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Empirical analyses and simulations 
showed that different machine 
and statistical learning methods 
had differing performance 
for predicting blood pressure
Peter C. Austin1,2,3*, Frank E. Harrell Jr4, Douglas S. Lee1,2,5 & Ewout W. Steyerberg6

Machine learning is increasingly being used to predict clinical outcomes. Most comparisons of different 
methods have been based on empirical analyses in specific datasets. We used Monte Carlo simulations 
to determine when machine learning methods perform better than statistical learning methods in a 
specific setting. We evaluated six learning methods: stochastic gradient boosting machines using trees 
as the base learners, random forests, artificial neural networks, the lasso, ridge regression, and linear 
regression estimated using ordinary least squares (OLS). Our simulations were informed by empirical 
analyses in patients with acute myocardial infarction (AMI) and congestive heart failure (CHF) and 
used six data-generating processes, each based on one of the six learning methods, to simulate 
continuous outcomes in the derivation and validation samples. The outcome was systolic blood 
pressure at hospital discharge, a continuous outcome. We applied the six learning methods in each 
of the simulated derivation samples and evaluated performance in the simulated validation samples. 
The primary observation was that neural networks tended to result in estimates with worse predictive 
accuracy than the other five methods in both disease samples and across all six data-generating 
processes. Boosted trees and OLS regression tended to perform well across a range of scenarios.

Clinical investigators are increasingly interested in using machine learning (ML) methods to predict patient 
outcomes. There are ongoing efforts to assess which method is best for use in clinical medicine. In reviewing 
71 studies that used both conventional statistical models and ML methods for estimating the probability of the 
occurrence of a binary outcome, Christodoulou et al.1 found that, in those comparisons that were at low risk 
of bias, there was, on average, no difference in the discriminative ability of the different methods. However, in 
those comparisons that were at high risk of bias, ML methods tended to have better discrimination. In a study 
in which they fit both random forests and logistic regression models in 243 datasets, Couronné et al.2 found 
that, on average, random forests had better discrimination than logistic regression (mean increase in c-statistic: 
0.041). In a systematic review that included 10 studies, Hassanipour et al.3 found that artificial neural networks 
had better discrimination than logistic regression for predicting outcomes in trauma patients (pooled estimate 
of the c-statistic: 0.91 for neural networks vs. 0.89 for logistic regression). Finally, in a review of 20 clinical stud-
ies that compared the performance of standard statistical models with that of ML methods for predicting either 
mortality or readmission in patients hospitalized with heart failure, Shin et al.4 found that ML methods tended 
to have better discrimination than did standard statistical methods. Three of the above four studies focused on 
binary outcomes, while that of Shin and colleagues considered both binary and time-to-event outcomes. The 
relative performance of ML methods and conventional statistical methods for predicting continuous outcomes 
has received substantially less attention. In the current study we focus on prediction of a specific continuous 
outcome important in clinical medicine: systolic blood pressure.
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Our objective was to compare the relative performance of ML methods with that of conventional statistical 
learning methods for predicting discharge blood pressure in patients hospitalized with cardiovascular disease. 
We considered linear regression estimated using ordinary least squares (OLS), the lasso, ridge regression, boosted 
regression trees, random forests, and artificial neural networks. The paper is structured as follows: In “Empirical 
analyses on the relative performance of methods for predicting blood pressure”, we conduct a series of empirical 
analyses using data on patients hospitalized with either acute myocardial infarction (AMI) or congestive heart 
failure (CHF). We compare the performance of the six different learning methods for predicting patients’ systolic 
blood pressure at hospital discharge in validation samples. In “Monte Carlo simulations for comparing the rela-
tive performance of different prediction methods”, we describe a series of Monte Carlo simulations motivated 
by the empirical analyses conducted in the previous section. We examined the effect of different data-generating 
processes on the relative performance of the six different prediction methods. Each data-generating process was 
based on a different fitted learning method. Finally, in “Discussion”, we summarize our findings and place them 
in the context of the existing literature.

Empirical analyses on the relative performance of methods for predicting blood 
pressure
We conducted a set of empirical analyses to compare the performance of different machine and statistical learn-
ing methods in two different disease groups: patients hospitalized with acute myocardial infarction (AMI) and 
patients hospitalized with congestive heart failure (CHF). In each disease group we examined the ability of 
different methods to predict a patient’s systolic blood pressure at hospital discharge. Model performance was 
assessed using independent validation samples.

Data sources.  We used data from a study that collected data on patients hospitalized with either acute myo-
cardial infarction (AMI) or congestive heart failure (CHF) during two different time periods5. We considered 
each disease (AMI vs. CHF) separately. For the AMI patients, the derivation sample consisted of 8145 patients 
discharged alive from hospital between April 1, 1999 and March 31, 2001, while the validation sample consisted 
of 4444 patients discharged alive from hospital between April 1, 2004 and March 31, 2005. For the CHF patients, 
the derivation sample consisted of 7156 patients discharged alive from hospital between April 1, 1999 and March 
31, 2001, while the validation sample consisted of 6818 patients discharged alive from hospital between April 
1, 2004 and March 31, 2005. Thus, the derivation and validation samples came from distinct time periods. Data 
on patient demographics, vital signs and physical examination at presentation, medical history, and results of 
laboratory tests were collected for these samples. For the current study, the outcome was a continuous variable 
denoting the patient’s systolic blood pressure at the time of hospital discharge.

We considered 33 candidate predictor variables in the AMI sample and 28 candidate predictor variables in 
the CHF sample (Table 1 (AMI sample) and Table 2 (CHF sample) for a listing of these variables). These variables 
consisted of demographic characteristics, presentation characteristics, vital signs on hospital presentation, classic 
cardiac risk factors, comorbid conditions, laboratory tests, electrocardiogram results, and signs and symptoms6–8. 
Baseline characteristics in the two derivation samples and the two validation samples are reported in Table 1 
(AMI sample) and Table 2 (CHF sample). Differences in covariates between derivation and validation samples 
were tested using a t-test for continuous covariates and a Chi-squared test for binary variables.

The use of the data in this project is authorized under Section 45 of Ontario’s Personal Health Information 
Protection Act (PHIPA) and does not require review by a Research Ethics Board. All research was performed in 
accordance with relevant guidelines and regulations.

Methods for predicting discharge systolic blood pressure.  We considered six different methods for 
predicting systolic blood pressure at time of hospital discharge: conventional linear regression estimated using 
OLS, random forests of regression trees, boosted trees, artificial neural networks, ridge regression, and the lasso. 
Readers are referred elsewhere for details on these methods9–14. The empirical analyses described in this section 
are motivated by similar analyses conducted in a previous study7 with a focus on predicting the probability of the 
occurrence of a binary outcome. All methods considered all the variables listed in Table 1 as candidate predic-
tor variables. When using OLS regression to predict discharge blood pressure, the regression model included as 
main effects all the variables. The relationship between discharge blood pressure and each continuous variable 
was modeled used restricted cubic splines15. These six learning methods were selected for two different reasons. 
First, five of the six (with the exception of neural networks) were included in a recent study comparing the rela-
tive performance of different learning methods for predicting binary outcomes7. Second, many of these methods 
have been used in the cardiology literature for predicting patient outcomes4,16. Our study may hence be consid-
ered a neutral simulation study, where we compare different approaches rather than proposing a new method17.

For each disease condition, hyper-parameter tuning was performed in the derivation sample. For both ridge 
regression and the lasso, the tuning parameter λ was estimated using the cv.glmnet function from the glmnet 
package. This function uses tenfold cross-validation in the derivation sample to select the optimal value of λ. 
The hyper-parameters were tuned for boosted trees, random forests, neural networks, and OLS regression using 
a user-derived grid search18. The grid had one dimension for OLS regression (number of knots for the restricted 
cubic splines) and two dimensions for neural networks (number of neurons in the single hidden layer and the 
weight decay parameter), boosted trees (interaction depth and shrinkage or learning rate) and random forests 
(number of sampled candidate variables and minimum size of terminal nodes). For a given point on this grid 
(e.g., for a given number of sampled candidate variables and minimum size of terminal nodes for random forests), 
the derivation sample was randomly divided into ten approximately equally-sized groups. The given model, with 
the parameters set to those of the grid point, was fit in nine of the groups. The fitted model was then applied to 
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the remaining group and the predicted discharge blood pressure was obtained for each subject in this remaining 
group. The accuracy of predictions was quantified using R2. This cross-validation process was conducted ten 
times, so that each of the ten groups was used once for validating predictions. The R2 was then averaged across 
all ten iterations of this procedure. The grid point that resulted in the highest value of the R2 was selected for all 
subsequent applications of that method. For the neural network we allowed a single hidden layer as it has been 
suggested that this is sufficient for many practical applications19 (page 158).

In the AMI sample, the grid searches resulted in the following values for the hyper-parameters: boosted trees 
(interaction depth: 4; shrinkage/learning rate: 0.065), random forests (number of randomly sampled variables: 
6; minimum terminal node size: 20), OLS regression (number of knots: 3), neural networks (5 neurons in the 
hidden layer, from a grid search that considered the number of neurons ranging from 2 to 15 in increments of 
1; weight decay parameter: 0.05), lasso (λ = 0.08596), ridge regression (λ = 0.56553).

Table 1.   Baseline characteristics of patients in the AMI derivation and validation samples. Continuous 
variables are reported as mean ± standard deviation, while binary variables are reported as N (%). 
***Suppressed due to small sample size.

Variable Derivation sample (N = 8145) Validation sample (N = 4444) P-value

Outcome variable

Discharge systolic blood pressure 120.40 ± 19.69 122.48 ± 20.60  < 0.001

Demographic characteristics

Age 66.51 ± 13.58 69.13 ± 14.32  < 0.001

Female 2792 (34.3%) 1709 (38.5%)  < 0.001

Vital signs on hospital presentation

Systolic blood pressure 148.87 ± 31.15 144.64 ± 31.24  < 0.001

Diastolic blood pressure 83.86 ± 18.46 80.39 ± 18.42  < 0.001

Heart rate 83.61 ± 23.77 85.72 ± 23.74  < 0.001

Respiratory rate 20.86 ± 5.45 20.41 ± 5.32  < 0.001

Presentation characteristics

Cardiogenic shock 56 (0.7%)  <  = 5 ***

Acute congestive heart failure/pulmonary edema 389 (4.8%) 293 (6.6%)  < 0.001

Classic cardiac risk factors

Diabetes 2072 (25.4%) 1268 (28.5%)  < 0.001

Hypertension 3731 (45.8%) 2658 (59.8%)  < 0.001

Current smoker 2753 (33.8%) 1208 (27.2%)  < 0.001

Dyslipidemia 2597 (31.9%) 2004 (45.1%)  < 0.001

Family history of coronary artery disease 2603 (32.0%) 1377 (31.0%) 0.262

Comorbid conditions

Cerebrovascular accident/transient ischemic attack 772 (9.5%) 583 (13.1%)  < 0.001

Angina 2685 (33.0%) 1361 (30.6%) 0.007

Cancer 225 (2.8%) 80 (1.8%)  < 0.001

Dementia 250 (3.1%) 267 (6.0%)  < 0.001

Peptic ulcer disease 452 (5.5%) 226 (5.1%) 0.27

Previous AMI 1824 (22.4%) 1139 (25.6%)  < 0.001

Asthma 448 (5.5%) 282 (6.3%) 0.052

Depression 566 (6.9%) 483 (10.9%)  < 0.001

Peripheral vascular disease 590 (7.2%) 398 (9.0%)  < 0.001

Previous revascularization 749 (9.2%) 604 (13.6%)  < 0.001

Congestive heart failure 331 (4.1%) 283 (6.4%)  < 0.001

Hyperthyroidism 102 (1.3%) 15 (0.3%)  < 0.001

Aortic stenosis 119 (1.5%) 86 (1.9%) 0.045

Laboratory tests

Hemoglobin 138.70 ± 18.67 135.66 ± 20.66  < 0.001

White blood count 10.23 ± 4.83 10.43 ± 4.27 0.025

Sodium 139.03 ± 3.75 138.62 ± 3.93  < .001

Potassium 4.09 ± 0.55 4.11 ± 0.58 0.064

Glucose 9.37 ± 5.21 9.01 ± 4.53  < 0.001

Urea 7.38 ± 4.53 8.13 ± 5.40  < 0.001

Creatinine 103.60 ± 58.77 111.64 ± 72.95  < 0.001
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In the CHF sample, the grid searches resulted in the following values for the hyper-parameters: boosted trees 
(interaction depth: 4; shrinkage/learning rate: 0.065), random forests (number of randomly sampled variables: 
8; minimum terminal node size: 20), OLS regression (number of knots: 5), neural networks (6 neurons in the 
hidden layer, from a grid search that considered the number of neurons ranging from 2 to 15 in increments of 
1; weight decay parameter: 0), lasso (λ = 0.03323), ridge regression (λ = 0.96881).

Using the hyper-parameters obtained above, each model was fit to the derivation sample (patients hospital-
ized between 1999 and 2001) and then predictions were obtained for each subject in the validation sample 
(patients hospitalized between 2004 and 2005). Accuracy of predictions was assessed using three metrics: R2, 
mean squared error (MSE), and mean absolute error (MAE)20. R2 was computed as the square of the Pearson 
correlation coefficient between observed and predicted discharge blood pressure, while MSE and MAE were 

estimated as 1
N

N∑

i=1

(Yi − Ŷi)
2 and 1

N

N∑

i=1

|Yi − Ŷi| , respectively, where Y  denotes the observed blood pressure and 

Ŷ  denotes the estimated blood pressure.
For all methods, we used implementations available in R statistical software (R version 3.6.1, R Foundation 

for Statistical Computing, Vienna, Austria). For random forests we used the randomForest function from the 
randomForest package (version 4.6-14). The number of trees (500) was the default in this implementation. For 
boosted trees we used the gbm function from the gbm package (version 2.5.1). The number of trees (100) was 

Table 2.   Baseline characteristics of patients in the CHF derivation and validation samples. Continuous 
variables are reported as mean ± standard deviation, while binary variables are reported as N (%).

Variable Derivation sample (N = 7156) Validation sample (N = 6818) P-value

Outcome

Discharge systolic blood pressure 124.87 ± 22.27 125.77 ± 21.94 0.017

Demographic characteristics

Age 75.20 ± 11.54 76.23 ± 11.58  < 0.001

Female 3578 (50.0%) 3460 (50.7%) 0.377

Vital signs on hospital presentation

Systolic blood pressure 150.41 ± 33.22 148.42 ± 32.27  < 0.001

Heart rate 94.46 ± 25.30 92.36 ± 25.73  < 0.001

Respiratory rate 25.96 ± 7.25 24.45 ± 6.91  < 0.001

Signs and symptoms

Neck vein distension 3946 (55.1%) 4148 (60.8%)  < 0.001

S3 707 (9.9%) 430 (6.3%)  < 0.001

S4 275 (3.8%) 189 (2.8%)  < 0.001

Rales > 50% of lung field 739 (10.3%) 845 (12.4%)  < 0.001

Pulmonary edema 3691 (51.6%) 4130 (60.6%)  < 0.001

Cardiomegaly 2552 (35.7%) 3014 (44.2%)  < 0.001

Classic cardiac risk factors

Diabetes 2498 (34.9%) 2582 (37.9%)  < 0.001

Comorbid conditions

Cerebrovascular disease/transient ischemic attack 1144 (16.0%) 1223 (17.9%) 0.002

Previous AMI 2637 (36.9%) 2508 (36.8%) 0.936

Atrial fibrillation 2070 (28.9%) 2401 (35.2%)  < 0.001

Peripheral vascular disease 897 (12.5%) 917 (13.4%) 0.108

Chronic obstructive pulmonary disease 1171 (16.4%) 1521 (22.3%)  < 0.001

Dementia 472 (6.6%) 626 (9.2%)  < 0.001

Cirrhosis 51 (0.7%) 52 (0.8%) 0.73

Cancer 802 (11.2%) 759 (11.1%) 0.888

Findings on electrocardiogram

Left bundle branch block 1056 (14.8%) 915 (13.4%) 0.023

Laboratory tests

Hemoglobin 124.17 ± 20.65 123.23 ± 20.53 0.007

WBC (white blood cell) count 9.89 ± 5.23 9.65 ± 4.24 0.003

Sodium 138.37 ± 4.74 138.43 ± 4.86 0.451

Potassium 4.28 ± 0.66 4.26 ± 0.66 0.123

Glucose 9.03 ± 4.69 8.61 ± 4.08  < 0.001

Urea level 10.00 ± 6.32 9.92 ± 6.04 0.458

Creatinine 129.63 ± 94.43 126.42 ± 81.08 0.031
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the default in this implementation. We used the ols and rcs functions from the rms package (version 5.1-3.1) to 
estimate the OLS regression model incorporating restricted cubic regression splines. Feed-forward (or multilayer 
perceptron) neural networks with a single hidden layer were fit using the nnet package (version 7.3-12) with a 
linear activation function. Ridge regression and the lasso were implemented using the functions cv.glmnet (for 
estimating the λ parameter using tenfold cross-validation) and glmnet from the glmnet package (version 2.0-18).

Results of empirical analyses.  The performance of the six different methods for predicting discharge 
blood pressure in the validation sample (patients hospitalized between 2004 and 2005) are summarized in Fig. 1. 
In the AMI sample, boosted trees resulted in predictions with the highest R2 (0.17); however, differences between 
five of the six methods were minimal (range: 0.163 to 0.17 for five of the six methods). Note that R2 is reported 
as a proportion: the proportion of the variation in discharge blood pressure that is explained by the model. OLS 
regression resulted in estimates with the lowest MSE, while both OLS regression and boosted trees resulted 
in estimates with the lowest MAE. As with R2, MSE and MAE did not vary meaningfully across five of the six 
methods. The performance of the neural network differed from that of the other five across all three performance 
metrics.

In the CHF sample, random forests resulted in predictions with the highest R2 (23.7%); however, differences 
between five of the six methods were minimal again (range: 22.2 to 23.7%). Random forests resulted in estimates 
with the lowest MSE, while boosted trees resulted in estimates with the lowest MAE. As with R2, MAE did not 
vary meaningfully across five of the six methods (range: 15.0 to 15.2). As in the AMI sample, the neural network 
had substantially worse performance than the other five methods across all three metrics.

When comparing the three linear model-based approaches, neither of the two penalized approaches (lasso 
and ridge regression) had an advantage over conventional OLS regression in either disease samples. In both 
diseases, the lasso and ridge regression had very similar performance to each other.

In conclusion, in these empirical analyses, a tree-based machine learning method (either boosted trees or 
random forest) tended to result in estimates with the greatest predictive accuracy in the validation samples. 
However, differences between five of the methods were minimal. Neural networks resulted in estimates with 
substantially worse performance compared to the other five methods.
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Figure 1.   Performance in validation sample (Case study).
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Monte Carlo simulations for comparing the relative performance of different 
prediction methods
In the preceding section we observed that the best-performing method varied between the two diseases and that 
there were minimal differences between the five of the six prediction methods. In the current section, we examine 
the influence of how outcomes are generated on the relative performance of the different prediction methods. We 
considered six different data-generating processes, each based on one of the six models fit in the previous section. 
Using the samples described above, we generate outcomes in each of the derivation and validation samples using 
the given data-generating process. We then fit each of the six modeling methods to the derivation samples and 
then apply the fitted model to the simulated validated sample to assess the performance of each method. This 
process of simulating data using a given learning method is similar to one that was recently used to compare the 
accuracy of different methods for predicting binary outcomes7.

Six data‑generating processes for simulating outcomes.  We considered six different data-gener-
ating processes for each of the two diseases (AMI and CHF). We describe the approach in detail for the AMI 
sample. An identical approach was used with the CHF sample. We used the derivation and validation samples 
described in the empirical analyses above. We made one modification to the validation samples described above. 
The validation sample used above consisted of 4444 subjects (AMI validation sample) and 6818 (CHF valida-
tion sample). In order to remove variation in external performance due to small sample sizes, we sampled with 
replacement from each validation sample to create validation samples consisting of 100,000 subjects. For a given 
learning method (e.g., random forests), the method was fit in the derivation sample. The fitted model was then 
applied to both the derivation sample and the validation sample. Using the model/algorithm fit in the derivation 
sample, a predicted outcome (discharge systolic blood pressure) was obtained for each subject in each of the 
two datasets (derivation and validation samples). For random forests, boosted trees, neural networks, the lasso 
and ridge regression, we proceeded as follows: Using these predicted blood pressures at discharge, a continuous 
outcome was simulated for each subject as follows. First, for each subject in the derivation sample, a residual or 
prediction error was computed as the difference between the true observed discharge blood pressure and the 
estimated blood pressure obtained from the fitted model. Second, for each subject in the derivation sample, a 
residual was drawn with replacement from the empirical distribution of residuals estimated in the previous step. 
Third, the sampled residual was added to the estimated discharge blood pressure. This quantity is the simulated 
outcome for the given patient. This process was then repeated in the validation sample to obtain a simulated 
outcome for each subject in the validation sample. Note that the given prediction model was only fit once (in the 
derivation sample) but was then applied in both the derivation and validation samples to obtain estimated values 
of discharge blood pressure. These simulated outcomes were then used as the ‘true’ outcomes in all subsequent 
analyses. The above process was used when the data-generating process was based on random forests, boosted 
trees, neural networks, the lasso, and ridge regression. When the data-generating process was based on OLS 
regression, we used a modified version of this process. Instead of sampling from the empirical distribution of 
residuals, we sampled residuals from a normal distribution with mean zero and standard deviation equal to that 
estimated for error distribution from the OLS model. These sampled residuals were then added to the estimated 
discharge blood pressure to produce simulated continuous outcomes.

Using the process described above, the simulated outcomes reflected the multivariable relationship between 
the baseline covariates and the outcome that was implied by the fitted algorithm (e.g., random forests). This 
process was repeated 1000 times, resulting in 1000 pairs of derivation and validation samples. This process was 
repeated for each of the six different statistical/machine learning methods. Thus, we had a data-generating process 
based on boosted trees, random forests, neural networks, the lasso, ridge regression, and OLS regression. This 
approach to simulating outcomes is similar to that employed in our recent paper examining the relative accuracy 
of different methods for estimating probabilities7.

Performance of different predictive methods under different data‑generating processes.  For 
a given pair of derivation and validation samples, we fit each of the six statistical/machine learning methods 
(boosted trees, random forests, neural networks, the lasso, ridge regression, and OLS regression) in the deriva-
tion sample and then applied the fitted model to the validation sample. In the validation sample, we obtained, 
for each subject, an estimated discharge blood pressure for each of the six prediction methods. The performance 
of the predictions obtained using each method was assessed using the three metrics described above (R2, MSE, 
and MAE). Thus, for a given data-generating process and a given prediction method we obtained 1000 values of 
R2, MSE and MAE.

Thus, when outcomes were simulated in the derivation and validation samples using random forests, we 
assessed the predictive accuracy of boosted trees, random forests, neural networks, the lasso and ridge regres-
sion, and OLS regression. This process was repeated using the datasets in which outcomes were simulated using 
the five other data-generating processes.

Results of the simulations.  AMI sample.  The performance of the six prediction methods under the six 
different data-generating processes is reported in Fig. 2. There is one panel for each of the three performance 
metrics. For each performance metric, we summarize the results across the 1000 simulation replicates using bar 
charts, with one bar for each combination of data-generating process and analytic method. An error bar denot-
ing the standard deviation of the performance metric across the 1000 simulation replicates has been added to 
each bar.

Across all six data-generating processes and across all three performance metrics, the use of neural networks 
tended to result in predictions with the lowest accuracy. Even when outcomes were simulated using a neural 
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network, the other five methods tended to result in predictions with higher accuracy than did the use of neural 
networks. The difference in performance between neural networks and that of the other five methods was sub-
stantially greater than the differences amongst the other five methods.

When outcomes were generated using boosted trees, the use of boosted trees tended to result in estimates 
with the highest R2, while estimates obtained using OLS regression tended to result in estimates with comparable 
performance. When outcomes were generated using an OLS regression model, the use of OLS regression tended 
to result in estimates with the highest R2. The performance of OLS regression was followed by that of boosted trees 
and the two penalized regression methods. When outcomes were generated using a penalized regression method, 
the three linear regression models tended to result in estimates with the highest R2. Finally, when outcomes 
were generated using random forests, the use of boosted trees and random forests tended to result in estimates 
with the highest R2. When considering the three linear regression-based approaches, there was no advantage to 
using a penalized regression approach compared to using OLS regression. When assessing accuracy using MSE 
or MAE, the differences between the five non-neural network approaches tended to be minimal. In particular, 
regardless of the data-generating processes, the use of OLS regression tended to perform well, and there were no 
meaningful benefits to using a different approach. MSE and MAE of estimates obtained using neural networks 
displayed high variability across the 1000 simulation replicates.

CHF sample.  The performance of the six different prediction methods under the six data-generating processes 
are reported in Fig. 3. As in the AMI sample, the most obvious observation is the poor performance of neural 
networks compared to that of the other five methods. This was true across all six data-generating process and 
all three performance metrics. Similarly, as in the AMI sample, the difference in performance between neural 
networks and that of the other five methods was substantially greater than the differences amongst the other five 
methods.

When outcomes were generated using boosted trees, the use of boosted trees tended to result in estimates 
with the highest R2. Similarly, when outcomes were simulated using random forests, the use of random forests 
tended to result in estimates with the highest R2, although the performance of boosted trees was comparable. 
When outcomes were generated using a linear regression-based approach, then the three linear regression-
based approaches tended to result in estimates with the highest R2. Similar results were observed when MSE 
and MAE were used to assess performance accuracy. As in the AMI sample, when considering the three linear 
regression-based estimation methods, there were rarely meaningful benefits to using a penalized estimation 
method compared to using OLS regression.
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Figure 2.   Performance in AMI sample (External validation).
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Discussion
There is a growing interest in comparing the relative performance of different machine and statistical learning 
methods for predicting patient outcomes. To better understand differences in the relative performance of compet-
ing learning methods for predicting continuous outcomes, we used two empirical comparisons and Monte Carlo 
simulations using six different data-generating processes, each based upon a different learning method. These 
simulations enabled us to examine the performance of methods different from those under which the data were 
generated compared to the method that was used to generate the data. In both of the empirical analyses and in 
all six sets of Monte Carlo simulations, the performance of neural networks was substantially poorer than that 
of the other five learning methods.

There is a limited number of studies assessing the performance of machine learning methods for mod-
eling blood pressure. Using a sample of 400 subjects, Golino et al.21 used classification trees to identify sub-
jects with elevated blood pressure (systolic blood pressure > 120.0 mmHg for women and systolic blood pres-
sure > 140.0 mmHg for men; note that in this application blood pressure was dichotomized). Sex-stratified 
analyses were conducted with split-sample validation. They found that the predictive accuracy of classification 
trees was slightly greater than that of logistic regression. Alkaabi et al.22 compared the performance of classifi-
cation trees, random forests, and logistic regression for identifying subjects with hypertension (systolic blood 
pressure ≥ 140 mmHg and/or a diastolic pressure ≥ 90 mmHg or use of hypertension medication). Using 987 
subjects and fivefold cross-validation, they found that the three methods tended to have similar performance 
across an array of metrics. Using a sample of 498 subjects and a split-sample validation approach, Wu et al.23 used 
artificial neural networks to predict blood pressure (as a continuous variable) and found that approximately half 
of subjects had an estimated blood pressure that was within 10 mmHg of the observed blood pressure. Using 
data on 18 subjects, each of whom had their blood pressure assessed on multiple occasions, Zhang et al.24 used 
both split-sample and tenfold cross-validation to compare the performance of support vector machines, neural 
networks, and linear regression to predict subjects’ blood pressure, and found that support vector machines had 
the greatest predictive accuracy. These earlier studies differ from our empirical analyses in two important ways. 
First, these studies used split-sample validation or K-fold cross-validation, both of which are forms of internal 
validation. In comparison, we used an independent validation sample from a different temporal period. Thus we 
examined the historical transportability of our predictions, which is a stronger form of validation than internal 
validation25. Second, the number of subjects in both of our derivation samples and in both of our validation 
samples were substantially higher than those used in these previous studies.

An advantage to the current study was its use of simulations to compare the relative performance of differ-
ent learning methods for predicting blood pressure. A strength of the design of these simulations is that they 
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Figure 3.   Performance in CHF sample (External validation).
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were based on two real data sets, each with a realistic correlation structure between predictors and with realistic 
associations between predictors and outcomes. Thus, we were able to simulate datasets reflective of those that 
would be seen in specific clinical contexts. Importantly, both the sizes of the simulated dataset and the number 
of predictors that we considered are reflective of what is often encountered in clinical research. Some might 
argue that the number of predictors (33 and 28 in the AMI and CHF studies respectively) is relatively high for 
conventional regression modeling, and relatively low for modern machine learning techniques.

There is a paucity of studies that have used simulations to compare the performance of statistical learning 
methods with that of ML methods for prediction from a more or less neutral position2. In a recent study, we used 
simulations similar in design to those described in the current study to compare the performance of different 
learning methods to predict binary outcomes7. In that earlier study, we found that logistic regression and boosted 
trees tended to have superior performance to the other methods across a range of data-generating processes and 
performance metrics. In a study using simulations similar to ours, Van der Ploeg et al.26 compared the number 
of events per variable that were required to achieve estimates of c-statistics with minimal optimism for different 
statistical and ML methods. In a simulation-based study, Kirasich et al.27 found that logistic regression resulted 
in classifications with higher accuracy than did random forests. Finally, in a simulation-based study that com-
pared a set of classification methods to the boosted version of each classifier, Vafeiadas et al.28 found that, for 
each classifier, the use of boosting resulted in improved performance.

The objective of the current study was not to develop a new learning method nor was it to improve existing 
learning methods17. Our objective was to compare the relative performance of different learning methods for 
predicting a continuous outcome. As noted above, while there is a growing number of studies comparing differ-
ent learning methods, the large majority of these studies rely on empirical comparisons using a single dataset. A 
strength of the current study is its use of Monte Carlo simulations to conduct these comparisons systematically. 
A methodological contribution of the current study is providing a framework for Monte Carlo simulations that 
allows for a more informed comparison of different learning methods. Because we knew which learning method 
was the true model that generated the outcomes, the performance of each of the other five methods could be 
compared to that of the true method. For example, we demonstrated that when outcomes were generated using 
boosted trees, the use of OLS regression had performance comparable to that of boosted trees for predicting 
blood pressure (in the AMI sample).

An advantage to regression-based approaches to predicting blood pressure is that the estimated coefficients 
have a simple interpretation: the mean change in blood pressure associated with a one-unit change in the given 
covariate. Furthermore, by publishing the regression coefficients, the investigators can allow anyone to compute 
the expected blood pressure for a given covariate pattern. In contrast, machine learning methods have often been 
criticized as ‘black boxes’, and it is difficult to assess the effect of specific covariates on the outcome. Furthermore, 
it is difficult to publish the resultant model in such a way as to allow others to compute expected blood pressure 
for specific covariate patterns in independent validation studies29.

In conclusion, we found that a default implementation of a neural network had substantially poorer per-
formance compared to five other learning methods for predicting discharge systolic blood pressure in patients 
hospitalized with heart disease. This finding was observed both in two sets of empirical analyses and in six sets of 
Monte Carlo simulations. We also observed that there was no meaningful advantage to the use of penalized linear 
models (i.e., the lasso or ridge regression) compared to using OLS regression. Boosted trees tended to have the 
best performance of the different machine learning methods for the number of covariates studied. Investigators 
interested in predicting blood pressure may often be able to limit their attention to OLS regression and boosted 
trees and select the method that performs best in their specific context. We encourage researchers to apply our 
simulation framework to other diseases and other empirical datasets to examine whether our findings persist 
across different settings and diseases.

Ethics declarations.  The use of data in this project was authorized under Section 45 of Ontario’s Personal 
Health Information Protection Act, which does not require review by a Research Ethics Board. This study did not 
include experiments involving human subjects or tissue samples.
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