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Abstract

As function units, network motifs have been detected to reveal evolutionary mechanisms of complex systems, such as
biological networks, food webs, engineering networks and social networks. However, emergence of motifs in growing
networks may be problematic due to large fluctuation of subgraph frequency in the initial stage. This paper contributes to
present a method which can identify the emergence of motif in growing networks. Based on the Erdös-Rényi(E-R) random
null model, the variation rate of expected frequency of subgraph at adjacent time points was used to define the suitable
detection range for motif identification. Upper and lower boundaries of the range were obtained in analytical form
according to a chosen risk level. Then, the statistical metric Z-score was extended to a new one,Zcontinuous, which effectively
reveals the statistical significance of subgraph in a continuous period of time. In this paper, a novel research framework of
motif identification was proposed, defining critical boundaries for the evolutionary process of networks and a significance
metric of time scale. Finally, an industrial ecosystem at Kalundborg was adopted as a case study to illustrate the
effectiveness and convenience of the proposed methodology.
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Introduction

Network motifs have been widely identified as basic building

blocks of many complex networks, such as biological networks [1–

3], food webs [1,4,5], engineering networks [1,6], and social

networks [7–9]. Compared with the node level and component

level, motifs can present more information about how basic

elements of networks interact with each other to let different

system functions emerge [10–15]. For example, in studies of the

hierarchy structure of a protein-protein interaction network, more

importance is attached to network motifs than nodes [16]. And

motifs are found as a good way to simplify the description of

network structure [17].

Being building blocks, motifs are widely thought to contribute to

the stability of existing networks by carrying out specific functions.

Prill et. al proved that the robustness of biological networks to

small perturbations is highly correlated with the relative

abundance of network motifs. They thought that the robust

dynamical stability plays a key role in the evolutionary process of

the non-random structure of biological networks [3]. Similar

results were also obtained in regulatory networks [18,19]. More

specifically, ordered cyclic motifs, not only in biological networks,

but also in engineering networks, were found providing dynamic

stability [20]. In ecology, Stouffer et al. empirically demonstrated

that the prey selection mechanism among species is consistent with

the properties of the over- and under-representation of the ‘food-

web’ motifs [5]. And, the network motifs, predator-prey loops,

cascade into the stability of the whole food web [4,21].

Motifs have also been considered to be structural carriers of

evolution mechanisms of networks. In studies of biological

evolution, conservation usually implies importance. The conser-

vation of the proteins in a motif is conjectured to be indicative of

the biological importance of that motif [16,22,23]. Similar results

also appear in the gene regulation networks of Escherichia Coli

and Saccharomyces Cerevisiae [24]. The relation of emergence of

motifs and mechanisms of networks has been attracting increasing

attention, especially from the perspective of network evolution.

Scholars argue about which mechanism has contributed to these

overrepresented sub-structures: structural preference, duplication

of ancestor circuits, optimal design, or natural selection and try to

explain the origin of modularity and network motifs in biology

[16,22,24–30]. Emergence of motifs in the evolutionary process

can be regarded as a key indicator on the meso scope. In other

words, it means that the footprints of evolutionary events of many

systems are suggested to be traced by network motifs [31–34].

Moreover, network motifs in the evolving systems in other

disciplines also cause wide concerns. Kaluza et al. find that robust

motifs emerge from the evolutionary process (against structural

noise signal) of flow distribution networks [35]. Hales and Arteconi

show that the four-node undirected motif distribution of the

network of cooperation between selfish nodes in a network

produced by peer-to-peer protocols kept stable at three discrim-

inate stages of the evolutionary process [36]. Squartini and

Garlaschelli report the motif distributions of the world trade

network from 1950–2000 and find that the dyadic structure of this

system carry main information of evolutionary process rather than

triadic motifs, the significant profiles of which have almost kept

stable in this process [9]. By fully taking into account the

longitudinal dimension, Bajardi et al. take dynamical motifs to

uncover the network evolution of cattle trade movements and

contribute to control measures for zoonotic diseases [34].
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Roughly speaking, network motifs can reveal evolutionary

mechanisms of systems. However, emergence of motifs in growing

networks may be problematic. According to the definition of motif,

it is a kind of small connected substructure made of 2–20 nodes

whose occurrences in the observed networks are significantly

higher than the expectation in their random counterparts [1]. In

the initial growth stage of a given network, the frequency of every

subgraph will perhaps fluctuate violently with the addition of edges

one by one. The statistical metrics of some graphs may have been

relative significant for a long time, but others may be significant

only at some single time point. It is essential to discriminate them.

For a given network, will an observed motif always be statistically

significant in the initial growth stage? In other words, it is

necessary to confirm the critical time of the evolutionary process

when the identification results of network motifs start to be

trustworthy.

Furthermore, there exist some small scale networks in some

disciplines, such as food webs, social networks and industrial

networks that are constrained by space. Unlike networks with

thousands to millions of nodes, these networks usually consist of

dozens of nodes and edges. Many motif detection methods assume

that the degree distribution of networks would follow some

standard ideal distribution types, like random, power-law, or

exponential distribution, when estimating the concentration of

subgraphs [37–42]. But this hypothesis is usually invalid before the

network grows to a certain size. It is quite hard to control the error

bounds [43].

In all, for growing networks or small scale networks, two

questions should be answered: 1) what is the critical size of target

network that can make the results of motif identification stable and

meaningful? 2) how to identify the stable motif from a group of

candidate subgraphs in the evolutionary process of networks? This

paper contributed to the two questions, and is organized as

follows: followed by the introduction part in Section 1, Section 2

provides a modified analytical framework of motif detection,

including a method to determine the critical network size and a

new statistical metric to evaluate the persistence of the appearance

of network motifs. A case study is introduced in Section 3, which

covers the evolutionary process of an industrial ecosystem over 50

years. Section 4 uses this case to illustrate the proposed detection

procedure. By testing the network robustness under different

degree’s random disturbance, the validity of the motif identifica-

tion methodology in this case is discussed in Section 5.

Methods

The traditional framework of detecting network motifs is usually

divided into four parts applying different procedures:

1. To count the frequency of each subgraph or a given one in the

investigated network,

2. To generate randomized networks by an appropriate null

model,

3. To decide whether subgraphs are topologically equivalent or

not and classify the isomorphic ones into the same group,

4. To determinate the statistical significance of each subgraph.

On the premise of acceptable detection accuracy, much time

and effort was spent on the generation of randomized counterparts

and eliminating biased sampling of this ensemble, modifying the

reasonability of the null model to exclude the influence of types of

constraints, improving the operation efficiency and scalability of

detection algorithms to match the need of finding motifs of larger

size and saving storage memory usage. The details of every aspect

of motif detection were reviewed comprehensively in these

references [1,39,42,44–51].

For the first question, it seemed to be quite complicated to

design a special procedure for each small scale network, because

the network size of each of them was usually small so that the

degree distribution was not smooth enough to fit standard degree

distribution types well. Thus, to simplify the procedure of solution-

finding and to make it universal, the null model used to generate

randomized network was proposed to fix the degree sequence of

investigated topologies.

Methods of motif detection are mainly based on two different

strategies: (1) to compare the concentration of subgraphs with the

corresponding expected values of the ensemble of randomized

networks generated by an appropriate null model, (2) to compare

the concentration of subgraphs with the corresponding expected

values in a well-chosen probabilistic model of degree distribution,

such as the power-law or Poisson distribution [2,42,52].

The methodology for motif detection was based on statistical

theory. The larger the network size was, the more reliable the

detection result was. If a new connection was added to a network,

the new result of motif detection might deviate significantly from

the original one. Therefore, it was necessary to give a reasonable

critical value of network size so that the identified motifs made

sense. Then, under the guide of the estimation formulas for the

concentration of subgraphs in E-R random network model [53], a

persuasive procedure was designed to give a reasonable answer to

the first question, shown as below.

Let us consider the E-R random network model with the

number of node N, and the number of edge E. There are all three

different placements for the three possible types of edges between

any two vertices i and j: a unidirectional edge u, a bidirectional

edge b or nonedge n. The connection density of the network p is

defined as

p~
E

N(N{1)
, ð1Þ

The probabilities for each of the three connection status is given

by

pu~2p(1{p),

pb~p2,

pn~(1{p)2: ð2Þ

According to the amount of these three connection status in

subgraphs of size three, all thirteen types of subgraphs, shown in

Figure 1, are divided into seven template types. The expected

value cm of subgraph type m is given in reference [53] as below:

cm~plpu(p)um pb(p)bm pn(p)nm sm ð3Þ

Where the number of possible placements for a subgraph of size

three is pl~N(N{1)(N{2) and sm is the symmetry factor.

Values of um, bm, nm, sm for each subgraph type are listed in
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Table 1. The detail for the derivation process of sm was described

in reference [53].

Let us consider a simple case in the E-R random null model:

give the amount of nodes N and that of directed edges E. For any

subgraph g, its expected number of appearance cg in the ensemble

of randomized networks fGi Di~1,2 � � �g generated by this null

model can be calculated by the formula (3). Now, when a new

edge is added into Gi at a time point t, the network changes from

state G(t) to another state G(t+1). At the same time, the expected

number cg also changes from ct
g to ctz1

g . Let its change ratio be f t
g ,

so

f t
g~ctz1

g =ct
g: ð4Þ

In this paper, the starting time for the procedure of motif

detection in a growing network is proposed to be given from the

time scale, which is shown as follows: If the variable f t
g of subgraph

g meets the condition,

1{aƒf t
gƒ1za, ð5Þ

it will be checked as a motif or not. The value of a depends on the

corresponding acceptable level of risk, for instance, 0.01, 0.05 or

0.1. It is necessary to emphasize that each of the seven subgraph

templates should be checked separately, because their function

types of f t
g are different from each other.

For a given set of vertices, with the growth of connectivity p

(from 0 to 1), and also the edge amount (from 0 to N(N-1)), the

change of cg and f t
g of all seven subgraph templates are shown in

Figure 2. Both the frequency amount and the percentage of each

template are given and compared in a growing network with

N = 100.

It is found that, within the range of p[½0,0:5� in the E-R random

null model, which covers the connectivity of most study cases

about network motifs, the abundance of template 1 is much higher

Figure 1. All connected directed subgraphs of size three.
doi:10.1371/journal.pone.0099634.g001
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than others. It reaches the peak at p = 1/3. In the whole range, its

percentage keeps decreasing monotonically from 100% to zero. All

the first six subgraph templates will be transformed to the seventh

one, the fully-connected subgraph. Thus, it may be conjectured

that for most real networks, subgraphs belonging to template 1

should be probably of the highest concentration.

Because of the similarity of function types of the frequency of

these seven subgraph templates, just some differences in param-

eters, the variation of f t
g at any two adjacent time points can be

simplified to five different situations: (1) Template 1, (2) Template

2 and 4, (3) Template 3 and 5, (4) Template 6, (5) Template 7.

Then, the analytical result for template 1 is taken as an example to

illustrate the procedure of defining the suitable detection range of

motif identification in terms of time.

The variation of f t
g of template 1 in networks of different size

which are generated by random null model is shown in Figure 3(A).

Each curve records a growing process of a network composed by a

set of vertices in the range of 4–20. Let 16a (a= 0.10) be the

acceptable variable range of f t
g for motif identification, which is

fielded in gray. Then the upper and lower boundaries of this range

are given in the forms of analytical solutions. It is evident that the

larger N of a network is, the wider this range is. Meanwhile, when

a is equal to 0.05 or 0.01, the corresponding functions of upper

and lower boundaries are also given, shown in Figure 3(B). It is

indicated that with the growth of a, this range becomes wider and

wider.

In our opinion, if the size of a network, represented by N and E,

locates in the area between the upper and the lower boundary, this

network should be thought reasonable to check whether the

subgraph belonging to the template type is a motif or not.

According to the equation (1), (2), (3), (4), (5), the analytical

solutions to the upper and lower boundary of each template are

calculated, given in Table 2. All seven templates have the lower

boundary, which is expressed by a quadratic equation about N and

E, and all of them except template 7 have the upper boundary,

which is expressed by a kind of logistic function. Both the two

function types are shown in Table 2, also with the corresponding

parameters for each subgraph template. The risk level a is equal to

0.10, 0.05 or 0.01 separately. The detection ranges for the first six

templates are compared in Figure 3(C). These ranges partially

overlap and they have a common area. And it is obvious that the

range of template 1 covers the widest interval. To be simple, this

paper proposes that the widest range or the narrowest one can be

regarded as the detection range for motifs detection in all

networks. It can also be treated as the necessary conditions for

the existence of network motifs.

In spite of great difference in the size of natural or artificial

networks, the birth and growth of every network should start from

scratch. It means that there should be a starting point in the

growing process of networks, when motifs may emerge from

common subgraphs and the significance can maintain stability for

a while. Unfortunately, for various reasons, the time series data of

the whole evolutionary process of most networks are too difficult to

collect.

Motifs have been identified in plenty of networks in research

fields of biology, ecology, engineering, social science and many

other artificial systems [1,5,6,9,54–60] in the past few decades.

The size of previously studied networks are marked in Figure 3(D),

in contrast with the upper and lower boundaries (a= 0.01, 0.05,

0.10) proposed in this paper. The size of social networks and food

webs are relatively small, containing just dozens of vertices and

edges. The evolutionary process of Kalundborg industrial ecosys-

tem, our case study, is also shown with black diamond.

Another important question for motif identification in the

evolutionary process of networks is how to identify stable motifs

that have continuous statistical significance from candidate

subgraphs. In other words, if the significance of some subgraph

is intermittent in time, it will not be considered as a stable motif in

terms of time. Because each metric used to measure the statistical

significance of subgraphs is based on statistical theory, the values

of motifs should be of high correlation at adjacent time points of

the evolutionary process, without serious fluctuation. The more

significant the metric is, the stronger this correlation is, and the

more reliable the result of motif identification is. In general, the

metric designed for time series analysis needs to be measured not

only for the statistical significance at a single time point, but also

for that of a certain period of the whole evolutionary process.

Now let Zcontinuous, based on Z-score at each single time point of

a continuous period, be the statistical metric to measure the

significance of subgraphs:

Zcontinuous~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P t{n{1

t logZ0
(Zt{i)n

q
§1, ð6Þ

where Z0 is the significant threshold of the metric Z-score. t-n, t-i,

and t are different time points of the evolutionary process of the

investigated network. So Zcontinuous is the metric which can reflect

the average level of the significance of a subgraph in a continuous

period of time.

A random experiment is designed to demonstrate the validity

and practicality of this new metric. In the same experiment, the

optimum value of the parameter n can be inferred. Though the

experiment is based on E-R networks, the time series data

generated by this experiment has certain representativeness about

Figure 2. The amount and the percentage of each subgraph template in a randomized network with N = 100. (A) The change of the
count of each subgraph template, with the connection density p[½0,1�. (B) The change of the percentage of each subgraph template with p[½0,1�.
doi:10.1371/journal.pone.0099634.g002
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the fluctuation of Z-score values in real networks. Its positive

significance lies in offering a kind of thought and an operation

method to optimize the parameter n in eq. 6.

In order to simulate the temporal variation of the metric Z-score

of subgraphs in real networks, 100 random numbers around the

statistical threshold (let Z0~2) are generated by the function (7) as

below, which is designed to be of both the time continuity and

randomness, shown in Figure 4(A):

f (t)~3(sin(t=10)zrandom({1,1)), ð7Þ

where t = 1, 2…, 100 represent time points of evolutionary process

of networks. And random(–1,1) means random number between

21 and 1.

The gray part represents the significant area of Z-score.

According to the principles for motif identification process in time

series data proposed above, the statistical significance should be

continuous in time. In other words, in the growing process of

networks, the statistical significance of each time point should be

reappraised by Z-score values of its neighbor time points. If there

is an isolated significant or non-significant time point in a period,

its feature will be replaced by the average level of its neighbors’.

According to this criterion, the ideal identification result (Ideal) of

significant range can be given. In Figure 4 (A), although points A,

E, F and G are located upon the threshold line, points B, C, D and

H are located below it, the corresponding identification results

should be reversed, referring Z-score of the adjacent time points

around each of them. Set this ideal identification result as the

benchmark, then compare this ideal result with that calculated by

formula (6), where n = k, k = 1, 2…, 10. The time points of the

appearance of motifs in the evolutionary process are marked in

black, shown in Figure 4(B). The accuracy of the identification

result by Zcontinuous for each n is given in the last column. It is

found that the identification result of n = 3 is of the highest

accuracy, and that of n = 2 is second highest, while that of n = 1 is

just 92%. Therefore, the recommended value of the parameter of

n in formula (6) is 3. It is concluded that Zcontinuous performs better

Figure 3. Defining suitable detection range for different subgraph templates based on E-R random null model. (A) The rate of
frequency change of subgraph template 1 f t

g in growing networks with fixed number of vertices N, which varies from 4 to 20. The range between
16a is fielded in gray. a= 0.1. (B) The detection range of subgraph template 1 for networks of different size and connectivity. (C) The detection range
for different subgraph templates (T1–T6). a= 0.1. (D) Networks from multidiscipline are compared with the suitable detection range for subgraph
template 1.
doi:10.1371/journal.pone.0099634.g003
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than Z-score based on single point when we analyze time series

data of growing networks.

Materials

Our case study investigated an industrial ecosystem at

Kalundborg in Denmark, which has evolved for more than fifty

years since 1961. Many cooperative relationships among enter-

prises were established by reusing or recycling of industrial wastes

and sharing infrastructure services.

In this industrial network, enterprises were abstracted into

vertices and material and energy flows between each pair of them

were abstracted into directed edges. By now, there have been 20

vertices and 35 directed edges. Its growth process is shown in

Figure 5 (A), in which the chronological order of these directed

edges are marked with the serial number 1, 2…, 35. Multiple

edges were conserved in the description of networks, but simplified

in the process of motif detection. All the information about our

case was obtained from the official website of Kalundborg

symbiosis: http://www.symbiosis.dk/en/system.

Before applying the framework based on E-R random model to

identify network motifs in our case study, we examined its in-

degree and out-degree distribution in 2011 (shown in Figure 5 (B))

to verify that the application network is of E-R type, Scale-free

type or neither. Chi-square test was used to examine the

hypothesis that the in-degree or out-degree follows a Poisson

distribution, while K-S test [61] was used to quantify if the in-

degree and out-degree of application network are drawn from

power-law distribution. The in-degree data passed the chi-square

test, but the out-degrees did not (p~1:014|10{14). For K-S test,

both the in-degree and out-degree data passed, with power

exponentcin~1:95, cout~3:02, and X in
min~1, X out

min~4, respec-

tively. It was noticed that although in some situations the degree

data passed statistical tests, there are only four data points of

degree values in the dataset of in-degree distribution and also out-

Figure 4. Results of motifs identification in a random experiment. (A) The variation of the significance metric Z-score in the whole
evolutionary process. (B) Identification results of motifs when n is equal to 1, 2……10, separately. The accuracy of each n is compared with the ideal
result in the first row.
doi:10.1371/journal.pone.0099634.g004
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degrees’. For networks of small scale, the dataset was not big

enough to fit some classical degree distribution well. In our

research, E-R random model was regarded as a default model to

describe small scale networks.

An ensemble of 1000 randomized networks with the degree

sequence given by the investigated network was generated to

calculate the expected value and the standard deviation of the

frequency of each subgraph of size three. ‘‘Switching’’ strategy was

used to realize the randomized process: each edge was exchanged

10 times and each exchange attempted 10 times. FANMOD was

used to identify motifs in the case study based on the parameters

introduced above [48]. During the randomized process, unidirec-

tional edges were only exchanged with unidirectional ones. The

same applied for bidirectional edges. Therefore, the number of

incident bidirectional edges remained constant for each vertex.

Both the metric Z-score and Zcontinuous (n = 3) were used to

measure the statistical significance of all subgraphs. As assumed

and proven by many studies except for some networks in biology,

the distribution of the frequency of subgraphs in the ensemble of

randomized networks generated by null models fit the normal

distribution well, the thresholds of ‘‘Z-score’’ are set at ‘‘1.281’’,

‘‘1.645’’, and ‘‘2.326’’ under the different confidence level ‘‘90%’’,

‘‘95%’’ and ‘‘99%’’[50]. For our case study, the threshold of Z-

score was set to Z0~1:3. The threshold of the frequency of motifs

was suggested to be 5.

Results

Within this growth process of the industrial network at

Kalundborg, the sum of the frequency of subgraphs has also been

increasing. By 2011, ten types of subgraphs (No.1–7, 9, 10 and 12

in Figure1.) have been found in the evolutionary process, but only

four of them (subgraph No.1–4) have appeared more than four

times (the frequency threshold of network motifs). The variation of

the percentage of these four subgraphs and the sum of the

frequency of all three-vertices subgraphs, marked in gray, are

shown in Figure 6(A). It is obvious that the percentage of

subgraphs (No.1, 2, 4) tends to be stable after the appearance of

the fifteenth edge, within the range of 20%,40%. But before that,

these curves fluctuate quite sharply.

According to the method of motif identification proposed above,

it was necessary to first define the suitable detection range for each

subgraph in this case. Subgraph No.1 and 2 belonged to template

1, while subgraph No.4 belonged to template 2. Let a= 0.1. Then,

reading from Table 2, the corresponding upper and lower

boundaries for each template are separately listed in Table 3:

Plug the growth data of the industrial network into functions

(4,5) and then the critical size of it for each template is obtained.

The suitable detection range of template 1 starts from N = 11 and

E = 16. By contrast, the range of template 2 is much narrower,

starting from N = 17 and E = 29. With the formula (6), the

significant range of subgraphs No.1, 2 and 4 are calculated and

shown in Figure 6(B), (C) and (D), with the variation of the

corresponding Z-score. The frequency of each subgraph and that

of the average value of 1000 randomized networks are compared.

The error bar represents one time the size of standard deviation,

marked in red. Among the three subgraphs, only No.2 is the

significant motif which covers all suitable detection range besides

N = 19, E = 33. By analyzing the variation of Z-score, it is seen

that in the first half growth stage of the network, this statistical

metric fluctuates irregularly, while in the second half stage, its

value tends to be stable, by comparison. This common phenom-

enon also means that with the growth of this industrial network,

the identification results turn to be more and more trustworthy

and it is necessary to set the detection range for motif

identification, just as was proposed in the method section.

In order to illustrate the reliability of the result of motif

identification in our case, another random experiment is designed.

A new metric named the combination of subgraphs’ frequency

(CSF) is proposed here: for a given network G, the frequency of

every subgraph of size k can be enumerated as: f1, f2…, fm. Then,

these data make up a sequence of frequency, which is named the

sequence Q. It is unique for a given network. But for the same

Q~ff1,f2 . . . ,fmg, it may correspond to different network

topologies.

For the whole evolutionary process of a growing network,

assume that the number of vertices N and that of edges E have

always kept increasing. When t~ti, the three measurements of the

network Gi are Ni, Ei and Qi, respectively. We can learn what

happened to the growth process of Gi by investigating the

differences of Qi in an ensemble of randomized networks that are

generated by operating the switching algorithm for several times

on Gi. In other words, it can tell us the necessity of defining the

suitable detection range for motif identification.

The detail of this randomized experiment is clarified as

following:

Figure 5. The structure and degree distribution of the industrial network at Kalundborg. (A) Red vertices represent enterprises and links
represent material and energy flow. The chronological order of these directed edges are marked with the serial number 1, 2…, 35. (B) The in-degree
and out-degree distribution in 2011.
doi:10.1371/journal.pone.0099634.g005
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(1) For a given network Gi with Ni vertices and Ei directed edges,

randomly select two directed edges aRb and cRd in it, then

exchange their ends to form two new edges aRd and cRb,

repeat this procedure for n times to generate 1000 randomized

networks: G1
i , G2

i …, G1000
i . The switching times n ranges from

1 to 10E.

(2) Enumerate all different Qi in the ensemble of 1000

randomized networks {G1
i , G2

i …, G1000
i }. Record the sum

value as the metric Sij when N = i and E = j.

(3) Fix Ni, and increase Ei, then, record the variation of Sij at

every time point.

(4) Let i = 1, 2…, 35. Repeat (1–3) at different i.

Figure 6. Identifying motifs in the evolutionary process of the industrial ecosystem at Kalundborg from 1961–2011. (A) The variation
of the percentage of four subgraphs (No.1–4) and that of all three-vertices subgraphs. (B) The result of subgraph No.1. The suitable detection range is
the right area in gray. Its frequency is compared with that of the average level in the ensemble of 1000 randomized networks. The error bar, marked
by red sticks, represents the standard deviation. The variation of statistical metric Z-score is marked by hollow black box. (C) The result of subgraph
No.2 and the corresponding significant region. (D) The situation of subgraph No.4.
doi:10.1371/journal.pone.0099634.g006

Table 3. Detection boundaries for subgraphs in the industrial ecosystem at Kalundborg (a= 0.1).

Boundary Template1 Template2

subgraph No.1, 2 subgraph No.4

Upper y = 25.716–3.307x+1.040x2 y = 21.34–21.27/(1+(x/7.571)2.324)

Lower y = 23.092–2.735x+1.030x2 y = 31.69–31.54/(1+(x/7.257)2.533)

doi:10.1371/journal.pone.0099634.t003
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In our research, the metric Sij is regarded as another type of

measurement of the randomized degree of the given network Gi,

corresponding to the switching times n. This view can be explained

as follows. With the growth of n, the number of non-isomorphism

topologies generated from Gi is also increasing. It means that more

and more different network topologies appear with the increase of

Ei, also the corresponding Sij . It is necessary to emphasize no

matter how many times this network is executed the switching

procedure for, the ensemble of all possible non-isomorphism

networks share the same in-degree and out-degree sequence with

Gi. Therefore, when n is large enough, Sij can enumerate all

possible Qi. That is to say, at this time, Si reaches its maximum

value lim
n??

Si. In fact, the metric Si can also be replaced by

enumerating non-isomorphism topologies in the set {G1
i , G2

i …,

G1000
i }, but it has to face the NP problem: the isomorphism

identification of graphs.

Referring to the threshold of detection range of motif

identification, the evolutionary process of the Kalundborg case

in the interval E[½14,24� which covers the lower boundary of

subgraph template 1 at a= 0.1 is cut out to illustrate the necessity

and accuracy of the proposed method.

With the increase of n, Sijat the time points (E = 14, 16, 18, 20,

22, 24) are compared and shown in Figure 7(A), (B). It is

concluded that the curvature of each curve decreases gradually

and converges to a constant. This constant represents the

maximum value of Sij . The most distinct difference among these

curves is how many switching times it costs to reach to the extreme

value Si0. It seems a little hard to distinguish when the network Gi

is adequately randomized. In our research the exponential

function y~y0zAe{x=t is adopted to approximate these curves.

Stipulate that if S§0:9S0, the network Gi is thought to be

adequately randomized. Then the critical switching times n0 and

rewiring ratio r0 (dividing n by E) of each curve can be calculated

and marked in Figure 7(A), (B). When E = 14, the network is

adequately randomized just by executing the switching times

twice, but later, n0 increases to over twenty. From the rewiring

ratio point of view, when E = 14, Si approaches to its maximum

value rapidly only by rewiring 13% of the edges, and for E = 16, a

little better, 42%. For the time interval E[½18,35�, r0 exceeds

100% rapidly. These changes indicate that the result of motif

identification before E = 18 is quite easily influenced by tiny

disturbances and it is not trustworthy. However, with the increase

of n0 and r0, the reliability of results improve significantly.

Therefore, it is concluded that the threshold of the detection range

proposed in the method of motif identification is reasonable and

necessary, especially for those small scale networks, such as food

webs, social networks and industrial networks.

Discussion

Network motifs emerge from the evolutionary process of

systems, and meanwhile, grow up to the overrepresented

subgraphs. Therefore, it is quite an interesting and important

question how shall we distinguish subgraphs which have the

potential to be network motifs from common ones, especially in

the initial stage of evolving networks. In other words, it is necessary

to define the threshold of network size for the detection of motifs.

The approximate solutions to the expected value of the

appearances of subgraphs in an ensemble of randomized networks,

characterized by arbitrary degree sequence, have been given.

However, the irregular degree sequences of each real network

deviating from standard degree distribution types significantly

increase the calculation account. This then leads to the difficulty to

define the universal threshold for all networks along the lines

proposed in our research. It seems likely that the ratio f t
g may

exceed the interval [0.9, 1.1] for several times at different time

points of real evolving networks. Based on the exact equations for

the concentrations of all subgraphs in the E-R random network

model, this question is simplified into evaluating the relations of

two metrics, N and E of real networks for each subgraph. The

corresponding answer should be effective and acceptable to most

networks except for those extreme heterogeneous structures, such

as star nets.

In the detection of motifs in small networks on time scale, the

result at single time point may cause the false appearance of

network motifs without considering continuity. The emergence of

motifs is generally thought to be caused by optimal design,

duplication behavior, or structural preference of the evolutionary

process of systems. These important principles are usually

unknown, especially in the beginning of evolution, or just assumed

by researchers, and needed to be verified by more experiments

and data. To decrease false alarm rate of motif detection, it is

necessary to expand the definition of traditional measurements of

statistical significance to that reflecting the average level in a

continuous period of time. For subgraphs whose appearance is just

over the frequency threshold of motif, it is particularly important,

either in small scale networks or huge networks [41].

The conclusion of lower and upper boundaries of motif

detection in growing networks is deduced by E-R random network

model. There are also some other kinds of network models to

describe the degree distribution of real network, such as scale-free

model, small-world model, and regular network model. Each of

the structural characteristics of these three network models is more

complex than that of E-R random model. For the scale-free model

of directed networks, the power exponent of the in-degree and out-

degree data may be different, and their values can vary in a

relatively wide range in the set of positive real number. In

addition, the starting point of fat tail in some common scale-free

models could also be different. Because there are more hub

vertices in scale-free networks, they could seriously affect the

frequency of subgraphs around them, When a new connection is

added with obvious preference attachment, it is probably that the

change ratio of the frequency of some subgraphs will be very large.

Thus, the corresponding lower boundary is supposed to be higher

than that of E-R random model, contrary to the conclusion of the

upper one. Of course, more accurate results of scale-free model

should be proved by strict theoretical analysis and computer

simulation experiments.

Conclusion

In many disciplines, motifs are expected to bridge the

communication gap between elementary components and macro

properties of networks, such as degree distribution. Thus, by

investigating emergence of network motifs, it should be an

important perspective to explore and uncover organization rules

and evolution mechanism of different systems. The initial growth

period of networks could be changeable and many statistical

characteristics tend to be stabilized gradually. Just in this special

period, the transition of common subgraphs to motifs could be

captured and mechanisms behind them become clear. Our

research contributes to the traditional methodology of motif

identification, which can help us to reject those pseudo motifs and

find more robust results. Although only the directed networks are

considered in our research, the method for undirected networks

can be easily deduced with the same idea.
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