expression of SLP-76 is necessary
for normal hemostasis [85]. However, a clean GPVI/FcRγ/SLP-76 signal transduction
pathway is not required for the platelet activation induced by collagen. Still, it is necessary
for maximal response to costimulation with thrombin plus collagen [84]. In a murine
knockout model of SLP-76, the authors observed a higher risk of bleeding with a decreased
perinatal survival, which could be reversed by the reconstitution of the protein SLP-76 into
the bone marrow cells of mice without SLP-76 [85]. Recently studies have pointed out that
pyruvate dehydrogenase kinases (PDKs) play a role in the platelet activation through GPVI,
mediated by the PKC signaling pathway [86–89]. A study that used a potent inhibitor of
PDK called dichloroacetic acid (DCA) (600 mg/Kg body weight) in mice showed less of a
risk of thrombosis, the inhibition of the static adhesion of platelets to collagen, an average
bleeding time, and the impaired phosphorylation of tyrosine on Syk and PLCγ2 [87,88].
However, other studies showed that the administration of DCA (200 mg/kg, intraperi-
toneal) was associated with prolonged bleeding times, as well as an increase in the amount
of bleeding compared to that of vehicle-treated animals [88,89]. Moreover, another study
that used a murine model of lacking PDK1 showed a protective effect against ischemic
stroke and arterial thrombotic occlusion in vivo, a significant increase in the survival time,
and an increase in the risk of bleeding [90].

4. Advances in GPVI Modulation by Antibodies and Inhibitory Proteins

Evidence shows that GPVI inhibition in patients and murine models is related to a
significant decrease in thrombus formation induced by collagen without changes in the
risk of bleeding [27]. In this way, studying the blocking or antibody-mediated depletion
of GPVI becomes a promising pharmacological approach in searching for an effective and
safe antiplatelet therapy [91–94]. On the other hand, the cleavage of GPVI induced by
antibodies has been demonstrated to have protective effects against thrombosis in both
mice and humans [95]. The different approaches for platelet inhibition through GPVI
modulation using antibodies or the cleavage process are described below (Figure 1) [96].

4.1. GPVI Antagonists

The use of antibodies to target GPVI in platelets is a promising therapeutic strategy
for inhibiting platelet aggregation [94]. Current evidence shows that dimeric anti-GPVI
antibodies induce the shedding of GPVI; meanwhile, monomeric anti-GPVI compounds are
needed for inhibition without cleavage [94]. The above fact reflects myocardial infarction
or ischemic stroke in patients mediated by the exposure of subendothelial collagen after the
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rupture of atherosclerotic plaques when using antibodies against GPVI, which represents
a promising therapy due to the effective prevention of platelet adhesion and thrombus
formation within the injured area in the artery [94,97].

Figure 1. Antiplatelet activity through differential modulation of glycoprotein VI and its collagen
binding. The figure shows the main compounds regulating GPVI activity by blocking collagen-GPVI
binding (GPVI-FC, GPVI-Fc-CD39, and GPVI-FC-PEG) or direct action on GPVI (antibodies and
cleavage). Numbers 1, 2 and 3 indicate each agent’s potential sites of action.

Among the currently reported anti-GPVI antibodies with potential therapeutic effects,
antibodies based on the Fab fragment represent one of the main strategies. Qian and
collaborators developed one of the first studies to search for GPVI antibodies based on
Fab fragments. In this study, the authors describe a set of five clones of GPVI-neutralizing
human antibodies derived from a combinatorial phage display library of single-chain
antibodies; the antibody A10 (150 µg/mL) was the only one capable of inhibiting the
binding of GPVI to convulxin, inhibiting collagen-induced aggregation in vitro (collagen
2 µg/mL) [98]. Similarly, Al-Tamimi and collaborators designed an antibody fragment
(12A5) with the ability to induce the ectodomain shedding of human GPVI dependent on the
metalloproteinase “disintegrin and metalloproteinase” (ADAM) family (with a prominent
role of ADAM10), inhibiting the platelet aggregation in vitro (at concentrations of 5, 10, and
20 µg/mL) [99,100]. Following the study of Fab fragments targeting GPVI, Li et al. reported
an OM4 Fab antibody capable of inhibiting platelet aggregation induced by collagen in vitro
and inhibiting thrombosis in vivo in rat models without increasing the bleeding time (at
doses of 20 mg/kg); controversially, these doses induced acute thrombocytopenia [101]. In
this way, Matsumoto and collaborators confirmed these findings in cynomolgus monkeys,
observing that the OM2 antibody at a concentration of 0.4 mg/kg presented a potent
inhibition of aggregation induced by collagen up to six hours after the injection without a
significant increase in bleeding time, thrombocytopenia, or the depletion of GPVI [102].

A functional monoclonal antibody-derived Fab fragment against human GPVI was
reported by Lecut et al. In this study, the use of the 9O12.2 Fab fragment was able to impair
platelet adhesion preventing its formation under in vitro arterial flow conditions (at doses
of 50 µg/mL) [103]. Later, Mangin and collaborators confirmed that the injection of 9O12.2
(at doses of 4 mg/kg) into the humanized GPVI mouse model did not prolong the tail
bleeding time, but provided significant protection against collagen/adrenaline-induced
thromboembolism [104].
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Lebozeck et al. reported the production and characterization of a humanized Fab
fragment against GPVI, designated as ACT017(glenzocimab), which presented a high
capacity to inhibit collagen-induced platelet aggregation ex vivo after injection, specifically
(1–8 mg/kg, IC50: 3.2 ± 2.5 µg/mL) to the macaque without inducing thrombocytopenia,
GPVI depletion, or bleeding side effects [105]. Ahmed et al. demonstrated through an ex
vivo thrombosis model and computational simulation that glenzocimab induced platelet
disaggregation under arterial blood flow conditions (at 50 µg/mL). Still, this effect requires
GPVI to interact with plasmatic fibrinogen and without thrombin [106]. In 2020, Renaud
and collaborators reported a clinical study ACT107 [107]. The authors evaluated the
pharmacokinetics and pharmacodynamics of glenzocimab in healthy volunteers, and the
ex vivo platelet analysis showed that glenzocimab at doses of 1000 mg (in 6 h IV infusions)
reduced platelet aggregation to 20% in 100% of subjects, and 60% in 12 h after dosing [107].
In addition to the above, Voors-Pette and collaborators demonstrated through a clinical
trial that an intravenous dose of ACT017 (62.5 to 2000 mg) did not significantly affect the
bleeding time in a clinical sense without a change in the number of platelets, the platelet
GPVI expression, or plasma levels [108]. Recently, it has been reported that glenzocimab
entered a phase II trial in stroke patients (Acute Ischemic Stroke Interventional Study
“ACTIMIS) (NCT03803007), which is a significant advance for this therapeutic approach.

4.2. Blocking the Binding Site for GPVI on Collagen

Revacept, a protein created with the dimeric fusion of the human Fc fragment and
the extracellular domain of GPVI (GPVI-Fc), has shown to induce a significant decrease
in thrombus formation after endothelial injury, improve the functional outcome, cerebral
infarct size, and edema compared to the control (Fc fragment only) (at doses 1 mg/kg
IV) [109]. This protein was evaluated in humans (clinical trial phase I) by Ungerer in
the year 2011, demonstrating that revacept is a safe and well-tolerated new antiplatelet
compound (inhibitor of platelet aggregation) that is dose-dependent, specific, and does
not affect bleeding time [110]. Another study showed that repeated doses of revacept
significantly improved endothelial dysfunction and vascular morphology in atherosclerotic
rabbits (revacept at 8 mg/kg twice weekly for 4 weeks) [111]. Furthermore, no influence
on the bleeding time of revacept alone or in combination with various antiplatelet drugs
was found in mice [109,111]. Even when using revacept with other antiplatelet thera-
pies such as ASA and a P2Y12 inhibitor, it was more likely to improve the protection
against atherothrombosis without increasing bleeding risk [112]. Specifically, revacept
inhibited the plaque-induced platelet aggregation by 53%, and increased platelet inhibition
of ASA by 51% to 66%, and ticagrelor by 64% to 80% (at doses of 3–4 mg/kg IV) [112].
Schüpke, Mayer, and collaborators evaluated the use of revacept (80 and 160 mg) in patients
undergoing percutaneous coronary intervention (clinical phase II, ISAR-PLASTER trial)
(NCT03312855) [113]. Controversially, the results showed that revacept did not reduce my-
ocardial injury in these patients, with a few bleeding events and no significant differences
between treatment arms [114]. The high dose of revacept (160 mg) was associated with a
small but significant reduction in high-concentration collagen-induced platelet aggregation
in these patients, a smaller effect than that observed in animal models [114]. In addition
to the above, Gröschel and collaborators evaluated the safety, tolerability, and efficacy
of revacept (40 or 120 mg) in patients with carotid artery stenosis, transient ischemic at-
tacks (TIAs), amaurosis fugax, or stroke (clinical phase II, revacept CS02 multicenter trial,)
(NCT01645306) [115]. The results showed that revacept at doses of 120 mg reduced the
appearance of new ischemic lesions and the risk of adverse health events (stroke, death,
myocardial infarction, coronary intervention, and bleeding) [116].

Degen et al. designed a fusion protein by binding GPVI-Fc to ectonucleotidase CD39
(fusion protein GPVI-CD39), adding the ability to stimulate the local adenosine diphosphate
(ADP) degradation and showing a significant increase in the inhibition of platelet aggrega-
tion and a decrease in the arterial thrombi formation without increase the tail bleeding time
in vivo (3 mg/kg), when compared with GPVI-Fc alone [117]. Other cases of a modified
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GPVI-Fc protein were observed in the study performed by Wufuer and collaborators, when
GPVI-Fc was linked to polyethylene glycol (PEG), forming the protein GPVI-Fc-PEG (for a
better pharmacological release). This molecule is associated with competitive blocking von
Willebrand factor (VWF)–collagen interactions [118]. The administration of GPVI-Fc-PEG
(0.18 mg per day) showed an increase in reperfusion and an improvement in the survival
following cerebral thrombosis in a murine model, compared with treatment with GPVI
alone and without the risk of intracranial bleeding [118].

4.3. Proteins Whit a Cleavage Effect on GPVI

Chang and collaborators demonstrated that trowaglerix, a heterodimeric protein
derived from a venomous snake (Tropidolaemus wagleri), at low doses could inhibit the
platelet aggregation induced by collagen but not by ADP in a murine model (0.8 ng/g),
and could induce the loss of GPVI in vitro using human platelets [119]. These effects were
associated with trowaglerix’s ability to generate GPVI cleavage by mechanisms dependent
on ADAM [119]. In this sense, the polypeptide Troα6 (30 mg/kg) and Troα10 (10 mg/kg),
derived from trowaglerix, were able to inhibit the thrombus formation by blocking GPVI in
the D1 domain on its lower surface, as well as the D2 domain in the outer surface without
increasing the in vivo bleeding time, compared to the aspirin control [120].

Similarly, kistomin, a P–I snake venom metalloproteinase, though its proteolytic
activity inhibited the union of collagen and GPVI, it cut near the mucin-like region of
GPVI. Kistomin, in a concentration-dependent manner (0.2–12 µM), inhibited the platelet
aggregation induced by convulxin but with a slight effect on aggregation induced by
collagen [121]. Moreover, it has been reported that kistomin cleaves GPIb and has an
additional impact on platelet–VWF interactions [122]. A recent protein derived from snake
venom and with a cleavage effect on GPVI was the metalloproteinase called mutalysin-II.
This protein blocks collagen-induced platelets through the cleavage of GPIb in washed
platelets (in a concentration-dependent manner) without a cleavage effect on VWF, and
inhibits the aggregation induced by this same factor [123]. This points to mutalysin-II
potentially not being specific, making more studies necessary for the evaluation of the
potential therapeutic effects of this protein for clinical development [123].

4.4. Chemical Agents with Inhibitory Effect on GPVI

GSK669 is a benzimidazole diamide compound that Glaxo Smith Kline first devel-
oped as an anti-inflammatory agent, and was recently reported to have antiplatelet and
antithrombotic effects mediated by GPVI [124,125]. This agent is a nucleotide-binding
oligomerization domain receptor (NOD2) antagonist, and was able to significantly inhibit
platelet aggregation induced by collagen, ATP release, reactive oxygen species (ROS) gener-
ation, platelet spreading, and clot retraction (2 mg/kg) compared to the aspirin control and
through a mechanism dependent on PKC pathway signaling [124]. Its NOD2 antagonist
binds to GPVI and can significantly inhibit platelet aggregation induced by collagen and
CRP [124,125]. It also inhibits platelet adhesion to collagen under flow and murine arterial
thrombosis and pulmonary embolism in a NOD2-independent manner. A recent study pre-
sented the first side-by-side assessment of reported small-molecule GPVI modulators using
flow cytometry, aggregometry, and a CRP-XL agonist for the honokiol compounds glauco-
calyxin, cinanserin, losartan, and a novel compound developed by Bhunia et al. [126,127].
The results showed that the losartan derivate and the novel compound were the most
viable GPVI modulators because of the high specificity and inhibitory potency compared
to the other agents [126].

5. Conclusions

The search for antithrombotic treatment strategies that do not increase the risk of
bleeding and maintain hemostasis is a highly relevant issue in the global panorama of car-
diovascular diseases. In this context, the evidence showed that inhibiting GPVI mediated
by Fab-based antibodies is an excellent alternative to achieving this goal. Different studies
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have shown that the inhibition of GPVI with the antibody glenzocimab is a promising
therapy due to the crucial advances regarding clinical trials and tests in humans, main-
taining the encouraging results observed in animal and in vitro studies. Moreover, the
progress of revacept development is similar to that observed concerning glenzocimab,
showing promising results, but with some inconsistencies in cardiac patients. However,
more extensive clinical trials are necessary to confirm the clinical effects and the absence of
side effects.

On the other hand, different authors pointed out that the main advantage of revacept
as a therapeutic approach compared to other antithrombotic methods currently under
development was its efficacy profile limited to sites of atherosclerotic plaque rupture
or after coronary intervention without compromising systemic hemostasis or affecting
intrinsic platelet activity; however, results of clinical trials in phase II show that it does
not reduce myocardial injury in patients undergoing percutaneous coronary intervention,
making it necessary to conduct more studies confirming the clinical effects and safety
observed in other clinical trials. Current evidence indicates that GPVI collagen inhibition
could be used in potential antithrombotic but not antihemostatic therapy; however, the
underlying mechanisms are still unclear. From the authors’ perspectives, this could be
due to the fact that the activation of GPVI by collagen may not be essential in primary
hemostasis and may be covered by other platelet glycoproteins. However, activation by
this platelet agonist at sites of vascular injury might be necessary for thrombus formation.

Finally, this review also presented the basis for different experts and clinicians to discuss
future perspectives on GPVI antibodies and molecules targeting GPVI-mediated signaling.
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