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Abstract

Concentrations of heme b were determined in a mesocosm experiment situated in Gullmar

Fjord off Sweden. The mesocosm experiment lasted for ca. one hundred days and was

characterised by the growth of a primary nutrient replete and a secondary nutrient deplete

phytoplankton bloom. Heme b varied between 40 ± 10 pmol L-1 in the prebloom period up to

a maximum of 700 ± 400 pmol L-1 just prior to the time of the primary chlorophyll a maximum.

Thereafter, heme b concentrations decreased again to an average of 120 ± 60 pmol L-1.

When normalised to total particulate carbon, heme b was most abundant during the initiation

of the nutrient replete spring bloom, when ratios reached 52 ± 24 μmol mol-1; ten times

higher than values observed both pre and post the primary bloom. Concentrations of heme

b correlated with those of chlorophyll a. Nevertheless, differences were observed in the rela-

tive concentrations of the two parameters, with heme b concentrations increasing relative to

chlorophyll a during the growth of the primary bloom, decreasing over the period of the sec-

ondary bloom and increasing again through the latter period of the experiment. Heme b

abundance was therefore influenced by nutrient concentrations and also likely by changing

community composition. In half of the mesocosms, pCO2 was elevated and maintained at

ca.1000 μatm, however we observed no significant differences between heme b in plus or

ambient pCO2 mesocosms, either in absolute terms, or relative to total particulate carbon

and chlorophyll a. The results obtained in this study contribute to our understanding of the

distribution of this significant component of the biogenic iron pool, and provide an iron

replete coastal water end member that aids the interpretation of the distributions of heme b

in more iron deplete open ocean waters.

1. Introduction

Iron is an essential element for life due to its role as an electron donor or receptor in proteins

[1]. Approximately 40% of iron proteins utilise the iron containing tetrapyrrole heme as a
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cofactor. Heme is produced via insertion of iron into protoporphyrin (IX) during tetrapyrrole

synthesis, in a process analogous to the production of chlorophyll [2, 3]. Hemes occur in a

variety of different structures and are widespread in living cells [2]. Free heme, unbound to an

apoprotein, is highly toxic to cells and miss-regulation can lead to severe oxidative stress [4].

As a result, biochemical pathways associated with heme are tightly regulated by complex feed-

back systems [2]. The function of a hemoprotein is dependent upon iron ligation, charge state

and the addition of different substituents on the tetrapyrrole ring [5]. Heme b, also known as

iron protoporphyrin IX, is a versatile and abundant heme in marine organisms, contributing

to between 10 and 20% of the cellular iron pool [6] and is vital to many metabolic processes

[2]. Heme b is found in b type cytochromes, cytochrome p450, catalases, peroxidases, nitrate

reductase and globins [3, 7]. Heme b plays a role in photosynthetic and respiratory electron

transport, nitrate reduction and oxygen transport and storage [2, 3] and thus there could

be a connection between heme abundance and marine carbon and nitrogen biogeochemi-

cal cycling. Heme may also constitute a significant source of iron to marine bacteria, as spe-

cific heme uptake pathways have been described in many bacterial species [8–11]. Despite

the importance and ubiquity of hemes within marine plankton, few studies have investi-

gated hemes in the marine environment. Recently, heme b distributions in the open sea

and phytoplankton monocultures have been described, and related to patterns of nutrient

distributions and the resultant differences in phytoplankton species composition [6, 12,

13]. However, these studies represented a snapshot of heme b distributions at one point in

time, and it is not known how heme b varies in time over the evolution of a phytoplankton

bloom of mixed species composition. Understanding the relationship between heme b and

bloom dynamics is important, in order to confidently assign large variability in heme b to

nutrient, and in particular, iron availability [6, 12, 13].

The response of heme b to emerging environmental changes is also unknown. With

global industrialization, the concentration of carbon dioxide (CO2) in Earth’s atmosphere

has risen faster than previously recorded. Fossil fuel burning, cement production and defor-

estation have resulted in recent atmospheric pCO2 surpassing 400 μatm [14]. As the surface

of the global ocean absorbs increasing quantities of CO2, the seawater carbonate equilib-

rium shifts towards lower levels of carbonate (CO2
3-) and increased bicarbonate (HCO3

-)

and results in a decrease in seawater pH [15]. This process, termed “ocean acidification”,

also changes iron availability, as iron solubility and iron ligand chemistry change as a func-

tion of pH [16–19]. Since heme b synthesis is dependent on the insertion of iron, heme b
abundance could therefore also be influenced by increased CO2 resulting from changes in

the abundance of individual hemoproteins. Thus, while photosynthetic productivity is typi-

cally reported to increase [20], individual photosynthetic proteins have differential and

inconsistent responses to increased CO2 [21–23].

Here, we describe the abundance of heme b over the course of a 100 day “Kiel Off-Shore

Mesocosms for future Ocean Simulation” (KOSMOS) [24] study in Gullmar Fjord, Sweden.

The experiment was a large multidisciplinary program and the full details are reported in the

first paper of this collection [25]. Our aims in the KOSMOS experiment were to firstly quantify

and describe heme b abundance in an iron replete marine community over the evolution of a

phytoplankton bloom and secondly to study the response of heme b to increased pCO2. Rela-

tionships between heme b, chlorophyll a (chl a), total particulate carbon (TPC) and total par-

ticulate nitrogen (TPN) were therefore examined during the mesocosm plankton bloom

exposed to low and ambient pH treatments.

Heme b abundance over a phytoplankton bloom
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2. Materials and methods

2.1. Mesocosm installation, CO2 manipulation and maintenance

Mesocosm deployment, manipulations, and maintenance are described in detail in this collec-

tion in [25]. Briefly, an array of 10 KOSMOS units was moored in Gullmar Fjord, Sweden, in

January 2013. Each unit consisted of an 18-meter deep mesocosm bag attached to a buoyed

floatation frame ending in a conical-shaped sediment trap and covered above the surface by a

hood. Mesocosms were closed prior to the main experiment on 7th March 2013 (Day (T) = -2)

when daily CTD (conductivity, temperature, density) profiles indicated a moderate salinity

(29.1) inside the mesocosms. All mesocosms were subsequently bubbled with air using a

spider device [24] which resulted in a well-mixed water column and the absence of density

stratification.

CTD profiles and macro nutrient analysis indicated no significant differences between the

initial mesocosm conditions. Five were randomly chosen as high CO2 replicates whilst the

remaining five were left as ambient control replicates. Over the course of four CO2 additions

(T = -1, 0, 2 and 4) mesocosms 2, 4, 6, 7 and 8 were manipulated to ca. 1000 μatm pCO2 [25]).

Further CO2 additions were made on days 17, 46, 48, 68 and 88 in order to maintain signifi-

cantly elevated pCO2 in the manipulated mesocosms.

Field work arranged through Sven Lovén Centre for Marine Sciences, Kristineberg. Permis-

sion for the fieldwork was obtained from the The County Administrative Board of Västra

Götaland, (Decision 2012-12-11, Diarienummer 258-39615-2012).

2.2. Sampling

Vertical profiles of temperature and salinity were measured in every mesocosm and the adja-

cent fjord water every second day between 14.00 and 16.00 hours using a CTD (Sun and Sea

technologies). Samples for chl a, nutrients (nitrate+nitrite, phosphate, silicate) and TPC/N

were collected from each mesocosm and the adjacent fjord water every two days, and heme b
every four days, between 09.00–12.00 hours from 10th March 2013 (T1) to 14th June 2013

(T97) using an Integrated 5 L Water Sampler (IWS; Hydro-Bios, Kiel, Germany), which

enabled collection of integrated water samples to 18 meters depth.

Subsamples (1 L) for heme were filtered at The Sven Lovén Centre for Marine Sciences

(Kristineberg, Sweden) onto 25 mm, 0.7 μm pore size glass microfiber filters (MF300, Fisher

Scientific, Leicester, UK). Filters were stored at -80˚C in plastic microcentrifuge tubes (Eppen-

dorf) before laboratory analysis at National Oceanography Centre, Southampton, UK. Samples

(800 mL) for chl a determination by HPLC were filtered (0.7 μm glass fibre filters) prior to

being frozen at -80˚C before analysis. Water samples for TPC/N analysis (500 mL) were fil-

tered onto pre-combusted glass microfiber filters before storage at -20˚C. Water samples for

nutrient analysis were collected directly from the water sampler into 200 ml polyethylene bot-

tles (Nalgene).

2.3. Analysis of nutrients, chl a and total particulate carbon/nitrogen

Analysis of nutrients, chl a and TPC/N are described in detail in [25]. Briefly, for nutrients,

samples were syringe-filtered (0.45 μm acetate cellulose filters, Whatman) prior to analysis

conducted on the same day using a QuAAtro autoanalyser (SEAL Analytical, ACCE software).

After the 37th day, concentrations of nitrate and phosphate became too low to detect with the

QuAAtro autoanalyser, and were instead determined using a nanomolar nutrient system

equipped with long wave guide capillary cells [26, 27]. Detection limits for the nanomolar sys-

tem were 2 nmol L-1 for nitrate and 1 nmol L-1 for phosphate.

Heme b abundance over a phytoplankton bloom
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Chl a was analysed by HPLC after extraction into 90% acetone as described in reference

[28]. Samples for TPC/N were analysed after combustion using an elemental analyser [28].

Samples were not acidified prior to analysis so reported concentrations include a contribution

from particulate inorganic carbon. However, calcification was not thought to be significant in

the mesocosms [25], so particulate carbon is likely to be have been mostly organic.

2.4. Heme b determination by high performance liquid chromatography

Heme b was quantified following the method of Gledhill [29, 30]. Heme b was extracted into

ammoniacal detergent (2.5% Octyl gluco pyranoside in 0.02 mol L-1 NH4OH) and analysed

using an Accela High Performance Liquid Chromatography system equipped with a photo-

diode-array detector (HPLC-PDA, Thermo Scientific) and an electrospray ionisation mass

spectrometer (ESI-MS, LTQ-Velos, Thermo Scientific). The aqueous mobile phase consisted

of 0.1% nonafluoropentanoic acid (NFPA). The organic phase was a 1:1 (v:v) mixture of iso-

propanol and acetonitrile with the addition of 0.1% NFPA. Heme b was separated from other

pigments using a polystyrene divinyl benzene HPLC column (PLRP-S, Agilent Technologies).

A gradient of 90% aqueous: 10% organic phase to 100% organic phase over 20 minutes fol-

lowed by 10 minutes isocratic elution with 100% organic phase was used. The flow rate was

set to 200 μL min-1 with an injection volume of 100 μL. In this study we used UV absorbance

at 400 nm to quantify heme b [29] rather than the ESI-MS signal [30], as the ESI-MS signal

appeared to be suppressed by high levels of background organic material. Nevertheless the MS

allowed us to confirm that the UV response was due to heme b [30]. The analytical detection

limit (= blank + (3 × standard deviation of the blank)) was determined daily and averaged 9±8

pmol heme b L-1 seawater.

The extraction of heme b with an ammoniacal detergent for HPLC is known to be incom-

plete [6, 12] and therefore values obtained in this study are operationally defined, not fully

quantitative. However, the application of identical methods as previously used to determine

chl a: heme b relationships in open ocean systems [6, 12], permits a comparison to the coastal

fjord of this study.

2.5. Statistical analysis

Graphs and statistical analysis were completed using SigmaPlot v.12.3. Values are expressed as

mean ± 1 standard deviation for the entire experimental period. As all parameters failed Sha-

piro Wilk normality tests (p =>0.05), the non-parametric One Way ANOVA on ranks was

used to assess significant differences between pCO2 treatments.

3. Results

3.1. Temperature, salinity and nutrient concentrations in the mesocosms

and Gullmar Fjord

Mesocosm bags were left open for more than 48 hours after deployment to allow complete

water exchange and the reduction of inter- mesocosm variability with regards to small-scale

biological and chemical patchiness within the fjord. The lack of detectible differences in salin-

ity, temperature, density, chl a and nutrients were a prerequisite for closing. A detailed discus-

sion on general mesocosm conditions, including salinity, temperature and pCO2 is presented

elsewhere [25]. Salinity in the mesocosms at the start of the experiment was 29.1 ± 0.1 and was

stable throughout with an overall average of 29.2 ± 0.1. Temperatures increased gradually

from 2.1 ± 0.15˚C at the beginning to 16 ± 0˚C at the end of the experiment (Fig 1). Ambient

and high pCO2 mesocosms averaged 394.99 ± 50.89 and 789.28 ± 184.41 μatm respectively.

Heme b abundance over a phytoplankton bloom
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Statistical analysis described in [25] confirmed significant differences (p =<0.001) in pCO2

between treatments, whilst replicate mesocosms within each treatment were not different (p =

>0.05). However, no significant differences were observed for physical or nutrient data when

pCO2 treatments were compared [25], hence in this study we present and consider only overall

averages for parameters in the mesocosms. Nitrate + nitrite concentrations (hereafter termed

nitrate or N for simplicity) decreased from an average of 6.9 ± 0.3 μmol L-1 at the beginning

of the experiment (day 1) to concentrations below 0.1 μmol L-1 on day 35 (Fig 2A). Phosphate

followed a similar trend, decreasing from 0.73 ± 0.02 μmol L-1 to levels below 0.1 μmol L-1 on

day 37 (Fig 2B). Silicate concentrations also decreased over the course of the experiment from

a maximum of 10.2 ± 1.0 μmol L-1 on day 2, although levels of silicate did not drop below

0.5 μmol L-1 until after day 57 (Fig 2C).

At the time of mesocosm closure, CTD profiles showed that the adjacent fjord was strongly

stratified at ~ 12 meters depth. pCO2 averaged 361.8 ± 47.55 μatm in the fjord during the

course of the experiment. Salinity at the fjord sampling point fluctuated between 22 and 31,

reflecting the more dynamic mixing regime of the fjord proper. Temperatures, however, were

very similar to those observed in the mesocosms, and increased from 1.9 to 16.1˚C (Fig 1).

Nutrient concentrations in the surface waters of the fjord were all slightly lower than those in

the mesocosms on T = 0 (Fig 2A–2C), likely a result of changes in water mass in the fjord

between the day mesocosms were closed (T = -2) and the start of the experiment. A decrease

in N and P was observed between days 25 and 31 that tracked the decrease observed in the

mesocosms over the same time period. After day 31 concentrations of N, P and Si fluctuated,

albeit at lower concentration than observed at the beginning of the experiment. The concentra-

tion of P (but not N or Si) correlated with salinity (r = 0.61, p< 0.01, n = 34) indicating that

physical mixing processes within the fjord proper were likely to be at least partially driving the

observed fluctuations.

3.2. Average chl a, POC, PON, and heme b in the mesocosms and fjord

Chl a concentrations rose from an average of 0.40 ± 0.02 nmol L-1 one day after mesocosm clo-

sure up to a maximum of 4.5 ± 1.4 nmol L-1 33 days after mesocosm closure (S1 Table). At the

Fig 1. Salinity and temperature profiles in the mesocosms and fjord throughout the experiment.

https://doi.org/10.1371/journal.pone.0176268.g001
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start of the experiment, average chl a concentrations were indistinguishable between pCO2

treatments and no statistical difference was observed in the daily average chl a concentrations

between treatments. Maximum chl a concentrations in the mesocosms were observed an aver-

age 30.4 ± 1.3 days after the mesocosm bags were closed, however as chl a peaked on slightly

different days after mesocosm closure in different mesocosms, we normalised the timescale for

each mesocosm to the day of maximum observed chl a (= day 0). Normalisation of time to the

day of maximum chl a allowed us to examine the bloom progression consistently in the meso-

cosms, and to resolve any temporal differences between chl a and heme b concentrations.

Adopting this approach showed that chl a in the mesocosms increased exponentially for

approximately 14 days prior to peaking at an average value of 4.7 ± 1.2 nmol L-1 (Fig 3A). A

rapid decrease in chl a concentration was recorded before a secondary maximum occurred

Fig 2. Average nutrient concentrations from a depth integrated water sampler (0–18 m). (a) nitrate

+ nitrite, (b) phosphate and (c) silicate in the mesocosms (circles) and adjacent fjord (triangles) throughout the

experiment. Values for mesocosms are expressed as the average ± standard deviation (n = 10).

https://doi.org/10.1371/journal.pone.0176268.g002
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Fig 3. (a) Chlorophyll a concentrations, (b) heme b concentrations and (c) (nitrate + nitrite): phosphate ratio

(N:P) in the mesocosms as function of time. Values are expressed as averages plus or minus the standard

deviation. For chlorophyll a and N:P, n = 10, for heme b, n varied between 1 and 6, averaging 4.6, depending

Heme b abundance over a phytoplankton bloom
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after a further 22 days, with an average chl a concentration of 3.8 ± 1.0 nmol L-1. The experi-

mental period was split into five stages based on the chl a concentrations (Fig 3A): (A) Days

-30 to -14 encompassed the initial pre-primary bloom period of slight increase/stable chl a, (B)

days -12 to 0 incorporated the growth of the primary bloom, (C) days 2–10 included the

decline of the primary bloom (D) days 12–20 encompassed the growth of the second bloom

and (E) days 22–76 characterized by the gradual decline of chl a until the end of the experi-

ment. We use a different notation than those used elsewhere in this collection as we have nor-

malised bloom progression to chl a, however our stages are broadly comparable to those

described in [25]. (A) is thus similar to period I, (B) and (C) encompass period II, (D) corre-

sponds with the first part of period III and (E), the second half of period III and period IV.

Average heme b concentrations for each day normalised to the time of the chlorophyll a
maximum are presented in Fig 3B and given in S1 Table. Initial mesocosm heme b concentra-

tions remained below 100 pmol L-1 in period (A) (Fig 3B), averaging 40 ± 10 pmol L-1 (n = 6).

Heme b concentrations then increased sharply over a four day period, peaking at 700 ± 400

pmol L-1, 4.4 ± 4.3 days before the chl a maximum was observed. In period (C), heme b con-

centrations decreased until eight days after the chl a maximum, at which point chl a also

reached a between bloom minimum. However, in contrast to chl a, heme b remained relatively

constant in the mesocosms in periods (D) and (E) after the primary bloom period, averaging

120 ± 60 pmol L-1 overall (n = 133).

The decrease in chl a and heme b coincided with a decrease in the N:P ratio in the mesco-

cosm from an initial period (A) average of 9.1 ± 0.3 (n = 9) (Fig 3C). N:P ratios were slightly

lower in period (B) and began to decrease began four days before the peak in chl a concentra-

tions. Period (C) was characterised by a marked decrease in N:P ratios until nutrient concentra-

tions fell below 0.1 μmol L-1 in period (D). The decrease in N:P suggests that nitrate + nitrite

was consumed more rapidly than phosphate and that the bloom in the mesocosm was thus

nitrate limited.

In period (A), both TPC and TPN were relatively stable, averaging 15 ± 1 and 2.0 ± 0.2 μmol

L-1 respectively (n = 79). Total particulate carbon and nitrogen then increased and reached

maxima of 50 ± 13 (n = 10) and 6.7 ± 0.7 μmol L-1 (n = 10) in period (B), 4 days after the chl a
maximum. After reaching a maximum, TPC and TPN both declined gradually with time, before

increasing again to a secondary maximum coincident with the second chl a maximum on day

22 (S1 Table).

In the adjacent fjord, the maximum chl a concentration was observed 29 days after the

mesocosm bags were closed and thus coincided temporally with the maximum chl a concen-

tration in the mesocosms (S2 Table). However, in contrast to the mesocosms, during the early

phase of the experimental period, chl a in the fjord fluctuated between 0.4 and 2.3 nmol L-1,

likely a result of the more variable mixing regime observed in the fjord itself (Fig 3D).

Heme b concentrations in the fjord at the start of the experiment were similar in magnitude

to those within the mesocosms. During the course of the experiment, heme b concentrations

ranged from below the detection limit up to a maximum fjord heme b concentration of 160

pmol L-1, occurring in the final days of the experiment (Fig 3E, S2 Table). Heme b concentra-

tions did not reach a distinct maximum in the fjord, despite increased chl a concentrations

on how many samples were taken on any given day relative to the chlorophyll a maximum. (d) Chlorophyll a

concentration, (e) heme b concentration and (f) N:P ratio in the Gullmar Fjord over time. Only one sample was

collected from the fjord each sampling day. Day 0 was defined as the day that chlorophyll a reached a

maximum and occurred between the 6th and 10th April (average 30.2 ± 1.9 days after mesocosm closure) in

the mesocosms and on the 7th April 2013 in the fjord. The experiment was divided into five different periods

based on the changes in chlorophyll a as denoted by the capital letters A—E.

https://doi.org/10.1371/journal.pone.0176268.g003
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(Fig 3E). The ratio of N: P in the samples collected from the Gullmar Fjord was greater than 10

for the first five days of the experiment (Fig 3F). Thereafter, N:P ratios were generally less than

10 until higher and variable values were again observed 10–24 days after the chl a maximum.

TPC and TPN concentrations in the fjord ranged between 13.1 and 58.3 μmol L-1, and 1.9

and 5.7 μmol L-1 respectively (S2 Table). Maximum TPC and TPN concentrations were

observed 7 days after the mesocosms were closed and thus occurred earlier in the fjord com-

pared to the mesocosms. This maximum was characterised by high C:N ratio (ca. 11) and coin-

cided with low salinity and temperature, suggesting that this maximum was again associated

with dynamic water mass movements within the fjord, rather than directly related to bloom

dynamics.

3.3. Relative changes in TPC, chl a and heme b

In the mesocosms, there was a strong correlation between TPC and TPN, (Table 1) and the C:

N ratio averaged 7.7 ± 1.6 overall (n = 480), supporting the suggestion that inorganic carbon

made only a minor contribution to the TPC pool. Nevertheless C:N ratios were significantly

lower (6.1±0.6, p<0.01, n = 50) in period (B) compared to all other periods and significantly

higher in period (E) (8.4±1.8, p<0.01, n = 225, Fig 4A). Chl a concentrations correlated with

both TPC and TPN (Table 1), although there was some variability in the chl a: TPC ratios with

significantly lower averages observed for periods (A) and (E), and significantly higher values

observed in period (B) (Fig 4B). Correlation between chl a and TPN was stronger than for chl

a and TPC (Table 1), and was reflected in the results for the ANOVA on the different bloom

periods as chl a: TPN ratios were only significantly higher in period (B) (Fig 4B). Heme b con-

centrations also correlated with TPC, TPN and chl a, however, the correlation was weaker

because heme b: TPC, TPN and chl a ratios increased by approximately four fold in the pri-

mary bloom period (period (B), Fig 4B and 4C). Average heme b concentrations in the meso-

cosms were never more than 100 times lower than the average chl a concentrations; heme b:

chl a was thus higher than observed in previous studies [6, 12]. After the first bloom period,

heme b: chl a ratios dropped in periods (C) and (D) but rose again in period (E) to values

approaching those observed at the peak of the primary bloom (Fig 4D).

In the fjord, TPN again correlated with TPC so that the ratio of C:N averaged 7.1 ± 1.2 over-

all (n = 50) and was thus slightly lower than the average observed in the mesocosms. In con-

trast to the mesocosms, neither chl a nor heme b correlated with TPC, TPN or each other in

the fjord at the 99% confidence level (Table 1). This is likely influenced by the lower number

of samples collected in the fjord (Table 1). Nevertheless, the range in chl a: TPC ratios were

similar in the fjord to those observed in the mesocosms and highest chl a: TPC was also

recorded in the fjord in the period when chl a was higher (Fig 5A). Heme b: TPC ratios

observed in the fjord were, however, lower than those observed in the mesocosms (Fig 5B).

Even so, heme b: TPC ratios were higher than those reported previously for open ocean

Table 1. Correlation coefficients observed for total particulate carbon (TPC), total particulate nitrogen (TPN), chlorophyll a and heme b concentra-

tions in the mesocosms and Gullmar Fjord over the entire course of the experiment.

TPN Chlorophyll a Heme b

Mesocosms TPC 0.91, p<0.01, n = 481 0.75, p<0.01 n = 481 0.29, p<0.01, n = 215

TPN 0.82, p<0.01 n = 481 0.39, p<0.01, n = 215

Chlorophyll a 0.46, p<0.01, n = 216

Fjord TPC 0.81, p<0.01, n = 50 0.33, p = 0.02 n = 50 -0.2, p>0.5, n = 20

TPN 0.29, p = 0.04 n = 50 -0.05, p>0.5, n = 20

Chlorophyll a -0.03, p>0.5, n = 20

https://doi.org/10.1371/journal.pone.0176268.t001
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regions [6, 12]. The relative lower abundance of heme b in the fjord was confirmed by compar-

ison with chl a, as chl a concentrations were observed to be as much as 260 times higher than

heme b in the period where chl a concentrations were maximal (Fig 5C).

Fig 4. Mean (± S.D.) ratios of key variables during each defined period in the mesocosms (A—E).

Asterisks indicate periods that were significantly different. a: C:N, b: chl a: TPC (white bars) and chl a: TPN

(grey bars), bars with the same letter are not significantly different from one another, c: heme b: TPC (white

bars) and heme b: TPN (grey bars), d: heme b: chl a

https://doi.org/10.1371/journal.pone.0176268.g004

Fig 5. (a) Chlorophyll a: TPC, (b) heme b: TPC and (c) log(heme b: chl a) ratios observed in the mesocosms

(coloured symbols) and fjord (black symbols) over time normalized to the day of maximum chlorophyll a. Day

0 was defined as the day that chlorophyll a reached a maximum and occurred between the 6th and 10th April in

the mesocosms (an average 30.2 ± 1.9 days after mesocosm closure) and on the 7th April 2013 in the fjord.

Values are expressed as the average ± standard deviation. The number of samples, n, depended on the

number of samples occurring on any given day relative to the chlorophyll a maximum and was between 2–4

for chlorophyll a and heme b: TPC, and 2–6 for chlorophyll a: heme b. One sample was collected from the

fjord each sampling day. The experiment was divided into five different periods based on the changes in

chlorophyll a as denoted by the capital letters A—E.

https://doi.org/10.1371/journal.pone.0176268.g005
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4. Discussion

4.1. Heme b during the evolution of a phytoplankton bloom of mixed

community composition

In this study, we investigated for the first time the temporal variability of heme b over the

course of a phytoplankton bloom with a mixed community composition occurring during a

mesocosm experiment. As a component of both the respiratory and photosynthetic electron

transport chains, heme b occurs in all planktonic marine organisms. We filtered our samples

through a 0.μm filter, and so theoretically exclude smaller microbes (which are likely to be

mostly heterotrophs) from our samples. Nevertheless, the evolution of a bloom through primary

to regenerative production, and through fluctuations in phototrophic and heterotrophic com-

munities, typically observed in mesocosm experiments [31–33], might be expected to impact on

heme b concentrations, and the relationship between heme b and other bulk components of the

biogenic carbon pool (POC, PON, chl a). Fluctuations in heme b could be influenced by both

community composition [13] and by changes in ambient nutrient concentrations [6, 34]. In

general, the mesocosm community composition was dominated by small (2–5 μm) and large

diatoms (>200 μm), and chlorophytes, with a change in species composition observed between

the first and second bloom period [25]. The first bloom terminated as result of the reduction in

nitrate concentrations, and community productivity thereafter was dominated by regeneration

[25]. The switch from primary to regenerative production is characterised by a shift in nitrogen

metabolism from the use of oxidised nitrogen sources to the use of reduced nitrogen. Such a

switch also has potential impacts on heme b as eukaryotic nitrate reductase incorporates a b
type cytochrome [35].

The maximum heme b concentration observed in the mesocosms was 44 times higher than

the maximum heme b concentration reported previously in open waters(21 pmol L-1; [12]).

This was partly a reflection of higher biomass observed in the mesocosms than typically

observed in shelf or open ocean regions. For example, TPC in the mesocosms ranged between

9.6–77.3 μmol L-1, while reported values for the mixed layer depth in the Celtic Sea and tropi-

cal North Atlantic were 10 ± 1.6 μmol L-1 and ca. 2–3 μmol L-1 respectively [6, 12]. Heme b
concentrations, however, were disproportionately higher relative to TPC and chl a and this

resulted in higher heme b: TPC and heme b: chl a ratios being observed in this study than have

previously been observed in field studies [12, 34]. Maximum average heme b: chl a and heme

b: TPC ratios were observed several days before the chl a maximum at a time corresponding to

the initiation of the primary phytoplankton bloom. The heme b: chl a and heme b: TPC ratio

was also considerably higher than that observed in phytoplankton monocultures, which have

previously been reported only for the end of the exponential phase [6, 13]. As the period of

maximum heme b: chl a and heme b: TPC ratios was pre-bloom, it is likely that the relative

increase in heme b is associated with elevated concentrations of heme b within the photosyn-

thetic phytoplankton population, rather than relative changes in the abundance of hetero-

trophs and phototrophs or shifts in community composition. The results obtained in this

study of mixed phytoplankton assemblages therefore suggest that at the time of bloom initia-

tion, which corresponds to optimum nutrient concentrations, hemoprotein, abundance was

higher in order to facilitate growth. A potential cause for the increased hemoprotein content is

likely to have been the requirement for assimilatory nitrate reductase. The transient nature of

the increase suggests that even before the primary bloom terminated as a result of reduced

nitrate availability, the phytoplankton population switched to ammonia utilisation as a less

energy demanding nutrient source. Rapid utilisation of ammonia would also be consistent

with the absence of ammonia accumulation during the course of the mesocosm experiment

[25]. In previous laboratory cultures, heme b has been shown to make up between 6 and 40%
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of the total cellular iron at the end of the exponential growth phase [6]. The high heme b: TPC

ratio observed at the start of the bloom suggests that the proportion of cellular iron allocated to

heme b and/or the cellular demand for iron could also change over the course of a phytoplank-

ton bloom.

It was notable that heme b: TPC ratios remained relatively stable for the remainder of the

experimental period and thus did not increase at any time during the secondary bloom, in

contrast to chl a: TPC which increased during both bloom periods. This was likely due to the

switch to regenerative production, coupled to the change in community composition over the

course of the experiment. The results from this mixed community mesocosm population

therefore support previous laboratory single culture results and suggest the plankton popula-

tion growing under low nutrient conditions allocated energy resources away from the synthe-

sis of hemoproteins, possibly because of the reduced need for eukaryotic nitrate reductase.

The positive correlation between heme b and chl a suggests that phytoplankton abundance

had a strong influence on heme b concentrations. However, Fig 5C suggests that the relation-

ship between heme b and chl a was also influenced by both nutrient abundance and changing

species composition. The N:P ratio suggests that both mesocosm and fjord waters were deficient

in oxidised inorganic nitrogen, with respect to requirements for the production of organic mat-

ter with classical Redfieldian N:P ratios, at the start of the experiments. As with the heme b:

TPC ratio, heme b abundance increased relative to chl a in the first part of the primary bloom,

but started to fall again as nutrient depletion set in. In the latter part of the experiment however,

we observed a steady increase in the overall abundance of heme b relative to chl a, and in the

variability of heme b: chl a values (Fig 5C). This is possibly due to fluctuating populations of het-

erotrophs such as zooplankton which contain heme b but not chl a (although heme b levels in

marine zooplankton have yet to be determined using the protocol applied in this study). In the

final phase of the experiment chl a: TPC decreased whilst heme b: TPC increased supporting

the idea of a shift in species composition likely from primary producers to a greater abundance

of zooplankton. It appeared that the mesocosms within this study had significant zooplankton

abundance as not all TPC variability was accounted for by chl a alone. This is in contrast to

Honey et al. [6] who assigned a minimal proportion of the heme b pool to zooplankton.

Taken together, the results suggest that heme b concentration, and the abundance of heme

b relative to other bulk parameters of the biogenic carbon pool are influenced by the bloom

phase. Thus, at the initiation of a primary bloom, heme b concentrations increase, and reach a

maximum relative both to TPC and to chl a. Concentrations of heme b in the water column

will then continue to change with biomass, but the abundance of heme b relative to TPC and

chl a will decrease as the community switches to regenerated production. As the community

further evolves and heterotrophs make a larger contribution, concentrations of heme b become

more variable and increase relative to TPC and chl a.

The overall concentration of heme b in the water column and the abundance of heme b rela-

tive to TPC and chl a was lower in the Gullmar Fjord relative to the mesocosms. The fluctuations

observed in salinity and the difference in overall nutrient concentrations, coupled with the earlier

onset of the reduction in N:P ratios are likely linked to the different water column conditions in

the fjord compared to the mesocosms. Thus the lower abundance of heme b in the fjord, both in

absolute terms and with respect to POC and chl a most likely arose because of water mass move-

ments bringing water of differing salinity, N:P ratios and overall N and P composition.

4.2. Effect of high pCO2 conditions

In this study, we assessed the potential impact of increased pCO2 on heme b. We found no sta-

tistically significant impact of increased pCO2 on heme b concentrations in the water column,

Heme b abundance over a phytoplankton bloom

PLOS ONE | https://doi.org/10.1371/journal.pone.0176268 April 20, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0176268


or on the abundance of heme b relative to other bulk parameters associated with the biogenic

carbon pool. Although iron concentrations in the fjord likely vary on both temporal and

spatial scales depending on the relative input from rivers and sediments [36, 37], it is very

unlikely that planktonic production here is iron limited given that previous reported surface

dissolved iron in Gullmar Fjord ranged from ca. 4–40 nmol L-1 [36, 37]. Reallocation of

heme b resources in response to changes in pCO2 may be more pronounced in low iron or

iron limited regions [22]. Previous studies in iron replete mesocosms report no significant

acidification effect upon phytoplankton species composition or succession [31–33], micro-

zooplankton grazing [38] or copepod feeding and egg production [39]. Significant pH-

effects have also failed to manifest in field experiments on microzooplankton biomass in a

late North Atlantic spring bloom [40] and may further explain the lack of change in heme b
and its relation to other parameters. In relation to iron, there are suggestions that lowered

pH results in both increased solubility of iron and a higher fraction of iron in the inorganic

form [17, 41]. However, there are also contrasting results suggesting that iron bioavailability

may decrease [18, 19] due to increased organic binding and more work is needed to ascer-

tain the prevailing effects of increased pCO2 upon nutrient chemistry [20]. The results

obtained in this study, do not therefore rule out an impact of changes in pCO2 on open

ocean, low iron or iron limited communities.

4.3. Comparison with previously reported heme b concentrations

Heme b concentrations have now been reported from the Celtic Sea, two studies in the (sub)-

tropical and North Atlantic Ocean, the Iceland Basin in the high latitude North Atlantic and in

the Southern Ocean. Table 2 summarises heme b concentrations reported in previous studies,

together with chl a and iron concentrations. The peak value of heme b obtained in the Gullmar

Fjord itself in this study was 161 pmol L-1, which was approximately 8 times higher than the

previous maximum, recorded downstream of St. Georgia in the Scotia Sea [12]. The Gullmar

Fjord is the most iron replete environment in which heme b has been quantified and our

results thus suggest a substantial increase in the iron containing hemoproteins determined

using our technique is possible in marine environments typified by higher iron concentrations.

Accordingly, fjord heme b: TPC ratios were comparable to iron replete phytoplankton cultures

[6] and heme b was also higher relative to chl a than previously reported, especially after the

decline in chl a post bloom. Fig 6 shows a box and whisker plot of the log(heme b: chl a) ratio

for the data obtained in this study together with all previously reported field data. A non

parametric ANOVA on ranks indicated that log(heme b: chl a) ratios were significantly higher

in the Gullmar Fjord compared to all previously published data, while log(heme b: chl a) values

were significantly lower in the Scotia Sea and Iceland Basin. The data reported in this study

suggest that neither TPC nor chl a correlated with heme b in the fjord proper. Additionally,

Table 2. Comparison of heme b, chlorophyll a and dissolved iron values observed in the Gullmar Fjord (this study) with other studies from the

Atlantic Ocean.

Study area Heme b (pmol L-1) Chlorophyll a (nmol L-1) Dissolved iron (nmol L-1)

Iceland Basin 1.1±0.7[12] 1.2±0.8[12] <0.03–0.22[44]

Scotia Sea 5.1±4.8[12] 1.9±1.7[12] <0.03–0.6[45]

Tropical North Atlantic 2.3±1.7[12] 0.25±0.13[12] <0.1–0.37[46]

Celtic Sea 3.8±1.7[6] 0.5±0.3[6] 0.8–2.1[47]

Gullmar Fjord (this study) 66±45 1.2±0.6 4–40[36, 37]

Heme b and chl a are expressed as averages ± standard deviation. Dissolved iron data are expressed as a range.

https://doi.org/10.1371/journal.pone.0176268.t002
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previous studies occurred in nutrient limited regimes [6, 12] so that changes observed

between these studies are unlikely to be overly influenced by any changes in heme b occur-

ring during initial growth of a primary bloom. Some variability between and within studies

will be a result of the relative degree of nitrate or phosphate depletion and likely also a

reflection of changes in community composition. However, our data suggest that the

greatest influence on heme b abundance relative to bulk biomass properties such as chl a
in the studies published to date, was the concentration of iron in the water column. The

heme b pool (determined with the ammoniacal extraction method) therefore represents a

relatively plastic iron pool, which can be reduced, via adaptation [13] or acclimation [6],

when iron availability decreases. The reduction in this heme b protein pool reflects an

increase in heme growth efficiency (HGE; [13]). Such an increase in HGE could be linked

to an overall reduction in iron use [42] and/or a reallocation of resources away from heme

b and towards other iron containing proteins as has been observed with nitrate reductase

[43]. Whichever is the case, our finding that near shore coastal water communities contain

higher heme b concentrations than observed even in iron replete open ocean environ-

ments [6, 12] confirms that the iron metabolism of microbial communities in the marine

environment is consistently tuned to the ambient iron supply.

Fig 6. Box and whisker plot for log(heme b: chlorophyll a) values reported. From Gullmar Fjord (this

study, n = 19), Celtic Sea (n = 27), (sub)-tropical North Atlantic in 2010 (n = 377; [6]) tropical North Atlantic in

2008; (n = 268), Scotia Sea (n = 34) and the Iceland Basin (n = 83, [12]). Black circles indicate the 5th/95th

percentile for log(heme b: chlorophyll a). Letters denote significantly different groups (one way non parametric

ANOVA, p<0.01).

https://doi.org/10.1371/journal.pone.0176268.g006
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5. Conclusions

This study is the first to report heme b concentrations in an iron replete marine pelagic com-

munity over the progression of a naturally occurring spring bloom. Heme b concentrations

were considerably greater in the mesocosms than previously reported elsewhere, likely a reflec-

tion of high levels of iron supply. The abundance of heme b relative to other bulk biomass

properties such as chl a and POC changed over the course of the phytoplankton bloom, with

heme b reaching a maximum earlier than both chl a and POC. Heme b: POC peaked at the

onset of the primary bloom, but rapidly decreased again and remained relatively stable thereaf-

ter until the end of the experiment suggesting that heme b production may be elevated in the

early, nutrient replete, stages of a bloom. As heme b is a significant component of the intracel-

lular iron pool, this has potential implications for iron requirements and the intracellular allo-

cation of iron during the early stages of phytoplankton blooms. The abundance of heme b
relative to chl a was influenced by nutrient availability and changes in community composition

resulting from reduced nitrate availability. This could be connected to the requirement for

eukaryotic nitrate reductase, which contains heme b. This KOSMOS experiment resulted in

no significant broad scale effects of high pCO2 (ca. 1000 μatm) upon heme b concentration rel-

ative to chl a or POC. However, the KOSMOS mesocosms are iron replete systems and this

result does not exclude the potential for higher pCO2 to impact on iron containing biogenic

compounds such as heme b in lower iron environments. Further studies on the impact of

ocean acidification on heme b and iron requirements in low iron environments are therefore

needed.

Heme b concentrations in Gullmar Fjord were also higher than those observed in previous

studies as was the abundance of heme b relative to chl a. Comparison with previously pub-

lished data suggests that the distribution of heme b relative to chl a is closely linked to the con-

centration of iron, so that there is a lower abundance of heme b relative to chl a in regions

where iron is deplete (Fig 6). These findings thus have potential implications for the way in

which phytoplankton utilise iron in the ocean, and the allocation of this important limiting

nutrient towards protein pools driving different biogeochemical processes.
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